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Abstract. The aim of this paper is to present new oscillatory criteria for the second order
neutral differential equation with mixed argument

(x(t)− px(t− τ ))′′ − q(t)x(σ(t)) = 0.

The results include also sufficient conditions for bounded and unbounded oscillation of the
equations considered.
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In this paper we study asymptotic and oscillatory properties of solutions of the
second order neutral differential equation with mixed argument

(1) (x(t) − px(t− τ))′′ − q(t)x(σ(t)) = 0.

Throughout the paper we assume:
(H1) τ > 0 and 0 6 p < 1;
(H2) q, σ ∈ C( � + , � + ), lim

t→∞
σ(t) = ∞;

(H3) σ is nondecreasing.

We put z(t) = x(t)−px(t−τ). By a proper solution of Eq. (1) we mean a function
x : [Tx,∞) → � which satisfies (1) for all sufficiently large t and sup{|x(t)| : t > T} >

0 for any T > Tx, such that z(t) is twice continuously differentiable. Such a solution
is called oscillatory if it has a sequence of zeros tending to infinity; otherwise it is

called nonoscillatory. Eq. (1) is said to be oscillatory if all its solutions are oscillatory.

Research supported by S.G.A., Grant No. 1/0426/03.
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Recently, many papers devoted to differential equations with neutral terms have

appeared. Many good results known for differential equations without neutral
terms have been extended to neutral equations. The recent books by D.D. Bainov
and D.P.Mishev [1], by I.Győri and G. Ladas [5], and by L.H. Erbe, Q.Kong and

B.G. Zhang [4], sumarize some important work in this area and reflect the new
developments in the theory of neutral equations.

Usually the authors study bounded or unbounded oscillation of Eq. (1). That is,
for the delayed equation (σ(t) 6 t) they present sufficient conditions for all bounded
solutions of Eq. (1) to be oscillatory. On the other hand, for the advanced equation
(σ(t) > t), sufficient conditions for all unbounded solutions of Eq. (1) to be oscillatory
are looked for.
The prototype of results we are about to establish is the following well-known os-

cillatory criterion for the ordinary differential equation without neutral term (p = 0),
which is due to Čanturia & Koplatadze [2] (see also Theorem 4.3.1 in [6]):

Theorem A. Let p = 0.

(i) If σ(t) < t and

lim sup
t→∞

∫ t

σ(t)

[s− σ(t)]q(s) ds > 1,

then all bounded solutions of (1) are oscillatory.
(ii) If σ(t) > t and

lim sup
t→∞

∫ σ(t)

t

[σ(t)− s]q(s) ds > 1,

then all unbounded solutions of (1) are oscillatory.

Erbe, Kong and Zhang in [4, Theorem 4.6.1] have shown that Theorem A (i) holds
also for (1) with 0 < p < 1. An attempt to improve Theorem 4.6.1 has been made
in [3].

In this paper we are mainly interested in oscillation of Eq. (1), where σ(t) is a
mixed argument, that is, the function σ(t) may oscillate around t or in other words

t− σ(t) may oscillate around zero. Nonetheless, the oscillatory criteria we are going
to derive will be applicable also to delayed and advanced equations.

For simplicity and further references let us denote the delayed part and the ad-
vanced part of σ(t) by Dσ and Aσ , respectively. So

Dσ = {t ∈ (t0,∞) ; σ(t) < t},
Aσ = {t ∈ (t0,∞) ; σ(t) > t}.
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For our main result we assume that the sets Dσ and Aσ are not bounded from

above.
The objective of this paper is to provide such criteria which include the coefficient

p explicitly.

As is customary, all functional inequalities and equalities are assumed to hold
eventually, that is they are fulfilled for all large t.

Theorem 1. Assume that there exist two sequences {αk} and {βk} such that

αk ∈ Dσ, αk →∞ as k →∞,

βk ∈ Aσ , βk →∞ as k →∞.

Let there exist an integer number n > 0 such that

(2) lim sup
k→∞

∫ αk

σ(αk)

(s− σ(αk))q(s) ds >
1− p

1− pn+1
.

Let there exist an integer number l > 0 such that for all k large enough, σ(βk) >

βk + lτ and

(3) lim sup
k→∞

∫ σ(βk)−lτ

βk

(σ(βk)− lτ − s)q(s) ds >
1− p

1− pl+1
.

Then Eq. (1) is oscillatory.
���������

. Without loss of generality we may assume that x(t) is an eventually
positive solution of Eq. (1) on (t0,∞). We set

(4) z(t) = x(t) − px(t− τ).

