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Abstract. In 1938, L. C. Young proved that the Moore-Pollard-Stieltjes integral f(f fdg
o0
exists if f € BVyl[a,b], g € BVy[a,b] and > o 1(1/n)yp~1(1/n) < co. In this note we use
n=1
the Henstock-Kurzweil approach to handle the above integral defined by Young.
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1. INTRODUCTION

In 1936, L. C. Young proved that the Riemann-Stieltjes integral f: f dg exists, if
f € BV,[a,b], g € BV4a,b], 1/p+1/¢ > 1 and f,g do not have common discon-
tinuous points, see [7], [L11]. Two years later, he was able to drop the condition on
common discontinuity for his new integral (called Young integral), see [12]. The
Young integral is defined by the Moore-Pollard approach, see [2, pp. 23-27, pp. 113
138] and [3], [8], [9]. In other words, the integral is defined by way of refinements of
partitions and the integral is the Moore-Smith limit of the Riemann-Stieltjes sums
using the directed set of partitions. However, modified Riemann-Stieltjes sums in-
volving g(z+) and g(x—) are used in Young integrals. Furthermore, he generalized
his result and proved that the Young integral f; f dg exists if the following Young’s

condition holds:

feBV,la,b], ge€BVya,b
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and -
1y g1
et (7)e ' (7) <o

where BV [a, b] is the space of functions of bounded ¢-variation on [a,b].

The Young integral with an integrator in BV, using the Henstock-Kurzweil ap-
proach is given in [1]. In this note we will again use the Henstock-Kurzweil approach
to handle the Young integral with an integrator in BV .

Now we shall introduce Henstock-Kurzweil integrals, see [4].

Let P = {[u;,v;]}— be a finite collection of non-overlapping subintervals of [a, D],
then P is said to be a partial partition of [a,b]. If, in addition, CJ [us, v;] = [a,b],
then P is said to be a partition of [a, b]. =t

Let 0 be a positive function on [a, b], [u,v] C [a,b] and £ € [a,b]. Then an interval-
point pair (&, [u,v]) is said to be d-fine if £ € [u,v] C (€ — §(£),& + 6(€)). Let
D = {(&, [ui,v:]) }; be a finite collection of interval-point pairs. Then D is said to
be a d-fine partial division of [a,b] if {[u;, v;]}?_, is a partial partition of [a,b] and
for each 4, (&, [us, v;]) is d-fine. In addition, if {[u;, v;]}}, is a partition of [a, b], then
D is said to be a é-fine division of [a, b].

In this note, R denotes the set of real numbers.

Now, we shall define integrals of Stieltjes type by the Henstock-Kurzweil approach.

Definition 1.1. Let f,g: [a,b] — R. Then f is said to be Henstock-Kurzweil
integrable (or HK-integrable) to a real number A on [a,b] with respect to ¢ if for
every ¢ > 0 there exists a positive function § defined on [a,b] such that for every
d-fine division D = {(&;, [ti, ti+1])} 7 of [a,b], we have

|S(fa65D)_A| <57

where
n

S(£,6,D) =>_ f(&)(g(tir1) — g(t:))-

i=1
A is denoted by ff fdg.
It is known that if f € BV,[a,b],9 € BV,[a,b],1/p+ 1/q > 1, then f is HK-

integrable with respect to g on [a, b], see [1].
In this note we follow ideas of Young to show that if f € BV [a,b],g € BVy]a,b]

and > ¢ 1(1/n)y~1(1/n) < oo, then f is HK-integrable with respect to g on [a, b].

n=1
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2. YOUNG’S SERIES

The above series is called Young’s series. We shall present some properties of
Young’s series. Results and proofs are known, see [5], [6], [12]. We give proofs here
for easy reference.

In this section, let A, i be strictly increasing continuous non-negative functions on
[0,00) with A(0) = £(0) = 0 and let w, k be increasing functions on [«, ] with

w(P) —w(@) <A and k(8)—k(a) < B.

Lemma 2.1. Forp=0,1,2,..., there exists £, = {x1,%2,...,%,,} C [a, 3] such
that for any &,n € (zi,2i41), 1 =1,2,...,n, — 1, we have

lw(n) —w(@)] < A27°
and
Ik(n) — K(€)] < B2,

Furthermore, E, D E, if p < q, #(E,) < 2P*! and #(Ep41 \ Ep) < 2PT!, where
#(E,) denotes the number of elements in the set E,,.

Proof. Denote |w(§) —w(n)|, |k(&) — k(n)| by w(&,n), k(&,n) respectively.
Let Ef = {:Ego),xgo)}, where :L‘go) = a, xéo) = . Then for any &,n € (x§°>, (0)),
we can see that

w(&mn) < A
Let xg,) =sup{z € [mg ),xgo ]; w(é,m) < A2~ for any £,m € (a:l ,x)} and let
By = o, o, 2"}

It is possible that :13(0) = a:go), ie., BY = E§. We may assume that the above
supremum is well-defined, otherw1se we use (:C,:Céo)) instead of (mgo),x). We will

rename points in EY according to their order using the notation
1 (1) (1
B = (a0, a0 0.

We claim that for any &, 7 € (xé ),x3 ), w(é,m) < A27L.
Suppose that there exist £,n € (xé ),xél)) such that w(&,n) > A2~1. Since £ >
2! ), there exists a point § € (xg ),xél)) such that w(3,&) > A2~1. Since £ > x21),

w(B,n) =w(B,&) +w(&n) >A27 + A271 = A
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It contradicts the definition of E§. Hence, for any &,7n € (mél), xél))

)

w(&m) < A27h

That is, for any &,n € (z (-1), £-1-)1) i = 1,2, we have

w(&m) < A27h

Let :1:9) = sup{x € [xgl),a:gl)], w(&,n) < A272 for every &n e (xg ), )} zg}) =
sup{z € [xél),% ]; w(é,m) < A272 for every £,m € (mé ,x)} and

w n oM 1 1 a
By = {ay, o)) 2y o) 0}
It is still possible that mg}) = wé ) or ZCS) = wél). We again rename F5 according to
their order by
w 2) (2 (2 (2 (2
ES = {zg ),xg ), ( )»374(1 ),:175-) )}.

