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1. Introduction

Measurement, estimation and forecasting generally involve elements of approxi-
mation. The term “error” is used in this context to denote the difference between

the true or actual value and the estimated, measured or forecast value. For many
centuries, mathematics has sought to develop concepts and methods of analysis to

solve a range of problems which present themselves in this context. This endeavor
can be described as the study of the phenomenon of “random variation”.

One of the greatest achievements of twentieth century mathematics is the for-
mulation of a rigorous theory of random variation, beginning with the work [4] of

A.N.Kolmogorov, in which a calculus of probabilities is developed, leading to a treat-
ment of random variables and their expectations based on Lebesgue’s theory of the

integral. In this essay the mathematical content and conceptions of the Kolmogorov
model are probed, and an alternative mathematical approach is presented.

The Lebesgue integral has good properties, such as the Dominated Convergence
Theorem, which make possible the formulation of a rigorous theory of probability.

But Lebesgue’s just happened to be the first of a number of such investigations into
the nature of mathematical integration during the twentieth century.
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Subsequent developments in integration, by Denjoy, Perron, Henstock and Kurz-

weil, have similar properties and were devised to overcome shortcomings in the
Lebesgue theory. See [1] for detailed comparison of modern theories of integration.
However, theorists of probability and random variation have not yet really “noticed”,

or taken account of, these developments in the underlying concepts. There are many
benefits to be reaped by bringing these fundamental new insights in integration or

averaging to the study of random variation.

In fact it is possible to formulate a theory of random variation and probability on
the basis of a conceptually simpler Riemann-type approach, and without reference

to the more difficult theories of measure and Lebesgue integration. See [6] for an
essay in this approach.

2. Averaging: Riemann and Lebesgue

To motivate our discussion of integration, or averaging, we review the elementary

calculation of an arithmetic mean as encountered in a first course in simple statistics.
Suppose the sample space is the set of real numbers, or a subset of them. Thus, an

individual random occurrence, measurement or item of data is a real number x.

While x is the underlying random variable, we are often concerned with some

deterministic function f of x; as, for example, in the estimation of the variance of x.
Then f(x) is random or unpredictable because x is.

If successive instances of the measurement x are obtained, we might partition the

resulting set of data into an appropriate number of classes; then select a represen-
tative element of the data from each class; multiply each of the representatives by

the relative frequency of the class in which it occurs; and add up the products. This
familiar procedure gives an estimate of the mean value of the measurement x.

Likewise, we can estimate the mean or expected value of the random variable f(x).
The following scheme (1) illustrates the procedure. The sample space (or domain of

measurements) is partitioned into intervals I (j) of the sample variable (or occurrence
or measurement) x, the random variable is f(x), and the relative frequency of the
class I(j) is F (I(j)):

(1)

Classification of Function f(x) of Relative frequency F
the data values the data values x of the data class
I(1) f(x(1)) F (I(1))
I(2) f(x(2)) F (I(2))
...

...
...

I(m) f(x(m)) F (I(m))
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For each j, the measurement value x(j) is a representative element selected from

I(j) (or from its closure). The resulting estimate of the mean value of the random

variable f(x) is
m∑

j=1

f(x(j))F (I(j)). Note that the sample variable of elementary

occurrences x can itself be regarded as a random variable, with mean value estimated

as
m∑

j=1

x(j)F (I(j)).

The approach to random variation that we are concerned with in this paper con-

sists of a formalization of this relatively simple Riemann sum technique which puts
at our disposal powerful results in analysis such as the Dominated Convergence The-

orem.

In contrast the Kolmogorov approach requires, as a preliminary, an excursion into
abstract measurable subsets Aj of the sample space:

(2)

Classification of the Values of the Probability
underlying variable x function f(x) measure P
A1 y1 P (A1)
A2 y2 P (A2)
...

...
...

Am ym P (Am)

Here, x is again a representative member of a sample space Ω which corresponds to
the various potential occurrences or states in the “real world” in which measurements

or observations are taking place on a variable f(x) whose values are unpredictable
and which can only be estimated beforehand to within a degree of likelihood. (In

practice, Ω is often identified with the real numbers or some proper subset of them;
or with a Cartesian product, finite or infinite, of such sets.) If we follow the method

of (2), numbers yj are chosen in the range of values of the random variable f(x), and

Aj is f−1([yj−1, yj [). The resulting
m∑

j=1

yjP (Aj) is an estimate of the expected value

of the random variable f(x). While the sets Aj are usually intervals, or unions of

intervals, in principle they are P -measurable sets. Such sets can be mathematically
abstruse, and they can place heavy demands on the understanding and intuition

of anyone who is not well-versed in mathematical analysis. For instance, it can be
difficult for a non-specialist to visualize a Cantor set in terms of laboratory, industrial

or financial measurements of some real-world quantity.

In contrast, the data classes I (j) of elementary statistics in (1) are easily under-

stood as real intervals, of one or more dimensions, which arise in actual measure-
ments; and these are the basis of the Riemann approach to random variation.
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3. Further points of contrast

We now examine some further aspects of the Lebesgue-Kolmogorov approach in
order to highlight some of the points of difference in the two approaches. While

the sample space Ω is an abstract conception conveying a minimal core of abstract
mathematical structure, it is, as mentioned above, frequently identified with some

finite or infinite Cartesian product of the real numbers, or of subsets of these. And
a probability measure P on Ω is, in practice, frequently the measure generated by a
probability distribution function FX(I) associated with a particular random variable
X . So, in practice, the mathematical structures have quite concrete interpretations.

To illustrate, suppose X is a normally distributed random variable in a sample
space Ω. Then we can represent Ω as

�
, the set of real numbers; with X represented

as the identity mapping X :
� → �

, X(x) = x; and with distribution function FX

defined on the family I � of intervals I of
�
, FX : I � → [0, 1]:

(3) FX (I) =
1√
2π

∫

I

e−
1
2 s2

ds.