We have z′′(t) = q(t)x(σ(t)) > 0 eventually. Therefore z′(t) and z(t) are of constant
signs. There are two possibilities for z(t):

(A) z(t) > 0 for t > t1 > t0,

(B) z(t) < 0 for t > t1.

Now we shall discuss case (A). Since z′(t) is of constant sign, we have two subcases

(A1) z(t) > 0, z′(t) < 0, z′′(t) > 0,
(A2) z(t) > 0, z′(t) > 0, z′′(t) > 0.
�! #"%$

(A1). Eq. (1) can be rewritten in the form

z′′(t) = q(t)x(σ(t)).
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Using (4), we obtain

z′′(t) = q(t)z(σ(t)) + pq(t)x(σ(t) − τ),

provided that p > 0. Repeating this procedure we arrive at

z′′(t) = q(t)
n∑

i=0

piz(σ(t)− iτ) + pn+1q(t)x(σ(t) − (n + 1)τ).

Therefore

z′′(t) > q(t)
n∑

i=0

piz(σ(t)− iτ).

For the sake of simplicity denote
n∑

i=0

pi = c1. Then using monotonicity of z(t) one

gets

(5) z′′(t) > c1q(t)z(σ(t)), t > t1.

Note that (5) holds also for p = 0 with c1 = 1.
It follows from σ(αk) < αk and the monotonicity of σ that σ(αk) ∈ Dσ . Moreover,

we claim that the interval (σ(αk), αk) ⊂ Dσ. To verify it, let us admit that there

exists u ∈ (σ(αk), αk) such that σ(u) > u; then monotonicity of σ yields u 6 σ(u) 6
σ(αk), a contradiction.
Integration of (5) from u to αk (u ∈ [σ(αk), αk]) yields

z′(αk)− z′(u) >
∫ αk

u

c1q(s)z(σ(s)) ds.

Then integrating in u from σ(αk) to αk and using monotonicity of z(σ(t)) we see
that

0 > z′(αk)(αk − σ(αk)) > z(αk)− z(σ(αk)) +
∫ αk

σ(αk)

∫ αk

u

c1q(s)z(σ(s)) ds du

> −z(σ(αk)) +
∫ αk

σ(αk)

c1q(s)(s− σ(αk))z(σ(s)) ds

> z(σ(αk))
(

c1

∫ αk

σ(αk)

q(s)(s− σ(αk)) ds− 1
)

,

which contradicts (2). Thus the case (A1) is impossible.�! #"%$
(A2). Similarly as above it can be shown that

z′′(t) > q(t)
l∑

i=0

piz(σ(t)− iτ).
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Setting
l∑

i=0

pi = c2 and then using monotonicity of z(t) one gets

z′′(t) > c2q(t)z(σ(t) − lτ), t > t1.

Denoting σl(t) = σ(t)− lτ , the previous inequality can be written as

(6) z′′(t) > c2q(t)z(σl(t)).

Using monotonicity of σ and the inequality σ(βk) > βk, similarly as above it can
be shown that (βk, σ(βk)) ⊂ Aσ .

Integration of (6) from βk to u (u ∈ [βk, σ(βk)]) gives

z′(u)− z′(βk) >
∫ u

βk

c2q(s)z(σl(s)) ds.

Now integrating in u from βk to σl(βk) and using monotonicity of z(σl(t)), one gets

0 > −z′(βk)(σl(βk)− βk) > z(βk)− z(σl(βk)) +
∫ σl(βk)

βk

∫ u

βk

c2q(s)z(σl(s)) ds du

> −z(σl(βk)) +
∫ σl(βk)

βk

c2q(s)(σl(βk)− s)z(σl(s)) ds

> z(σl(βk))
(

c2

∫ σl(βk)

βk

q(s)(σl(βk)− s) ds− 1
)

,

which contradicts (3). Therefore case (A2) is not possible either.�! #"%$
(B). In this case z(t) < 0 and z′′(t) > 0. This implies z′(t) < 0. On the

other hand, it follows from z(t) < 0 that

x(t) < px(t− τ) < p2x(t− 2τ) < . . . < pnx(t− nτ)

for t > t1 + nτ and since 0 6 p < 1, we conclude that lim
t→∞

x(t) = 0. Therefore,

lim
t→∞

z(t) = 0, which is impossible due to monotonicity of z. The proof is complete.
�

In the next theorem we modify condition (2) of Theorem 1.
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Theorem 2. Assume that there exist two sequences {αk} and {βk} such that

αk ∈ Dσ, αk →∞ as k →∞,

βk ∈ Aσ , βk →∞ as k →∞.

Let

(7) lim sup
k→∞

∫ αk

σ(αk)

(s− σ(αk))q(s) ds > 1− p.