Using the same argument as above, we also have for any £,n € (z; ), E +)1) and for

every ¢ = 1,2, 3,4,
w(&,m) < A272
Using this method, we can have E} = {;cgp),xgp), x%‘”j} p=20,1,2,..., such
that for any &,m € (z (p), Ef_)l) i=1,2,...,n, — 1, we have

w(&n) < A27P.

We can also see that £’ C E’ whenever ¢ < p, the number of elements in E} is at
most 27 + 1 and the number of elements in £, \ £ is at most 2P.

Using the same argument, we also can define £ = {y(p),ygp), . ,yﬁﬁz} for p =
0,1,2,..., so that for any &, 7 € (yl( ),yfﬁ)l) 1=1,2,...,m, — 1, we have

k(&) < B27P.

Furthermore, Ef C E7 whenever ¢ < p, the number of elements in EJ is at most
2P + 1 and the number of element in £, \ E is at most 2P.
Now, let E, = E¥ U Ef = (2P 5 ),. (p)} Then for every &1 € (27, Z(i)l)
i=1,2,...r,—1,
w(&,n) < A27P and k(&,n) < B27P.

Furthermore, E, C E, whenever ¢ < p, the number of elements in E,;1 \ E, is at
most 2 - 2P = 27! and number of elements in E, is at most 2(27 + 1) — 2 = 27T
since o, f € B N Ep. O

236



Lemma 2.2. (i) For any positive integer v, the following inequalities hold:
9+ \ (A2~ () (B2~ ()Y < 2 AME)u(=)
nz:% ( Ju( ) n:%;l —)u(

and

S < X ()
(i) N
ZQ"A (427" ; ( ) ( ).
Proof. (i)
i2”+“A(A2—<”+U>) —(nto)y sz A(A2~ !

<2§: ik: A(g)u(g)ZQ i A(%)“(%)

k=vn=2k-141 n=2v-141

Similarly, we have

() 3y (), <¥>

< D2 AA2 (B () Zw 2= (B2 ()
n=0

<ok 3l

(ii) As in the first part of (i),

i 2" N(A27™)u(B27") = M A)u(B) + i 2FN(A27F)u(B27F)
n=0 k=1

< MA)u(B) +2iA(5>N(§> S 32%%)“(%)



Lemma 2.3.

Z)\( ) ( ><oo1fandon1y1f Z)\(A) (§><oo.

n
n=1

Proof. Suppose Z A(1/n)u(1/n) < co. Let m be a positive integer such that
A<mand B<m. Then

S = S + A
m-l oy B oo (k+1)m A B
=2 X X A0 (E)

N
>
/N
S
N——
=
/N
3w
N——
+
3
K
>
/N
==
N——
=
/N
=
SN——
A
g

Conversely, suppose i AMA/n)pu(B/n) < oo. Let N(x) = AMAzx), ¢/ (x) = p(Bzx).

n=1

Then i; N(1/n)i/(1/n) < co. Therefore, i N(1/(An))i'(1/(Bn)) < co. Conse-

quently, ioj A1/n)u(l/n) < oc. O

n=1

3. INTEGRALS OF STEP FUNCTIONS

In this section we shall present Young’s results on integrals of step functions, see
[12]. Let g be a regulated function on [a, 8] and s a step function on [«, ] with

q q+1

s(z) = Z CiX(ti,ti11)(T) + Z dix {1} (@

i=1
where x¢ is the characteristic function of G, and a =1#; <ty < ... <tz = 0.
It is known, see [1], that

q q+1

3
/sdg:Zci(g(Hl* —g(ti+)) +Zd g(ti—)).

i=1
Furthermore, we always assume that the following conditions hold:
M { Is(§) = s(m) < A

19(&) = gl < p(r(§) —K(n))
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for any &, 7 € [, 8] with £ > n, where A, i, w, K are given in Section 1. In this section

we always assume that i AMA/n)pu(B/n) < oo. Recall that w(f) — w(a) < A and
n=1
k(B) — k(o) < B.

Definition 3.1. Let s be a step function defined on [«, 8] and E, the finite set
as defined in Lemma 2.1. Let E = {x;: ¢ = 1,2,...,m + 1} be any fixed finite set
containing Ey. We define sp to be the step function induced by s and E as follows:

m m—+1

SE(‘T) = Z S($i+)X(ri,wi+1)(w) + Z S(‘rl)x{xl}(‘r)

i=1 i=1
We have, by the formula for the value of the integral of a step function with respect
to g presented above,

B m m+1
/ spdg = Z s(@i+)(g(wip1—) — g(zi+)) + Z s(x:)(g(zit) — g(ai—)).

We remark that if £ contains all points of discontinuity of s, then sp = s and
B 8
S sedg= [ sdg.