Then, in the Lebesgue-Kolmogorov approach, we generate, from the interval function

FX , a probability measure PX : A � → [0, 1] on the familyA � of Lebesgue measurable
subsets of Ω =

�
. So the expectation EP (f) of any PX -measurable function f of x is

the Lebesgue integral
∫
Ω f(x) dPX . With Ω identified as

�
, this is just the Lebesgue-

Stieltjes integral
∫

� f(x) dFX , and, since x ∈ �
is just the standard normal variable

of (3), the latter integral reduces to the Riemann-Stieltjes integral—with Cauchy or

improper extensions, since the domain of integration is the unbounded
�

= ]−∞,∞[.
Thus, although the final result is relatively simple in mathematical terms, to get

there from (3) we are obliged to wade through quite deep mathematical waters.
In presenting this outline we have omitted many steps, the principal ones being the

probability calculus and the construction of the probability measure P . It is precisely
these steps which cease to be necessary preliminaries if we take a generalized Riemann

approach, instead of the Lebesgue-Kolmogorov one, in the study of random variation.
Because the generalized Riemann approach does not specify an abstract mea-

surable space Ω as the sample space, from here onwards we will take as given the
identification of the sample space with

�
or some subset of

�
, or with a Cartesian

product of such sets, and take the symbol Ω as denoting such a space. Accordingly
we will drop the traditional notations X and f(X) for denoting random variables.
Instead an elementary random occurrence will be denoted by the variable (though
unpredictable) element x of the (now Cartesian) sample space, and a general random

variable will be denoted by a deterministic function f of the underlying variable x.
The associated likelihoods or probabilities will be given by a distribution function
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F (I) defined on intervals (which may be Cartesian products of one-dimensional in-
tervals) of Ω. Whenever it is necessary to relate the distribution function F to its
underlying, elementary random occurrence or outcome x, we may write F as Fx.

4. Foundations of a Riemann approach

The standard approach starts with a probability measure P defined on a sigma-
algebra of measurable sets in an abstract sample space Ω; it then deduces probability
density functions F . These distribution functions (and not some abstract probability
measure) are the practical starting point for the analysis of many actual random

variables—normal (as described above in (3)), exponential, Brownian, geometric
Brownian, and so on.

In contrast, the generalized Riemann approach posits the probability distribution
function F as the starting point of the theory, and proceeds along the lines of the

simpler and more familiar (1) instead of the more complicated and less intuitive (2).
To formalize these concepts a little more, we have some domain Ω of potential

occurrences which we call the sample space. The elements x of Ω are the elemen-
tary occurrences or events, each of which can be thought of as a measurement (or

combination of joint measurements) which gives unpredictable results. The domain
Ω will be identified with SB =

∏{S : B} where S is
�
or some subset of

�
, and B

is an indexing set which may be finite or infinite. In some basic examples such as
throwing dice, S may be a set such as {1, 2, 3, 4, 5, 6}, or, where there is repeated
sampling or repeated observation, a Cartesian product of such sets. A likelihood
function F is defined on the data intervals of

∏{S : B}. A general random variable
(or observable) is taken to be a function f(x) defined for x ∈ Ω.
In Section 13 on Brownian motion we will show how to deal with a sample space

which is not itself a Cartesian product, but is a proper subset of a Cartesian product
� B .
The Lebesgue-Kolmogorov approach develops distribution functions F from prob-

ability measures P (A) of measurable sets A. Even though probability distribution
functions are often the starting point in practice (as in (3) above), Kolmogorov gives

primacy to the probability measures P , and they are the basis of the calculus of
probabilities, including the crucial relation

(4) P

( ∞⋃

j=1

Aj

)
=

∞∑

j=1

P (Aj)

for disjoint P -measurable sets Aj . Viewed as an axiom, the latter is a somewhat
mysterious statement about rather mysterious objects. But it is the lynch-pin of the
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Lebesgue-Kolmogorov theory, and without it the twentieth century understanding of

random variation would have been impossible.

The generalized Riemann approach starts with probability distribution functions
Fx defined only on intervals I of the sample space Ω = SB . We can, as shown below

(13), deduce from this approach probability functions Px defined on a broader class
of “integrable” sets A, and a calculus of probabilities which includes the relation

(4)—but as a theorem rather than an axiom. So instead of being a starting point,
(4) emerges at a later stage in the Riemann approach to random variation.

What, if any, is the relationship between these two approaches to random varia-
tion? There is a theorem [8] which states that every Lebesgue integrable function

(in
� B ) is also generalized Riemann integrable. In effect, this guarantees that every

result in the Lebesgue-Kolmogorov theory also holds in the generalized Riemann
approach. So, in this sense, the former is a special case of the latter.

The key point in developing a rigorous theory of random variation by means of
generalized Riemann integration is, following the scheme of (1) above, to partition

the domain or sample space Ω = SB, in an appropriate way, as we shall proceed to
show. (Whereas in the Lebesgue-Kolmogorov approach we step back from (1), and

instead use (2) supported by (4). The two approaches part company at the (1) and
(2) stages.)

In the generalized Riemann approach we focus on the classification of the sample
data into mutually exclusive classes or intervals I . In mathematical language, what

is involved in this is the partitioning of the sample space Ω = SB by intervals I .

In the first lesson of elementary statistics, the usual practice is to divide up the
domain of measurements, or the data, into equal classes, and then perform the

averaging operation described in (1) above, to obtain the estimated mean value or
expectation of the random variable f(x).
Later on in elementary studies of statistics, a little computational sophistication

may be applied to the classification of the data (or partitioning of the sample space).

Often this leads to the use of quantile points to classify or code the data. In this case,
unequal classes are obtained if the distribution of data is not uniform. So unequal

classes are arrived at in order to improve efficiency of computation and accuracy of
estimates. If quantile points are used to form the intervals I (j) in (1), then for each

representative instance or occurrence x(j) ∈ ClI(j), the random variable value f(x(j))
is multiplied by F (I(j)), where the F (I(j)) are equal for j = 1, 2, . . . , n; giving us
data classes of equal likelihood rather than equal size.