Let there exist an integer number l > 0 such that for all k large enough, σ(βk) >

βk + lτ and

lim sup
k→∞

∫ σ(βk)−lτ

βk

(σ(βk)− lτ − s)q(s) ds >
1− p

1− pl+1
.

Then Eq. (1) is oscillatory.
���������

. Denote a = lim sup
k→∞

∫ αk

σ(αk)(s−σ(αk))q(s) ds. Let an integer n be chosen

such that

a >
1− p

1− pn+1
.

Then the assertion of this theorem follows immediately from Theorem 1. �
& $(') ��*

1. Theorems 1 and 2 guarantee oscillation of (1) provided that the

amplitudes of t− σ(t) are large enough. The best way how to choose the sequences
{αk} and {βk} is to set {αk} and {βk} to be local minima and local maxima of the
function t−σ(t), respectively. So if σ ∈ C2(t0,∞) then αk has to satisfy σ′(αk) = 1,
σ′′(αk) > 0; on the other hand, βk has to obey σ′(βk) = 1, σ′′(βk) < 0.
& $(') ��*

2. Theorems 1 and 2 extend TheoremA to neutral equations, moreover,
the coefficient p is explicitly included in our criteria, so Theorems 1 and 2 also improve

the corresponding criterion presented in [4].
+ ,  -'/.102$

1. Consider the neutral differential equation with mixed argument

(8) (x(t)− px(t− τ))′′ − ax(t− sin t) = 0, p ∈ (0, 1), a > 0, τ > 0.

Taking Remark 1 into account we put αk = 1
2π + 2kπ and βk = − 1

2π + 2kπ.
Condition (7) for Eq. (8) reduces to

(9) a > 2− 2p.
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On the other hand, if l > 0 is such that 1 > lτ then condition (3) for Eq. (8) takes

the form

(10) a >
2− 2p

(1− lτ)2(1− pl+1)
.

Thus, applying Theorem 2, we conclude that Eq. (8) is oscillatory provided that (10)

holds.

The following two results provide criteria for the asymptotic behavior of a solution
of Eq. (1) even if (7) or (3) is violated.

Corollary 1. Assume that there exists a sequence {αk} such that

αk ∈ Dσ, αk →∞ as k →∞.

If (7) holds then every bounded solution of Eq. (1) is oscillatory.
���������

. We assume that x(t) > 0 is a bounded solution of Eq. (1). Then z(t)
given by (4) is also bounded. Taking the proofs of Theorems 1 and 2 into account

we see that (7) guarantees that the case (A1) is impossible. Since z(t) is bounded,
the case (A2) is impossible. The case (B) can be eliminated exactly as in the proof

of Theorem 1. �
+ ,  -'/.102$

2. Consider the partial case of (8), namely the following neutral
differential equation:

(x(t) − 0.5x(t− 0.5))′′ − 1.1x(t− sin t) = 0.

It is easy to see that (9) holds while (10) is violated. It follows from Corollary 1 that

every bounded solution of the equation is oscillatory.

Corollary 2. Assume that there exists a sequence {βk} such that

βk ∈ Aσ , βk →∞ as k →∞.

If there exists an integer number l > 0 such that for all k large enough, σ(βk) > βk+lτ

and (3) is satisfied then every unbounded solution of Eq. (1) is oscillatory.
���������

. Let x(t) > 0 be an unbounded solution of Eq. (1). Thus, there exists a
sequence {tm} such that lim

m→∞
tm = ∞ and moreover, x(tm) = max{x(s) ; t0 6 s 6

tm} and lim
m→∞

x(tm) = ∞. Then we have

x(tm − τ) 6 max{x(s) ; t0 6 s 6 tm − τ}
6 max{x(s) ; t0 6 s 6 tm} = x(tm).
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Therefore for all large m, we have

z(tm) = x(tm)− px(tm − τ) > (1− p)x(tm).

Thus z(tm) →∞ as m →∞ and we conclude that z(t) is unbounded. Therefore the
case (A1) cannot occur. On the other hand, the case (A2) is excluded by (3). The

proof is complete. �
+ ,  -'/.102$

3. Consider the following neutral differential equation with mixed
argument:

(x(t) − 0.4x(t− 0.5))′′ − x(t− 0.5− sin t) = 0.

We set αk = 1
2π + 2kπ and βk = − 1

2π + 2kπ. It is easy to see that (3) holds with
l = 0. It follows from Corollary 2 that every unbounded solution of the equation is
oscillatory. Note that (2) fails.
& $(') ��*

3. We have not stipulated that σ(t) is a mixed argument in Corollary 1
and Corollary 2. Therefore Corollary 1 and Corollary 2 can be applied also to delayed
and advanced equations, respectively, and moreover we can improve some existing

results.