Lemma 3.2. Let £ O Ey. Then

‘LB(SEUEP - SEp)dg‘ < Nﬁ\(%)ﬂ(%)

where N, = #(E \ E,). Furthermore,

B
lim ‘/ (sEuEPSEp)dg‘ =0.

p—00

Proof. Let N, denote #(E\ E,). Let s’ denote the step function sgup, — sk
Suppose s’ is induced by a partition {[y;,yi+1]}, of [a, 8]. If y; € E,, then s

P

has zero values over a half-open subinterval [y;,y;+1). Therefore, the number of

subintervals where s’ has nonzero value is at most N,. Then
B
‘/ (SEUE,, - sEp)dg‘ < NRA(A27P)u(B27P) < NoA(A27P)u(B27P).
Hence, for any fixed finite set F,
B
lim ’/ (spuE, — sEp)dg’ < lim NoA(A27P)u(B27P) = 0.
p—oo | J, p—00

In the above, we use the fact that A, i are continuous at 0 and A(0) = u(0) =0. O
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Theorem 3.3. Let s be a step function and Ey as above. Then

[e-sma <o A(2)u(5)

n=1

Proof. From Lemma 3.2, E,11 = E,+1 UE, and #(Ep11 — E,) < 2P we

have
B
‘/ (SEp+1 - dg‘ ‘/ SEp+1UE, — p)dg’

< 2PTIN(A27P)u(A27P) = 2- 2P\ (A27P)u(A27P).

Now, let E* be a finite set containing Ey and all points of discontinuity of s, then
fﬁsdg = f sg-dg = f sgprup, dg for all v = 0,1,2,.... Hence we have

B 8
‘/ (s—sEP)dg‘ < qli}rgo(/ (sg= —sEﬁq)dg‘—l—
B
+---+‘/ (TN SEp)dg’>

B
= lim ( / (SE*UEp+q - SEp+q)dg‘ +

q—00
s

<0+ lim Z 2. 2P\ (A2~ (PHm)y (A2~ (M)

q—00

<4 Z A(ﬁ)”(ﬁ) forp=1,2,....

n=2r—1

B
/ (SEP+Q - SEPJrqfl) dg’

B
/ (SEP+Q - SEPJrqfl) dg’

The last inequality holds by Lemma 2.2 (i).
When p = 0, by Lemma 2.2 (ii) we get

| [e-sma <o A (@)u(5)
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Corollary 3.4. Suppose that s1(x) = ) diX[u,,uis1)(T) + dnXfu,s} (2), s2(2) =
i=1

> €iX[vs,vis1)(T) + €mX{v,.1} () are step functions defined on [a, 3]. Let (1) hold
with s = s1, 82 and |di — e1] < A(A). Then

n

Zd (g(uiy1) — iez g(vit1) (Uz))‘ < 135:/\(%)/‘(%)-

i=1 =1

Proof. First we shall prove that the following inequality holds:

6z(>(>

n

Zdi(g(uiﬂ)*g( i) —di(g(B) —

i=1

(2)

Let g*(u;) = g(u;), g*(t) = g(u;) for those ¢ close to u; from the left, otherwise,
let g*(t) = g(¢t). Then g*(u;—) = g*(u;) and g* also satisfies [g*(£) — g*(n)| <
p(lK(§) = #(n)]) for any &, n € [a, f]. Then

/ s1dg* = Zd (wi41-) — " (1)) + dn(g" (uns1) — 9" (ns1-)

= Zd (uip1—) — g*(us)) = Zdi(g(uiJrl) — g(uy)).

Applying Theorem 3.3 to s = s; and g = g*, ff sp, dg* = di(g*(B—) — g*(a)) +
dn(g*(8) = g"(B+)) = d1(g(B) — g(a)), we get the inequality (2).
Thus

>~ lotuses) ~ o) = Y- esotinn) ~900)
< 12§A(§)u(§) Fldy(g(Bh) — g(en)) — ex(g(Bh) — g(en))
<123 A(2)u(3) + = erlo) o)
<123 A(3)u(5) < Ao = 1337 (3)(2)
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4. INTEGRABLE FUNCTIONS

Now we shall introduce BV ,[a, b], which is a generalization of BV|a, b], the space
of functions of bounded variation on [a, ], and prove an existence theorem (Theo-
rem 4.6) in the Henstock-Kurzweil setting.

Definition 4.1. A function ¢: [0,00) — R is said to be an N-function if
¢(0) = 0;
© is continuous on [0, c0);

 is strictly increasing and

> W=

o(u) — 0o as u — oo.
Examples of N-functions are ¢1(u) = u?, p > 1 and @a(u) = e* — 1.

Definition 4.2. Let ¢: [0,00) — R be an N-function and f: [a,b] — R. We
define .
Vo(fi b)) = sup 3 ol f i) — Fo)l),
i=1
where supremum is taken over all partitions {[z;,z;+1]}7; of [a,b]. The number
Vo(f;[a,b]) is called the o-variation of f on [a,b]. Let BV ,[a,b] denote the col-
lection of all functions f: [a,b] — R satisfying V,(f;[a,b]) < oo, see [5], [6], [12].
Such functions are said to be of bounded @-variation. When it is clear that we are
considering the interval [a, b], we shall denote V,,(f;[a,b]) by V.,.(f).

For example, where ¢(u) = u?, p > 1, BV[a,b] is the space of functions of
bounded p-variation on [a, b].
The following lemma and its proof are known.

Lemma 4.3. If f € BV[a,b], then f is bounded on [a,b] and f is a regulated
function.

Proof. Suppose f is unbounded. Let M be any positive real number. Then
there exists x € [a, b] such that M < |f(x) — f(a)|. Hence

[f(x) = fla)l = o7 (e(If (=) = f(a)]))
P~ (1 f(2) = f@)) + (| f(b) = f@)) < o™ (Vio (£ [a, B])).

M <
<

Therefore
o(M) < V,(f;]a,b]) for all M > 0.