In pursuing a rigorous theory of random variation along these lines, this basic idea
of partitioning the sample space by intervals is the key. Instead of retreating to the

abstract machinery of (2), we find a different way ahead by carefully selecting the
intervals I(j) which partition the sample space Ω = SB .
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5. Riemann sums

An idea of what is involved in this can be obtained by recalling the role of Riemann

sums in basic integration theory. Suppose for simplicity that the sample space Ω is
the interval [a, b[⊂ �

and the observable f(x) is given by f : Ω → �
; and suppose

F : I → [0, 1] where I is the family of subintervals I ⊆ Ω = [a, b[.
We can interpret F as the probability distribution function of the underlying

occurrence or measurement x, so F (I) is the likelihood that x ∈ I . As a distribution

function, F is finitely additive on I.
Probability is a notoriously contentious and difficult concept. But the simplest in-

tuition of likelihood—as something intermediate between certainty of non-occurrence
and certainty of occurrence—implies that likelihoods must be representable as num-

bers between 0 and 1. So we can plausibly infer that the functions F are finitely
additive in I and are thus distribution functions. By making this our starting point
we lift the burden of credulity that (4) imposes on our naive or “natural” sense of
what probability or likelihood is.

With f a deterministic function of the underlying random variable x, the random

variation of f(x) is the object of our investigation. In the first instance we wish to
establish E(f), the expected value of f(x), as, in some sense, the integral of f with
respect to F , which is often estimated as in (1).

Following broadly the scheme of (1), we first select an arbitrary number δ > 0.
Then we choose a finite number of disjoint intervals I1, . . . , Im; Ij = [uj−1, uj [,
a = u0 < u1 < . . . < um = b, with each interval Ij satisfying

(5) |Ij | := uj − uj−1 < δ.

We then select a representative xj ∈ ClIj ; that is, uj−1 6 xj 6 uj , 1 6 j 6 m.

(For simplicity we are using superscript j instead of (j)—for labelling, not expo-
nentiation. The reason for not using subscript j is to keep such subscripts available

to denote dimensions in multi-dimensional variables.)

Then the Riemann (or Riemann-Stieltjes) integral of f with respect to F exists,

with
∫ b

a
f(x) dF = α, if, given any ε > 0, there exists a number δ > 0 so that

(6)

∣∣∣∣
m∑

j=1

f(xj)F (Ij)− α

∣∣∣∣ < ε

for every such choice of xj , Ij satisfying (5), 1 6 j 6 m.

If we could succeed in creating a theory of random variation along these lines,
then we could reasonably declare that the expectation EF (f) of the observable f(x)
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relative to the distribution function F (I), is
∫ b

a f(x) dF whenever the latter exists
in the sense of (6). (In fact this statement is true, but a justification of it takes us

deep into the Kolmogorov theory of probability and random variation. A different
justification is given in this paper.)

But (5) and (6) on their own do not yield an adequate theory of random variation.

For one thing, it is well known that not every Lebesgue integrable function is Riemann
integrable. So in this sense at least, (2) goes further than (1) and (6).

More importantly, any theory of random variation must contain results such as
Central Limit Theorems and Laws of Large Numbers, which are the core of our

understanding of random variation, and the proofs of such results require theorems
like the Dominated Convergence Theorem, which are available for (2) and Lebesgue

integrals, but which are not available for the ordinary Riemann integrals of (1) and
(6).

However, before we take further steps towards the generalized Riemann version of

(6) which gives us what we need, let us pause to give further consideration to data
classification.

6. Aspects of data classification

Though the classes Ij used in (6) above are not required to be of equal length,

it is certainly consistent with (6) to partition the sample data into equal classes.
To see this, choose m so that (b − a)/m < δ, and then choose each uj so that

uj − uj−1 = (b − a)/m. Then Ij = [uj−1, uj [ (1 6 j 6 m) gives us a partition of
Ω = [a, b[ in which each Ij has the same length (b− a)/m.

We could also, in principle, obtain quantile classification of the data by this method
of δ-partitioning. Suppose we want decile classification; that is, [a, b[= I1 ∪ . . . ∪ Im

with F (Ij) = 0.1, 1 6 j 6 m, so m = 10. This is possible, since the function
F (u) := F ([a, u[) is monotone increasing and continuous for almost all u ∈ ]a, b[, and
hence there exist uj such that F (uj) = j/10 for 1 6 j 6 10. So if δ happens to be
greater thanmax{uj−uj−1 : 1 6 j 6 10}, then the decile classification satisfies |I j | =
uj−uj−1 < δ for 1 6 j 6 10. (This argument merely establishes the existence of such
a classification. Actually determining quantile points for a particular distribution
function requires ad hoc consideration of the distribution function in question.)

In fact, this focus on the system of data classification is the avenue to a rigorous
theory of random variation within a Riemann framework, as we shall now see.
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7. The generalized Riemann integral

In the previous sections we took the sample space to be [a, b[. Henceforth we will
take the sample space Ω to be

�
, or a multiple Cartesian product

� B of
�
by itself.

There is no loss of generality in doing this, as we can, in effect, obtain “smaller”

sample spaces, whenever they are required, by defining the distribution function so
that it has zero support outside the “smaller” set. In Section 13 below on Brownian

motion we show how to deal with a sample space which is not a Cartesian product
though it is a subset of

� B .

For the moment we take B to be a finite set with n elements. An interval I of
� B =

� n is an n-times Cartesian product of real intervals of dimension one. For

each elementary occurrence x ∈ Ω =
� B =

� n , let δ(x) be a positive number. Then
an admissible classification of the sample space, called a δ-fine division of Ω, is a
finite collection

(7) Eδ := {(xj , Ij)}m
j=1

so that xj ∈ ClIj , the Ij are disjoint with union Ω, and the lengths of the edges (or
sides) of each Ij are bounded by δ(xj), in the sense of (12) below.
So, referring back to Section 1 and the table (1) of elementary statistics, what we

are doing here is selecting the data classification intervals I j along with a represen-

tative value xj from Ij . The pair (xj , Ij) then describes a set xj of measurements,
xj = (xj

1, x
j
2, . . . , x

j
n), with the individual real measurements xj

r jointly occurring in

the real intervals Ij
r , 1 6 r 6 n.