Corollary 3. Assume that σ(t) < t. If

(11) lim sup
k→∞

∫ k

σ(k)

(s− σ(k))q(s) ds > 1− p

then every bounded solution of Eq. (1) is oscillatory.
���������

. Set αk = k in (7) of Corollary 1. �
& $(') ��*

4. Corollary 3 improves [4, Theorem 4.6.1] when the right hand side
of (11) is the constant 1 instead of 1− p.
+ ,  -'/.102$

4. Consider the neutral delayed differential equation

(12) (x(t) − px(t− τ))′′ − 1
t2

x(λt) = 0, p ∈ (0, 1), λ ∈ (0, 1), τ > 0.

Condition (11) for Eq. (12) takes the form

lim sup
k→∞

∫ k

λk

(s− λk)
1
s2

ds > 1− p,

which reduces to

(13) ln
( 1

λ

)
+ λ > 2− p.

Therefore Corollary 3 implies that if (13) is fulfilled then all bounded solutions of

Eq. (12) are oscillatory. It is easy to see that (13) holds for example for p = 1/2 and
λ = 1/4. Note that Theorem 4.6.1 of [4] fails.
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Corollary 4. Assume that σ(t) > t. If there exists an integer number l > 0 such
that for all k large enough, σ(k) > k + lτ and

(14) lim sup
k→∞

∫ σ(k)−lτ

k

(σ(k)− lτ − s)q(s) ds >
1− p

1− pl+1
,

then every unbounded solution of Eq. (1) is oscillatory.
���������

. Set βk = k in (3) of Corollary 2. �
+ ,  -'/.102$

5. We consider the neutral advanced differential equation

(15) (x(t) − px(t− τ))′′ − 1
t2

x(λt) = 0, p ∈ (0, 1), λ > 1, τ > 0.

It is easy to see that σ(k) > k + lτ for all integer l. Condition (14) for Eq. (15) has
the form

(16) lim sup
k→∞

∫ λk−lτ

k

(λk − lτ − s)q(s) ds >
1− p

1− pl+1
,

where l is an arbitrary nonnegative integer. Simple computation shows that (16) is
equivalent to

(17) ln
( 1

λ

)
+ λ− 1 >

1− p

1− pl+1
.

Due to the fact that l is an arbitrary nonnegative constant, (17) is satisfied if

(18) ln
( 1

λ

)
+ λ > 2− p.

Thus condition (18) guarantees that all unbounded solutions of Eq. (15) are oscilla-

tory. It can be easily verified that (18) holds for example for p = 1/2 and λ = 2.

Our results can be easily extended to the neutral equation

(19) (x(t) − px(t− τ))′′ − q1(t)x(σ1(t)) − q2(t)x(σ2(t)) = 0,

where (H1) holds and moreover we assume that

(H4) q1, q2, σ1σ2 ∈ C( � + , � + ), lim
t→∞

σ1(t) = ∞, σ1(t) 6 t, σ2(t) > t;

(H5) σ1σ2 are nondecreasing.
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Theorem 3. Let there exist an integer number n > 0 such that

lim sup
k→∞

∫ k

σ1(k)

(s− σ1(k))q1(s) ds >
1− p

1− pn+1
.

Let there exist an integer number l > 0 such that for all k large enough, σ2(k) > k+lτ

and

lim sup
k→∞

∫ σ2(k)−lτ

k

(σ2(k)− lτ − s)q2(s) ds >
1− p

1− pl+1
.

Then Eq. (19) is oscillatory.
���������

. Without loss of generality we may assume that x(t) is an eventually
positive solution of Eq. (19) on (t0,∞). Setting z(t) = x(t)− px(t− τ), we have

z′′(t) = q1(t)x(σ1(t)) + q2(t)x(σ2(t)) > 0.

Therefore we are again led to Case (A) (with subcases (A1) and (A2)) and Case (B).�! #"%$
(A1). Considering the inequality

z′′(t) > q1(t)x(σ1(t))

and using (4), one gets

z′′(t) > q1(t)z(σ1(t)) + pq1(t)x(σ1(t)− τ).

Repeating this process, we get (5) with q, σ replaced by q1, σ1, respectively. The rest
of the proof of this part runs similarly to the corresponding proof of Theorem 1 with

αk = k.�! #"%$
(A2). To show that this subcase is infeasible we start from the inequality

(6) with q, σ replaced by q2, σ2, respectively. Now we only follow all corresponding
steps of proof of Theorem 1 with βk = k.

The
�! #"3$

(B) can be excluded exactly as in Theorem 1. �
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