Since (M) — oo as M — oo, we have V,(f; [a,b]) = co. This leads to a contradic-
tion.
The proof that f is regulated is standard. O
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Lemma 4.4. Let g € BVy[a,b], E = {z1,22,...,2,} 2 Ey, and € > 0, where
Ey is given in Lemma 2.1. Then there exists a constant § > 0 such that for any
finite collection of disjoint subintervals {[u;, v;]}?—, with [u;,v;] C (x4, 2; + d) or
[, v;] C (x; — &, 2;) for each i, we have

Proof. Lete > 0 be given. First, since g is a regulated function, there exists a
constant § > 0 such that

lg(t) — g(z;—)| < o whenever 0<a; —t<4
n
and
lg(xi+) — g(t)] < 2i whenever 0<t—x; <6
n
for each i. Therefore, we get the required result. O

Next, we shall prove Lemma 4.5 using Lemma 2.2 and Corollary 3.4. We need the
following notation.

Let A > V,(f) and B > Vi(g). Define w(z) = V,(f;[a,z]) and k(z) =
Vi (g; [a,z]). Let A=~ !, p=1~"1. Hence, for any &,7 € [a,b] with n > ¢,

Similarly, u(r(n) — £(8)) = |g(n) — g(&)I-
Let B, = {x1,22,...,2n, } be given as in Lemma 2.1 with v > 1 and [«, 3] = [a, b].

Then #(E,) < 2v*!. Furthermore,

[f(n) = FOI < Mw(n) —w(€)) S MA27") = ¢~ (427")

and
lg(n) = g(&)] < p(k(n) — K(€)) < w(B27") =y~ 1(B27")

for any 7,§ € (xg, py1) withp > €, k=1,2,...,n, — 1. The above is equivalent to
(1) mentioned before Definition 3.1.
From now onwards, a division D = {(&;, [us, v;])}1, is always denoted by D =

{(&, fu, o)}
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Lemma 4.5. Let f € BV,[a,b] and g € BVy[a,b] with > ¢~ 1(1/n)yp~1(1/n) <
n=1

oo. Let v 2 1 be fixed and E, = {x1,22,...,Zn,} giV_en as above. Suppose
D = {(&[u,v])} and D' = {(&, [, v])} are two partial divisions of [a,b] such
that |J[u,v] = Y[/, V'] and [u,v] C (g, 2k41), [v',v'] C (g, xk+1). Then for any
€€ [u,v], & € [u,v'], we have

(D)~ F()(9(0) = gw) = (D) Y- FEN9() — g(u))]
< 3 (@ (D)

n=2v-1

where v > 1.

Proof. Let Dy = {({ [u,v]) € D; [u,v] C (xk, xk+1)} and D;, = {(&,[v/,V']) €

D’ [,V C (zp,xk41)}, £ = 1,2,...,n, — 1. Tt is clear that |f(§) — f(&)| <

“1(A27v). Note that J{[u,v]; [u,v] C (zg,zr41)} = U{[/,v]: W/,0] C
(gck, Zgpt1)} =: [, B]. Applying Corollary 3.4, for any &, &’ we have

(D) Y () (9(0) = 9w) = (D) Y F(E)(9() = g(w))]
w3y () ()

fork=1,2,...,n, — 1.
Ny —1
Note that D = |J Dy and n, < 2°*!. Hence, by Lemma 2.2 (i),
k=1

(D)~ F(©)9(v) = gw) = (D) Y- FE)9() = g(u))]
< 13(2vt — is@ ( ) (BZU)

cse gt 3 o (2)(D)
< 3 (D)

n=2v—1

The following existence theorem is proved in [12] by the Moore-Pollard approach.
Now we will prove it by the Henstock-Kurzweil approach.

244



Theorem 4.6 (Existence Theorem). Let f € BV a,b] and g € BVy[a,b]. Sup-
pose that > ¢~ 1(1/n)~1(1/n) < co. Then f;fdg exists.

n=1
Proof. First, let A > V,(f;[a,b]) and B > Vi (f;[a,b]). Then by Lemma 2.3,
5 o A (B < o

Let € > 0, choose v such that >  A(A/n)u(B/n) < e/52.
n=2v-1

Let E, = {x1,z2,...,2,,} be given as in Lemma 2.1. Let ¢ be given as in
Lemma 4.4 with E = E,,. Let § be a positive function defined on [a, b] with §(z) < ¢’
for all z € [a, b] such that if D = {(, [u,v])} is a d-fine division of [a, b], then [u,v] C
(—0,64+08)and € € Ey, [u,v] C (g, xp41) and € € (g, Tpy1), bk =1,2,...,n, — 1.
Now let D = {(&,[u,v])} and D' = {(¢,[v/,?])} be two d-fine divisions of [a, b].
Let D = Dy U Dy, D' = D} U D) where D; = {(§,[u,v]) € D; £ € E,}, D} =
{(&,[v,v]) e D; & € Ey}, Dy = D\ Dy and D) = D'\ D). Suppose (&, [u,v]) € D
and x; + 0(x;) € [u,v] (or z; — §(x;) € [u,v]). Then we divide [u,v] into two parts
[u, 2; + 6(x:)], [ + 0(x4),v] ([, x; — ()], [wi — 0(z4), v], respectively).

Let D; be the union of D; and (&, [u,x; + d(x;)]), (&, [xs — 8(x;),v]). Let Dy =
D\ D;. Similarly, we construct D’y and D’y = D'\ D';.

Then, by Lemmas 4.4 and 4.5, we get

(D)™ F©)(9() = g(w) = (D) Y- FE)gl) - gw))|
<[P0 Y 1@ () — g(w) = (D) FE)9(v) ~ g(w))|
+|(D2) > F(E)9(v) = 9w) = (D) D~ FE)9() — g(u)]

< 8| flloce + e,

where || f||cc = sup{f(z); « € [a,b]}. Thus f:fdg exists. O

5. APPROXIMATION

In this section we show that f; f dg can be approximated by f(f sdg, where s is a
step function. This approximation theorem can be found in [12].