It is convenient (though not a requirement of the theory) that the representative

value xj should be a vertex of Ij , and that is how we shall proceed.
The Riemann sum corresponding to (7) is

(8) (Eδ)
∑

f(x)F (I) :=
m∑

j=1

f(xj)F (Ij).

We say that f is generalized Riemann integrable with respect to F , with
∫
Ω f(x)F (I)

= α, if, for each ε > 0, there exists a function δ : Ω → ]0,∞[ so that, for every Eδ,

(9)
∣∣∣(Eδ)

∑
f(x)F (I)− α

∣∣∣ < ε.

With this step we overcome the two previously mentioned objections to the use of
Riemann-type integration in a theory of random variation. Firstly, every function

f which is Lebesgue-Stieltjes integrable in Ω with respect to F is also generalized
Riemann integrable, in the sense of (9). See [1] for a proof of this. Secondly, we
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have theorems such as the Dominated Convergence Theorem (see, for example, [1])

which enable us to prove Laws of Large Numbers, Central Limit Theorems and other
results which are needed for a theory of random variation.
So we can legitimately use the usual language and notation of probability the-

ory. Thus, the expectation of the observable f(x) with respect to the probability
distribution function F (I) is

EF (f) =
∫

Ω

f(x)F (I).

To preserve consistency with the standard terminology of probability theory, it would
be appropriate to designate f(x) as a random variable only whenever EF (f) exists.
We have assumed for the moment that B is a finite set. But whenever B consists of
a single element, so Ω =

�
, the underlying variable x ∈ �

may itself be a random

variable in this sense, provided EF (x) :=
∫

� xF (I) exists.
To recapitulate, elementary statistics involves calculations of the form (1) of Sec-

tion 1, often with classes I of equal size, or classes of different sizes but equal likeli-
hood. We refine this method by carefully selecting the data classification intervals I .

In fact our Riemann sum estimates involve choosing a finite number of occurrences
{x(1), . . . , x(m)} from Ω (actually, from the closure of Ω), and then selecting associ-
ated classes {I(1), . . . , I(m)}, disjoint with union Ω, with x(j) ∈ ClI(j) (or with each
x(j) a vertex of I(j), in the version of the theory that we are presenting here), such

that for each 1 6 j 6 m, I (j) is δ-fine. The meaning of this is as follows.
Let

�
=

� ∪ {−∞,∞} be �
with the points −∞ and ∞ adjoined. This is what

was meant by the closure in the preceding paragraph. In the following paragraph,
x = −∞ and x = ∞ are given special treatment. Many functions are undefined for
x = ±∞; and if the integrand has points of singularity other than ±∞, we can make
arrangements similar to the following ones.

Let I be an interval in
�
, of the form

(10) ]−∞, v[, [u, v[, or [u,∞[,

and let δ :
� → ]0,∞[ be a positive function defined for x ∈ �

. The function δ is

called a gauge in
�
. We say that I is attached to x (or associated with x) if

(11) x = −∞, x = u or v, x = ∞

respectively. If I is attached to x we say that (x, I) is δ-fine (or simply that I is
δ-fine) if

(12) v < δ(x), v − u < δ(x), u >
1

δ(x)

respectively.
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That is what we mean by δ-fineness in one dimension. What about higher dimen-

sions? We consider next the case where B is finite with more than one element, so
� B =

� n with n > 2. (The case of infinite B is considered in Section 11 below.)

Suppose I = I1×I2× . . .×In is an interval of
� n , each Ij being a one-dimensional

interval of form (10). A point x = (x1, x2, . . . , xn) of
� n
is attached to I in

� n if

each xj is attached to Ij in
�
, 1 6 j 6 n. Given a function δ :

� n 7→ ]0,∞[, an
associated pair (x, I) is δ-fine in

� n if each Ij satisfies the relevant condition in (12)

with the new δ(x). A finite collection of associated (x, I) is a δ-fine division of
� n if

the intervals I are disjoint with union
� n , and if each of the (x, I) is δ-fine. A proof

of the existence of such a δ-fine division is given in [1].

If X is a subset of the domain of integration
� B , we sometimes need to give

meaning to integrals such as
∫

X f(x) dF or
∫

X f(x)F (I). In the Riemann theory,
this is done by taking

∫
X

f(x)F (I) to be
∫

� B f(x)1X(x)F (I), where 1X(x) is the
characteristic function or indicator function of the set X in

� B .

8. Where is the calculus of probabilities?

There are certain familiar landmarks in the study of probability theory and its
offshoots. Such as the calculus of probabilities, which has not entered into the

discussion thus far. The key point in this calculus is the relationship (4) above:

P

( ∞⋃

j=1

Aj

)
=

∞∑

j=1

P (Aj) .

In fact the set-functions P and their calculus are not used as the basis of the gener-
alized Riemann approach to the study of random variation. Instead, the basis is the

simpler set-functions F , defined only on intervals, and finitely additive on them.

But, as mentioned earlier, a consequence of the generalized Riemann approach is

that we can recover set-functions defined on sets (including the measurable sets of
the Kolmogorov theory) which are more general than intervals, and we can recover

the probability calculus which is associated with them.

To see this, suppose A ⊆ Ω is such that EF (1A) exists in the sense of (9), so
the characteristic function or indicator function 1A(x), of the set A, is a random

variable. Then define

(13) PF (A) := EF (1A) =
∫

Ω

1A(x)F (I),
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and we can easily deduce from the Monotone Convergence Theorem for generalized

Riemann integrals, that for disjoint Aj for which PF (Aj) exists,

PF

( ∞⋃

j=1

Aj

)
=

∞∑

j=1

PF (Aj).

Other familiar properties of the calculus of probabilities are easily deduced from (13).
Since every Lebesgue integrable function is also generalized Riemann integrable [1],

every result obtained by Lebesgue integration is also valid for generalized Riemann
integration. So in this sense, the generalized Riemann theory of random variation

is an extension or generalization of the theory developed by Kolmogorov, Levy, Itô
and others. (On the other hand, unlike the Lebesgue integral on which the clas-

sical Kolmogorov approach is based, the generalized Riemann integral is relatively
undeveloped for spaces other than Cartesian products of the real numbers.)