Theorem 5.1. Let f € BV[a,b], g € BVya,b] and > o 1(1/n)yp~1(1/n) <
n=1

oo. Then, given any ¢ > 0, there exists a step function s on [a,b] such that
b
|fa(f - S)dg| < €.
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Proof. First,let A > V,(f;[a,b]) and B > Vi (f;[a,b]). Then, by Lemma 2.3,
> ¢ N (A/n)yp~H(B/n) < 0.
n=1

Let E, = {x1,22,...,%,, } be given as in Lemma 4.5 with v > 1. Define

Noy—1

Zf Lk X{Ik} Z flzr+)x X(zr, Ik+1)( x).

Then (f — s)(xx) = 0 for all 2, € E,. By Theorem 4.6, f;fdg - f;.sdg =
f:(f — s)dg exists. Let ¢ > 0; there exists a positive function ¢ on [a,b] such
that whenever D = {({,[u,v])} is a d-fine division of [a,b], x; is a tag for every
i=1,2,...,n,, and

N
me

b
/(f@dgunEZst@mw>mwﬂ

By Lemma 4.5, and all z; being tags, we have

%EU
< 52 Z ( ) (B>forv>1
n—gv—1
Therefore
b oo
[ <o 3 A0()
Choosing v big enough, we get the required result. g

Corollary 5.2. Let f € BV,[a,b],g € BVy[a,b] and > ¢~ '(1/n)yp~1(1/n) <
n=1
0o. Then

b [e'S)
[ fas <03 o () (B2 4 playiatan) - st
F £t o) — glat)) + F)(9b) — b))

Proof. Lete > 0. By Theorem 5.1 there exists a step function s on [a, b] such
that |f — s)dg| < e. Hence

b b
[ofees| o
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By Theorem 3.3,
b o0 b
‘/a sdg‘ <6;)\(V¢T(Lf)>u(vw7£g)> + /a SEOdg’.

Note that [ s, dg = f(a)(g(a+)—g(a))+ f(a+)(g(b—)—g(a-+))+ f () (g(b)~g(b-))-
Hence we get the required result. ]

6. INTEGRATION BY PARTS

A general result for integration by parts in the setting of Henstock-Kurzweil inte-
grals of Stieltjes type can be found in [10]. In this section, we will prove this result
in more concrete forms.

For any partial division D = {(&, [u,v])} on [a, b], define

S_(f,g9,D) = (D) Z(f(é) — f(u)(g(&) — g(u)),
Si(f,9.D) = (D) _(f() = F(E)g(v) — 9(&))
and
S(f,9,D)=S_(f,9,D)—S(f,9,D).

We say that S_(f,g) exists if there exists S(*) such that for every ¢ > 0 there
exists a positive function § on [a, b] such that when D is a é-fine division of [a, b], we
have

|S-(f.9.D) = SV <e.

We then denote S by S_(f,g). Similarly, we can define S, (f,g) and S(f,g).
Clearly, if two of S_(f,g),S+(f,¢g) and S(f,g) exist, then the third exists and

S(f,9)=S-(f,9)—S+(f,9)

Lemma 6.1. Let f € BV,[a,b] and g € BVy[a,b] with > ¢~ 1(1/n)y~1(1/n) <

00. Then !
Si(f,9) = Z(f(trf') — f(t:))(g(ti+) — g(ts))
and -
S_(f,9) = Z(f(tz) — f(ti=))(g(t:) — g(ti—)),
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where t; are the common points of discontinuity of f and g and the above series
converge absolutely.

Proof. Lete > 0,let v be apositive integer such that > ¢~ 1(A/n)y~1(B/n)
n=2v-1
< ¢e/52. Let E, = {x1,x2,...,2n, } be given as in Lemma 2.1. E, may contain some

points of {t;}5°,. We may assume that there exists a positive integer N such that
t; ¢ E, whenever j > N. Now take any two positive integers m,n > N with m < n.
Let ¢ be a positive number such that for every i = m,m+1,...,n,if t; € (;,zj41)
for some j, then (¢;,t; +0) C (xj,xj41) and {(t;,t; + §)},, are non-overlapping
intervals. Let n; € (t;,t;+9) foralli =m,m+1,...,n, and D = {¢;, [t;, %:]}—,,, and
D’ = {n;, [ti, ]}, From the definition of D and D’ it is clear that D and D’ are
partial divisions of [a, b] and satisfy the condition of Theorem 4.5. Hence, we have

}: ti))(9(n:) — g(t:))
= \(D') > Fm)(a(n) = g(t) — (D) f(t:)(glm) — g(t:)
< Y et (5) (D) <mg =

n=2v—1

Then

n

D (fltit) = f(E))(gltit) — g(t:)

i=m

N
o)

Observe that D and D’ are partial divisions. Therefore

Z |(f(tit) — f(t:)(g(ti+) — g(ti))] < 2e,

where m,n > N.
Hence Sy (f,g) converges absolutely. Similarly, S_(f, g) converges absolutely. O

Lemma 6.2. Let f € BV,[a,b] and g € BVy[a,b], E = {x1,22,...,2,} D Ep,
and € > 0. Then there exists a constant 8’ > 0 such that for any finite collection of
disjoint subintervals {[u;,v;]}"_; with [u;,v;] C (z;,2; + 0") for each i or [u;,v;] C
(z; — 0',x;) for each i, we have

E:Uvz fui)llg(vi) = g(ui)| <&,
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and

Z|g 'Uz Us | X ° .
Vip(A)