However the kind of argument which is natural for Lebesgue integration is different
from that which would naturally be used in generalized Riemann integration, so it

is more productive in the latter case to develop the theory of random variation from
first principles on Riemann lines. Some pointers to such a development are given

in [6].
Many of the standard distributions (normal, exponential and others) are mathe-

matically elementary, and the expected or average values of random variables, with
respect to these distributions—whether computed by means of the generalized Rie-

mann or Lebesgue methods—often reduce to Riemann or Riemann-Stieltjes integrals.
Many aspects of these distributions can be discovered with ordinary Riemann integra-

tion. But it is their existence as generalized Riemann integrals, possessing properties
such as the Dominated Convergence Theorem and Fubini’s Theorem, that gives us

access to a full-blown theory of random variation.
Here are some useful and convenient terms, which correspond with standard us-

ages. If EF (1A) = 0 we say that A is null (or F -null) in Ω, and its complement
Ω \A is of full F -likelihood in Ω.

9. Joint variation and marginal distributions

Random variation often involves joint variation of several (possibly infinitely
many) variables or measurements. Thus our theory of random variation must enable

us to analyze the properties of joint variation involving infinitely many random
occurrences.

When a family of events {xt}t∈B are being considered jointly, their marginal be-
havior is a primary consideration. This means examining the joint behavior of any
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finite subset of the variables, the remaining ones (whether finitely or infinitely many)

being arbitrary or left out of consideration. Thus we are led to families

{xt : t ∈ N}N⊆B

where the sets N belong to the family F(B) of finite subsets of B, the set B being
itself finite or infinite. When B is infinite the object (xt)t∈B is often called a process

or stochastic process, especially when the variable t represents time. For each t we
will write the elementary occurrence xt as x(t) depending on the context; likewise
xtj = x(tj) = xj .

Accordingly, for any finite subset N = {t1, t2, . . . , tn} ⊆ B, the marginal distribu-

tion function of the process x = xB = (xt)t∈B is the function

(14) F(x1,x2,...,xn)(I1 × I2 × . . .× In)

defined on the intervals I1× . . .× In of
� N , which we interpret as the likelihood that

the occurrence or measurement xj takes a value in the one-dimensional interval Ij

for each j, 1 6 j 6 n; with the remaining measurements xt arbitrary for t ∈ B \N .

One of the uses to which the marginal behavior is put is to determine the presence

or absence of independence. The family of occurrences or measurements {xt}t∈B is
independent if the marginal distribution functions satisfy

F(x1,x2,...,xn)(I1 × I2 × . . .× In) = Fx1(I1)× Fx2(I2)× . . . Fxn(In)

for every finite subset N = {t1, . . . , tn} ⊆ B. That is, the likelihood that the
measurements xt1 , xt2 , . . ., xtn jointly take values in I1, I2 . . ., In (with xt arbitrary

for t ∈ B \N), is the product over j = 1, 2, . . . , n of the likelihoods of xtj belonging
to Ij (with xt arbitrary for t 6= tj , j = 1, 2, . . . , n) for every choice of such intervals,

and for every choice of N ∈ F(B).
Of course, if B is itself finite, it is sufficient to consider only N = B in order to

establish whether or not the occurrences {xt} are independent.

10. Cylindrical intervals

When B is infinite (so x = (x(t))t∈B is a stochastic process), it is usual to define
the distribution of x as the family of distribution functions

(15)
{
F(x(t1),x(t2),...,x(tn))(I1 × I2 × . . .× In) : {t1, t2, . . . , tn} ⊂ B

}
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This is somewhat awkward, since up to this point the likelihood function has been

given as a single function defined on intervals of the sample space, and not as a
family of functions. However we can tidy up this awkwardness as follows.
Firstly, the sample space Ω is now the Cartesian product

∏
B

�
=

� B . In the follow-

ing discussion B can be finite or infinite, but if it is finite, the situation reduces to the

earlier one of Section 7. With F(B) the family of finite subsets N = {t1, t2, . . . , tn}
of B, for any N the set

(16) I = I [N ] := It1 × It2 × . . .× Itn ×
∏
{ �

: B \N}

is called a cylindrical interval if B is infinite. Taking all choices of N ∈ F(B) and
all choices of one-dimensional intervals Ij (tj ∈ N), denote the resulting class of

cylindrical intervals by I. These cylindrical intervals are the subsets of the sample
space that we need to define the distribution function Fx of x in

� B :

(17) Fx(I [N ]) := F(x(t1),x(t2),...,x(tn))(It1 × It2 × . . .× Itn)

for every N ∈ F(B) and every I [N ] ∈ I.
By thus defining the distribution function Fx (of the underlying process x ∈

� B ) on

the family of subsets I (the cylindrical intervals) of � B , we are in conformity with
the system used for describing distribution functions in finite-dimensional sample

spaces.
As in the elementary situation (1), it naturally follows, if we want to estimate

the expected value of some deterministic function of the process (x(t))t∈B , that the

joint sample space Ω =
� B of the family {x(t)} of individual occurrences x(t) should

be partitioned by means of cylindrical intervals I [N ]. In this case, an elementary
occurrence x ∈ Ω consists of the joint occurrence (x(t))t∈B ∈ � B , and we classify
or codify all possible such occurrences x into a finite number of mutually exclusive

classes, each of which has form I = I [N ]. The N may be different for different classes
or intervals I .

And, as in the finite-dimensional situation, the Riemann sum estimate of the
expected value of some observable function f can be improved by “shrinking” (in

some sense) the classes or intervals I [N ] which form the partition of the joint sample
space. (Or, in another terminology, by refining the classification of the joint data.)