Proof. The proof is similar to that of Lemma 4.4. Let € > 0 be given. First,
observe that f and g are regulated functions. Therefore, there exists a constant
6" > 0 such that

S
lg(t) — g(zi—)| < min{ % ’ 2nVi(A)} whenever 0 < z; —t < ¢,
S
lg(xi+) — g(t)] < min{ % ° m} whenever 0 <t —z; < ¢,
|f(t)—f(xi—)|<min{:%:§,ﬁw()} whenever 0 < z; —t < ¢’
and
|f(x'+)—f(t)|<min{{i}% ;} whenever 0 < t —z; < ¢’
: = 2l 20V, (B) v :
for each i. Therefore, the required result follows. O

Lemma 6.3. Let f € BV,[a,b] and g € BVy|a,b] with Z e Y1/ n)y~ (1/n)
o0o. Lete > 0. If B, = {x1,22,...,%y,} is the set given in Lemma 2.1 and {t;}7"4
E,, where {tj};-":l are all common points of discontinuity of f and g such that

S @AM B/ < /312 and 5 (7(E) = 1) olts) o)) <

n=2v-1

€/6, then there exists a positive real number 0’ such that for any 0’-fine partial
division D = {(z;, [u;, v;])}i*y of [a,b] we have

|S(f’gaD)_(S+(fvg) (fa ))'

COI[\.’)

Proof. Applying Lemma 6.2 to /18 and F = E,, we get a positive constant
8. Let D = {(x;, [us, vs]) }iy, then

Ny

S_(£.9.D) = S (Flas) — Flu))(g(s) — glus)

i=1



I

(f (@) = fzi=))(g(zi) — g(@i=)) + Zv(f(wi) — f(zi=))(g(zi=) — g(ui))

=1

Ny

+ ) (flaim) = flui)(g(xi) — g(zi—)) + i(f(fcr) = f(wi))(g(zi—) = g(ui))-

1

.
Il

Let F' = E, \ {t;}]1,, then F is the set of points in F, which are not common
points of discontinuity of f and g. Hence

S (f(@i) — flei)(gla:) — glai-)) = 0.

z,€EF
Consider
SO (Flas) — Fi-) (glei) — glai))

z;€F 2 ¢ F
— 0+ 3 (fla) — Fi-))(ge) — gim))
z; ¢F
= S 2(t) — £t o(t) — 9(t,-)
Then
S (f,9.D) = 3 (Fee) — Flu))(gles) — glue))
= YU ) — F(t-) () — 9(t=) + Y (7) = Feam) o) - g(us)
+ 3 (i) = F) o) — glaim)) + Y wim) = Fu)glaim) — g(w)
Therefore
S (f,9.0) ~ 5_(f,9)|
= [0~ Fla) o) — glue)) = S(5) — F(t-)olts) - g(tj»\
< Zv(f(%) — f(ui))(g(z:) — g(us)) — Z(f(tj) — ft;=))(g(t;) — g(tj—))‘
o S G - ) —g<t]—>>|
j=m+1
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= Z(f(»’cz)*f(wi*))(g(xf)*g(uz)) + 1) (flaim) = fu)(g(w:) = g(wi-))
+ Zv(f(zr) — f(ua)(g(zi—) = g(uz))‘ +2

By Lemma 6.2 we have

() = Fu)otei-) — g(u))| <
;(f(wi) = flai=))(g(zi—) — g(z:))| < m\@,(m = f_g
and o
> (7w ~ e iate) g(:ci»‘ Tt
Thus _ _ ) o
1S-(£,9.D0)=S-(fL9lS g+ 5T T6 3
Similarly,
|S+(fagaD) - S—‘r(fag)' < %
Hence

1S(f,9,D) = (S+(f,9) = 5-(f,9))l
< |S*(fagaD) 7S*(fvg)| + |S+(fagaD) 7S+(fag)| <

Lemma 6.4. Let f € BV,[a,b] and g € BVy[a,b] with > ¢~ 1(1/n)yp~1(1/n) <

n=1
00. Then for any given ¢ > 0 there exists a positive function 6 such that for any
d-fine division D of [a,b] we have

IS(f,9,D) = (S+(f,9) = S—(f,9))| <e.

Proof. Let e > 0, choose v such that > ¢ Y(A/n)y~1(B/n) < ¢/312.
n=2v—-1

Let E, = {z1,22,...,2,,} be given as in Lemma 2.1. Applying Lemma 6.3 to
E = E,, we get a positive constant ¢’. Let 6 be a positive function defined on [a, b]
with §(z) < ¢’ for all © € [a,b] such that if D = {(&,[u,v])} is a J-fine division
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of [a,b], then [u,v] C (£ —¢',§ +¢') when £ € E, and [u,v] C (2, k1) when
€ (g, xpt1),k=1,2,..., ny, — 1. Now let D = {(&, [u,v])} be a d-fine division of
[a,b]. Let D = Dy U Ds, where Dy = {(&, [u,v]) € D: £ € E,}, Dy = D\ D;. Hence,
by Lemma 6.3,

IS(f, 9. D) — (S+(f,9) — S-(f,9))|
< |S—(fvgaD2)| + |S+(fvgaD2)| + |S(f7g7D1) - (S-i-(fag) - S—(fvg)”
< [S-(f,9, Do)l + [S+(f, 9, D2)| + 3e.