There are essentially two different ways in which this shrinking can be produced.
Referring to (16), a subset of I = I [N ] can be obtained by choosing restricted
intervals whose edges are smaller than the edges of Ij (tj ∈ N), or we can restrict
the cylinder in extra dimensions—that is, choose I = I [M ] with M ⊃ N . Also

we can combine these two modes of restricting or reducing the class of elementary
occurrences.
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Of course, if we are dealing with the joint variation of only a finite number of

variables then B is a finite set, and in the “shrinking” described above we eventually
get N = B for all intervals I [N ], so we are back to the situation described in the
previous sections.

11. A theory of joint variation of infinitely many variables

To formulate a theory of joint variation of infinitely many variables, we must
establish what kind of partitions are to be permitted in forming the Riemann sum

approximation to the expected value of an observable function which depends on
these variables.

So we now address the formation of Riemann sums over a partition of an infinite-

dimensional sample space. The observable to be averaged or integrated will be some
deterministic function f(x) of x = (x(t))t∈B , corresponding to f(x) in (1), Section 1.
The averaging or integration of f(x) will be with respect to some likelihood function,
or probability distribution function F (I [N ]) defined on the cylindrical intervals I [N ]
from which a partition of Ω =

� B is formed, just as the classes I (j) partition the
one-dimensional domain of (1), Section 1.

The distribution function F (I [N ]) is the likelihood or probability that x ∈ I [N ]
(that is, x(tj) ∈ Ij for tj ∈ N = {t1, . . . , tn} with x(t) unrestricted for t ∈ B \N).
For an arbitrary partition E the Riemann sum estimate of the expected value of the
observable f is

(E)
∑

f(x)F (I [N ]).

Clearly, as we take different terms in this Riemann sum, we have different represen-
tative occurrences or processes x and different intervals or data classes I = I [N ], and
the different I [N ] may have different sets N of restricted directions or dimensions.

In ordinary Riemann integration we form Riemann sums by choosing partitions
whose finite-dimensional intervals have edges (sides or faces) which are bounded by

a positive constant δ. Then we make δ successively smaller. Likewise for generalized
Riemann integration, where the constant δ is replaced by a positive function δ(x).
In any case, we are choosing successive partitions in which the component intervals
successively shrink in some sense.

For the infinite-dimensional situation, we seek likewise to shrink the cylindrical

intervals I [N ] of which successive partitions are composed.
Our earlier discussion provides us with the intuition we need to construct appro-

priate rules for forming partitions for Riemann sums in infinite-dimensional spaces.

That is, the faces (or edges) of the restricted sides Ij of the cylindrical interval I [N ]
(see (16) are reduced by requiring them to be bounded by some positive function δ,
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and the set N in which I [N ] has restricted faces is increased by requiring that N

include some minimal set.
As before, let F(B) denote the family of finite subsets N of the (possibly infinite)

set B. Let a typical N ∈ F(B) be denoted {t1, t2, . . . , tn}. The sample space is
Ω =

� B . For N ∈ F(B), let
� N be the range of the projection

PN : (x(t))t∈B 7→ (x(t1), . . . , x(tn)) , Ω → � N .

Suppose Ij ⊂
� {tj } is an interval of type (10) (Section 7). Then I1 × I2 × . . . ×

In ×
� B\N is a cylindrical interval, denoted I [N ]; and I [N ] = P−1

N (I1 × . . . × In).
As before, let I denote the class of cylindrical intervals obtained through all choices
of N ∈ F(B), and all choices of intervals Ij of type (10), for each tj ∈ N . A point

x ∈ � N × � B\N is associated with a cylindrical interval I [N ] if, for each tj ∈ N , the

component xj = x(tj) is associated with Ij in the sense of (11). A finite collection E
of associated pairs (x, I [N ]) is a division of

� B if the finite number of the cylindrical
intervals I [N ] form a partition of

� B ; that is, if they are disjoint with union
� B .

Now define functions δ and L as follows. Let L :
� B → F(B), and for each

N ∈ F(B) let δ :
� B × F(B) → ]0,∞[. The mapping L is defined on the set

of associated points of the cylindrical intervals I [N ] ∈ I; and the mapping δ is a
function defined jointly on the set of pairs (x, N) ∈ � B ×F(B).
The sets L(x) and the numbers δ(x, N) determine the kinds of cylindrical intervals,

partitioning the sample space, which we permit in forming Riemann sums.

A set L(x) ∈ F(B) determines a minimal set of restricted dimensions which must
be possessed by any cylindrical interval I [N ] associated with x. In other words, we

require that N ⊇ L(x). The numbers δ(x, N) form the bounds on the lengths of the
restricted faces of the cylindrical intervals I [N ] associated with x. Formally, the role

of L and δ is as follows.
For any choice of L and any choice of δ, let γ denote (L, δ). We call γ a gauge

in
� B . The class of all gauges is obtained by varying the choices of the mappings L

and δ.

Given a gauge γ, an associated pair (x, I [N ]) is γ-fine provided N ⊇ L(x), and
provided, for each tj ∈ N , (xj , Ij) is δ-fine, satisfying the relevant condition in (12)

(Section 7) with δ(x, N) in place of δ(x). A discussion of the partitioning of
� B for

Riemann sums can be found in [2].

Given an observable function f of x, with a probability distribution function F

defined on the cylindrical intervals I [N ] of I, the integrand f(x)F (I [N ]) is integrable
in

� B , with
∫

� B f(x)F (I [N ]) = α, if, given ε > 0, there exists a gauge γ so that, for
every γ-fine division Eγ of

� B , the corresponding Riemann sum satisfies

(18)
∣∣∣(Eγ)

∑
f(x)F (I [N ])− α

∣∣∣ < ε.
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If B is finite, this definition reduces to definition (9), because, as each L(x) increases,
in this case it is not “without limit”; as eventually L(x) = B for all x, and then (18)
is equivalent to (9). Also (18) yields results such as Fubini’s Theorem and the
Dominated Convergence Theorem (see [5]) which are needed for the theory of joint

variation of infinitely many random variables.

12. Random variables

We now extend the notion of a random variable, or observable, as follows. Let f

be a deterministic function defined on
� B ×F(B), so in definition (18) above, f(x)

is replaced by f(x, N), with both x and N variable. The variables of integration in
this case are x, N and I [N ], and the elements of N may appear explicitly in the

integrand of (18).