By Lemma 4.5, we have

1S-(f,9. D2)] = |(D2) - (£(6) = Fw)(g(€) = g(w)
= |(D2) D" F©9(6) = 9(w) = (D2) 3 F(w)(9(&) ~ g(w)
<5z 3 (D)0 (7) <5
and
1S:(f,9, D2)| = |(D2) Y_(F () = FE)9() — (&)
< 3 o)<k
Hence,

|S(fvgvD) - (S+(fag) - S*(fvg)” < |S*(fagaD2)| + |S+(fagaD2)| + %5

1 1 2.
<6€+§€+§€—€.
O

We can verify that S_(f,g), S+(f,g) exist and S_(f,g) = > (f(t:+) — f(&:))

o0

(9(tit+) = g(t), S4(f9) = X2 (f(t) — f(ti=))(g(t:) — g(t:i—))-

i=1

o

i=1

Theorem 6.5. Let f € BV [a,b] and g € BVyla,b] with > ¢~ (1/m)y=1(1/m)
m=1
< oo. Then

/ fdg+ / gdf = f)g(d) — F(@)ala) + S(f,g).
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where S(f, g) = § (F(tit)— F(t:)) (g(ti+) — g (t:)) — § (F(t:)— F(ti=))(g(t:) — g(t:—))

and {t;} are all common points of discontinuity of f and g.

Proof. Since S(f,g9) = S+(f,9) — S—(f,g), by Lemma 6.1, S(f,g) exists. Let
€ > 0 be given and let f,g: [a,b] — R. Then there exists a positive function ¢; on
[a, b] such that for any d:1-fine partial division D’ = {([u;, v;],&;)} of [a, b],

1S(f,9,D") = S(f, 9)| <

€

3

Since f is integrable with respect to g, there exists a positive function d2 on [a, b)
such for any do-fine division D" = {([t;, tiy+1],&)} of [a,b], we have

‘(D”)Zf(fi)( tit1) /fdg’ %

Choose 6(§) = min{d;(£),02(€)}. Let D = {([ti, ti+1], &)} be a d-fine partial division
of [a,b]. We can see that

\( )Y 9 i) ~ £69)) ~ (F019(0) ~ Flaata) + 5(.0) - /abfdg>'
=[O X (6 t) = £09) = Ftsenlatein) + S0
w [ ) - st
| )T = FEgtisn) — g(t:)) + (F(E&) — F(E)) (9(&) — 9(t:))
- () = J@ ot a6+ [ 7= 500.)

< |03 6ot~ ate) - [ “fdg'+|s<f,g, )= S(/.9)
< 5 + 5 =€

Thus, we can conclude that g is integrable to f(b)g(b)— f(a)g(a)+S(f, g) f fdg
on [a, b] with respect to f.
Hence, we have

/ fdg+ / gdf = f)g(d) — F(@)ala) + S(f,g).
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7. CONVERGENCE THEOREM

In this section we will use Young’s idea, see [11], [12], to prove some convergence
theorems for our setting.

Definition 7.1 (Two-norm convergence). A sequence {f(™} of functions in
BV,la,b] is said to be two-norm convergent to f if

(i) £ is uniformly convergent to f on [a,b], and
(i) V,(f™) < A for every n = 1,2, ...

In symbols, we denote the two-norm convergence by f(™ — f.

It is clear that BV [a,b] is complete under two-norm convergence, i.e., if f () ¢

BV, la,b],n=1,2,...,and f — f, then f € BV,[a, b].
We need the following two lemmas.

Lemma 7.2. Let 9 be a strictly decreasing continuous function on (0,00) with
lim Y(z) = 0 and let [°9(z)dz exist. Then there exists a strictly increasing
r—00

continuous function g on [0,00) with lim o(x) = oo such that
Tr— 00

lim o(z) =oo and / Y(z) do(z) exists.
1

Proof. Since [[°9(x)dz exists, there exists a positive function on [0, c0)
(z) >0 with lim ¢(2) = oo and ¢(z) = 0 for z < 1, such that [, 9(z)i(z)dz and
Jy u(t)dt exist for every x € (0,00). Let

olx) =z + /j o(t) dt.

Then g is a strictly increasing function with lim o(z) = co. Therefore,

xr— 00

/100 Ix)do(z) = /100 I(x)[1 + o(z)] dx < oo.

Now we shall prove that lim o(z)/x = co. Let > 2n. Then (z —n)/z > 3. By

Mean-Value Theorem for integral, there exists y € (n,x) such that
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WV

%lJré/owL(x)dx xfn{ 1 /:L(x)dz} E%L(y)Z%L(n),

Since t(n) — oo as n — oo, we have

O

Corollary 7.3. Let ¥ be a strictly decreasing continuous function on (0, c0) with
lim J(x) = 0 and let [°9(z)dz exist. Then there exists a strictly increasing
r—00

continuous function ¢ on (0, oo) with lim ¢(z) = oo, such that
r—00

lim g(—:C):O and / I(s(x))dz  exists.
1

T—00 I

Proof. Let¢=p!, where p is given in Lemma 7.2. Thus we get the required

result. O

Lemma 7.4. Suppose Z 0 Y(1/n)v~Y(1/n) < oco. Then there exist two N-

functions ¢*,1p* such that <p ( ) < T(uw)p(u) and Y*(u) < F(u)p(u), where 7,5 are
increasing and hnh m(x) = hn% ~(x) = 0, with

Proof. Given ¢,v and Z e (1 /n)z/ﬁl(l/n) < oo, we want to construct

©*,1* such that ¢*(u) < T(u ) ( ), ¥*(u) < F(uw)p(u), where 7,5 are increasing
functions with lin%) m(x) = hm ’y( )=0 and

oo

S (e () <

Let 9(u) = ¢~ 1(1/u)y~(1/u) for u € (0,00). Then ¥ satisfies the conditions of
Corollary 7.3. Hence there exists a strictly increasing continuous function ¢ on [0, 00)
with lim ¢(x) = oo, such that

lim q—x):O and / I(s(x))dz exists.
1

r—o0 I
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Let O(u) = us(u~!) for u € (0,00) and 6(0) = 0. Then }ng%) O(u) = iiil%g(u_l)/u_l =
0 and u/0(u) = 1/c(u™!) is a strictly increasing continuous function on (0, 00).

Let ®(u) = ¢ H(u/0(u)), ¥(u) = v~ (u/0(u)), ®(0) = 0 and ¥(0) = 0. Then
® and ¥ are strictly increasing continuous functions on [0,00). Furthermore, let
¢* = (®)~! and ¢* = (¥)~L. Then

S (3o ()

—1 —1

¢ ()Y (i)
e (%)w‘l(gf—n))

/ I(s(z)) dz < oo,
since ¥(¢(x)) is non-negative.

If t = (p*) 1(u*) = ¢ 1(u*/0(u*)), then p*(t) = u*. On the other hand, if
t = ¢ 1(u), then o(t) = u. Hence u = u*/f(u*) and

o

1

3
Il

o

n=1

|P”18

) WY — (o () = e (E):

clearly }in% w(t) = }in% O(¢*(t)) = 0. Similarly, we have

Y*(t) B u_* o — ) -
o0 = =) =00 M) =),
and lim7(t) = lim 0(¢*(t)) = 0. Denoting by 7(t),7(t) the upper bounds of

m(u), ( ) for 0 < u < t we see that 7,7 are increasing functions. Then

and

Let D = {[u,v]} be a partition of an interval [, 3]. By Lemma 7.4, we have

(D) Y ¢"(1f (W) = fw)]) = (D) Y_7(If () = F)e(f ) = f(u)])
<TQISN)(D) D ellf (v u)]).

Hence, if A and A* are the ¢-variation and ¢*-variation of f, respectively, on [a, 4],
we have

A" < AT(2] flloo) < AT(97 (A)).
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Theorem 7.5. If g € BVy[a,b] and {f(™} is two-norm convergent to f in
BV,[a,b] with Y ¢~ '(1/m)y~1(1/m) < oo, then f;fdg exists and
m=1

Proof. Lete > 0begiven. Let { (™} be two-norm convergent to f in BV ,[a, b]
ar;d g € BVy[a,b]. By the convexity of BV [a, ], %(f(") — f) € BV,[a,b]. Hence,
N (f(") — f) dg exists. Thus, there is a positive function d,, such that for every §,-fine
division D = {([t17t1+1]7§1)} of [a, b],

b
]( [0 = pag) - 0) (6 - Fealtinn) - a6 < =
Let
V@(%(f(n) - f) < V¢(f(")) + V,(f) < A for every n and Vi,(g) = B.

By Lemma 7.4, there exist two N-function ¢* and ¢* such that ¢*(u) < T(u)p(u)
and ¥*(u) < J(u)y(u), where T, 7 are increasing and lin%) T(x) = lin}J ¥(z) = 0, with

n=1
By Lemma 2.3, there exists a positive integer v such that
- _1 (AT~ (A)) _1 (B3 1(B))
* 1 * 1
PGy (")) ) <e.

For this v, choose 7 > 0 such that

¥ \—1/ g= €
RS s (B
Hence forn =1,2,...,v,
(¢*)71(Aﬁn(T)> < €

257



Since f(™) converge to f uniformly on [a, b], there is a positive integer N such that
for every n > N, we have

sup 3(1f" () = f(O)) = 13(F™ = flloo < minfe, 37}

te(a,b]
We may assume that when n > N, then |(f™ — f)(a)(g(at) — g(a)) + (f™ —

Nlat)(g(b=) = gla+)) + (f™ = ))(B)(g(b) — g(b-))| < e.
Hence for n > N, applying Corollary 5.2 to %(f(") — f), we get

b b
/f(")dg—/ fdg‘=2

<2-6i<w*>* (LG Iy ey (Yl

AT

dg

<19 i(w*)_ ( (%(f;" —f)))(w*)_1<W*T(g)>
+12 i (") ( (%(f; f)))(w*)_1<Vw;(g)>+5
n=v+1

n

L1 i ((p*)_l(Af(w;(A))>(w*)_1<37(w‘1(3))) e

n=v+1

<12Z ( 2” (f(")—f)llw)>(w*)—1(w>+lge

< 122@*)_1(%)@*)_1(Bﬁ(w;(B))) 13

< 12e + 13e = 25e.

Hence, lim fab fMdg = f(ffdg. (]

Theorem 7.6. If f € BV,[a,b] and {¢g™} is two-norm convergent to g in
BV, [a,b] with Y ¢~ '(1/m)y~1(1/m) < oo, then f;fdg exists and
m=1

b b
lim fdg™ = / fdg.
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Proof. Since g™ converge to g uniformly, there exists a positive integer N
such that for every n > N; we have

S(£,9™) = S(f,9)] < e,

[(FT () = F(0)g(b)] < fe
and

|(f"(a) = f(a))g(a)] < e

By Theorem 7.5 there exists a positive integer N > N7 such that for any n > N we

[ fonf<s

b b
\ [ rag - fdg‘ \ / var- [ gdf|+|<f<"><b>—f<b>>g<b>
1™ (@) - F(@)g(a)] + U g™) — S(f.9)] <

have

rlklm

Hence

Hence, lim [’ fdg™ = [ fdg. O

Hence, we also have the following theorem.

Theorem 7.7. If {f(™} and {¢(™} are two-norm convergent to f and g in
BV,la,b] and BVyla,b], respectively, with Y. ¢~ '(1/m)y~'(1/m) < oo, then

m=1

f(f f dg exists and
b
lim f<"> dg™) = / fdg.

n—oo
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