The expectation of f(x, N) is then EF (f) :=
∫

� B f(x, N)F (I [N ]) whenever the
integral exists in the sense of (18), and f is a random variable, or F -random variable,

or F -observable, whenever it has an expected value EF (f). If B happens to be finite,
then this conception of random variable essentially reduces to the one expounded

earlier.

But why extend the concept, and why extend it in this particular way? To see the

motivation for this, we examine various different ways in which approximation or
estimation of some quantity leads us to seek an expected value for such a quantity.

If a sample space Ω is
�
, with elementary occurrences represented by x ∈ �

,
then we conceive of an F -random variable as a deterministic real- or complex-valued

function f of x for which EF (f) exists. In this case, the variable x may itself be a
random variable, even though its primary role is to label, in a way which is amenable

to mathematical analysis, the various non-mathematical outcomes or “states of the
world”; as is done by the ω of an abstract measurable sample space Ω in classical
probability theory.

For instance, in a single throw of a fair die, the possible physical outcomes, as the
die comes to rest, may be represented by the integers 1, 2, 3, 4, 5, 6. But the sample
space may still be taken to be Ω =

�
provided we take the distribution of likelihoods

to be determined by, for instance, F (]−∞, r]) = r/6, 0 6 r 6 6. (Of course, there
are many other valid ways in which this particular instance of random variation can
be mathematically modelled, even if we restrict ourselves to the Riemann approach

considered here.) By examining some Riemann sums, we see that x is itself a random
variable, with EF (x) =

∫
R

xF (I) = 3.5.
If we are investigating the random variation of n elementary occurrences, to be

considered jointly, then the joint occurrence x = (x1, . . . , xn) can be taken to be an
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element of a sample space Ω =
� n . Again, random variables appear in the form of

real- or complex-valued functions f(x); for instance, f(x) = x1 + . . . + xn.

If we have infinitely many elementary occurrences {x(t) : t ∈ B} to be considered
jointly, then a random variable is, again, f(x) where x = (x(t))t∈B ∈ � B . A joint

occurrence x may sometimes belong to the subset C of those x in
� B which are

continuous functions of t. And, with B = ]0, 1] and V a continuous function of real

numbers, the following function could conceivably be a random variable:

(19) f(x) =

{
exp

(
−

∫ 1

0
V (x(s)) ds

)
if x ∈ C,

0 if x ∈ � B \ C.

Recall that a distribution function F (I [N ]) for Ω =
� B , with B infinite, depends

on “viewing” the process x at the “instants” t1, . . . , tn of N ∈ F(B). The function
(21) below illustrates the explicit appearance of variables t1, . . . , tn in a probability

distribution function.

So it is not unnatural that a random variable f might also depend on corresponding
“views” of the process x. Thus, following the above example, we might have a random

variable

(20) f(x, N) = exp
(
−

n∑

j=1

V (x(tj))(tj − tj−1)
)

.

In fact, random variables often appear in the form f(x(t1), . . . , x(tn)) where N =
{t1, . . . , tn} are the variable “instants” at which both the probability distribution
function and the random variable “view” the process.

Bearing in mind that f(x) is fundamentally an estimated or approximated mea-
surement, it might be reasonable in certain circumstances to regard (20) as an equally
valid way of estimating the underlying quantity which is also estimated by (19). In

fact the discrete version in (20) may, in practice, be the only way in which the un-
derlying quantity can be estimated. A discussion of how (19) and (20) might relate

to each other is given in [5].

By designating a random variable as f(x, N) we include random variables of the
forms f(x) and f(x(t1), . . . , x(tn)), as well as other possible representations and
formulations of the measured or approximated quantity.
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13. Brownian motion

We now illustrate the Riemann approach to the analysis of random variation by
giving a new construction of Brownian motion. (This means constructing a math-

ematical model or theory which closely represents the more important properties
observed in the physical phenomenon itself.)

Let B = ]0,∞[. A Brownian motion is a random variable x = (x(t))t∈B such that

1. x(0) = 0;
2. Each of the random variables x(t) − x(s) (t ∈ B, s ∈ B, t > s) is normally
distributed with mean 0 and variance t− s;

3. The family of random variables x(t)−x(s) (t ∈ B, s ∈ B, t > s) is independent;
and

4. The sample space for joint occurrences x is Ω = C, the subset of continuous
functions in

� B .

To construct a process x satisfying the first three of these conditions, we define
the following function on the family I of cylindrical intervals I [N ] of

� B . With

N = {t1, . . . , tn}, 0 < t1 < . . . < tn, and taking t0 to be 0, refer to (3) in Section 3
above and, with y0 = 0, define g(I1 × . . .× In) to be

(21)
n∏

j=1

(2π(tj − tj−1))
− 1

2

∫

I1

. . .

∫

In

exp
(
− 1

2
(yj − yj−1)2

tj − tj−1

)
dy1 . . . dyn,

and then define G(I [N ]) := g(I1 × . . .× In) for each N ∈ F(B) and each cylindrical
interval.
A cylindrical interval can be represented in various ways. For instance, with

N = {t1, . . . , tn}, N ′ = N ∪ {tn+1}, I [N ] = I1 × . . . × In ×
� B\N and I [N ′] =

I1 × . . . × In ×
� × � B\N ′

, then I [N ] = I [N ′]. The argument of Proposition 36 of
[5] shows that G(I [N ]) = G(I [N ′]); and it can be easily adapted to show that, in
general, G(I [N ]) is well-defined. The fact that G(I [N ]) is a distribution function,
with

∫
� B f(x, N)G(I [N ]) = 1 whenever f is identically 1, so EG(1) = 1, also follows

from the evaluation in Proposition 36 of [5]. These results correspond to the Daniell-

Kolmogorov Theorem of the classical theory. They are practically self-evident, be-
cause cylindrical intervals and their distribution functions are less complicated than

measurable sets and their probability measures.
In order to satisfy condition (4) of Brownian motion, we might aspire to a definition

of the expectation of a random variable f(x) (x ∈ C) as, in some sense,
∫

C f(x) dG;
which, in turn, might be approximated by Riemann sums

∑
f(x)G(IC [N ]), where

each IC [N ] = I [N ]∩C is one of a finite number of sets partitioning C. In fact if X is a
subset of

� B (B finite or infinite), the standard way of defining an expression such as
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∫
X

f(x) dG by means of generalized Riemann integration is
∫

� B 1X(x)f(x)G(I [N ]).
But C is a non-measurable (in the classical sense) subset of

� B (see [3]), and∫
� B 1C(x)f(x)G(I [N ]) does not generally exist.

In effect, even though C is not a “flat”, G-null subset of
� B , in the way that

� 2

is a “flat” projection of the points of
� 3 , C is nonetheless too small a subset of

� B .

For a discussion of this point, see [3].

The problem is, that in the Riemann sums
∑

1C(x)f(x)G(I [N ]), which might
be expected to yield close approximations to

∫
� B 1C(x)f(x)G(I [N ]) if the integral

actually existed, too many terms of the Riemann sum are removed by the factor

1C(x).

To satisfy (4) we must find some way round this obstacle. The Riemann solution
to the problem uses the same feature of Brownian motion that the classical solutions
use. But while the latter focusses essentially on a suitable modification of the function

G, the approach presented here looks to a modification of the random variable f .

Let us recall the standpoint from which we have chosen to view the problem of
Brownian motion. We have to perform some calculation or measurement f which

depends on the unpredictable course of a quantity x(t) whose values are continuous
with respect to t; and, assuming that the increments x(t)−x(s) are independent and
normally distributed with variance t− s, we seek to determine the expected value of
f . Our difficulty, as in the classical treatment of the subject, is that the theory thus

far has led us to a sample space Ω =
� B , in which our calculation or measurement

f is undefined or meaningless outside of the subset C.

However, if M is any fixed, finite subset of B, and if C(M) denotes the set of
x ∈ � B which are continuous at each t ∈ M , then, by Proposition 46 of [5], the

integral
∫

� B 1C(M)(x)G(I [N ]) exists and equal 1, for eachM . So the expected value
of the random variable 1C(M) is 1; EG(1C(M)) = 1. In other words,

� B \ C(M) is
G-null for every fixed, finite M ⊂ B. (The gist of the argument is as follows. In the
Riemann sums, the variances tj+1 − tj of the normally distributed x(tj+1) − x(tj)
become arbitrarily small. A discontinuity in x at any one of the τ = tj ∈ M

then makes the normal increment x(tj+1) − x(tj) arbitrarily large compared to its
variance tj+1 − tj . And the normal distribution then places an arbitrarily small
common multiplicative factor in each of the likelihood or G-terms of the Riemann

sum approximation to
∫

� B 1C(M)(x)G(I [N ]).)

From this, it is easy to deduce that the random variable 1C(N), with N variable,

has expectation 1; so
∫

� B 1C(N)(x)G(I [N ]) = 1. Here, the Brownian distribution
function G(I [N ]) “views” the process x at the variable instants t ∈ N ; and at each

such view, the likelihood G “sees” those x which are continuous at t ∈ N , but which
may be discontinuous at any t ∈ B \N . The latter terms, of which there are a vast
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multitude, are the ones which would have disappeared from the Riemann sum if the

factor 1C(x) had been used instead of 1C(N)(x).
Armed with this insight, we demonstrate a generalized Riemann version of a

continuous modification. That is, we show how to meaningfully establish the G-
expectation of a measurement or calculation f which is determined only by unpre-

dictable occurrences x(t) which are continuous at each t. In fact we demonstrate the
modification when f is determined only by the jagged paths which are commonly

used in diagrams to illustrate Brownian motion. (It is easy to adapt the argument
for other classes of continuous paths x.)

Suppose Y is the set of polygonal paths in C ⊂ RB , so for each N = {t1, t2, . . . tn}
∈ F(B), y = yN ∈ Y satisfies

(22) y(tj) ∈
�
, 1 6 j 6 n; and

y(t) = y(tj−1) +
t− tj−1

tj − tj−1
(y(tj)− y(tj−1)) for t ∈ [tj−1, tj [.

Suppose a function f(y) has a value, real or complex, for each elementary occurrence
y ∈ Y but is otherwise undefined; so the sample space Y is a proper subset of

� B

and is not itself a Cartesian product space. For any x ∈ � B and any N ∈ F(B),
choose yN ∈ Y so that yN (N) = x(N), with yN (t) given by (22) for t ∈ B \N . Now

define fY on
� B × F(B) by

(23) fY (x, N) :=

{
f(yN) if x ∈ C(N),

0 otherwise.

We define the expectation EG
Y (f), or “

∫
Y f(yN) dG”, by

(24) EG
Y (f) :=

∫

� B

fY (x, N)1C(N)(x)G(I [N ]).

Whenever the latter exists we say that f is a random variable with sample space Y .
(The factor 1C(N)(x) in the integrand of (24) is redundant, but is inserted as an aid
to intuition.) Thus EG

Y (f) is defined to be EG(fY ) whenever the latter exists.
A “random variable” which takes a constant value c with certainty ought to have

an expected value of c. Accordingly, if f(y) = c for all y ∈ Y , the earlier discussion
shows that

EG
Y (f) =

∫

� B

c1C(N)(x)G(I [N ]) = c;

and we can use theorems such as the Dominated Convergence Theorem in
� B to

deduce that “well-behaved” functions f are likewise random variables in Y , in this
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modified sense. Thus, with the modifications (23) and (24), the function G can be

interpreted as a probability distribution function on the sample space Y .
Given any N = {t1, . . . , tn} of F(B) and any x ∈ C(N), the set Y is big enough

to enable us to find y ∈ Y such that yN(t1, . . . , tn) = x(t1, . . . , tn), but it is not big
enough to contain a set of full G-likelihood in

� B . That is why a random variable
f which is defined only on Y must be adjusted by means of (23) in order to admit

extra terms into the Riemann sum approximation of the expected value of fY in
(24), thereby enabling us to satisfy condition (4) of Brownian motion.
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