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PROBLEMS INVOLVING p-LAPLACIAN TYPE

EQUATIONS AND MEASURES

Tero Kilpeläinen, Jyväskylä

Abstract. In this paper I discuss two questions on p-Laplacian type operators: I charac-
terize sets that are removable for Hölder continuous solutions and then discuss the problem
of existence and uniqueness of solutions to −div(|∇u|p−2∇u) = µ with zero boundary
values; here µ is a Radon measure. The joining link between the problems is the use of
equations involving measures.
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1. Removable sets

Throughout this paper let Ω be an open set in �n and 1 < p < ∞ a fixed number.
Continuous solutions u ∈ W 1,p

loc (Ω) of the equation

(1.1) − divA(x,∇u) = 0

are called A-harmonic in Ω; here A : �n×�n → �
n is assumed to verify Leray-Lions

type conditions, that is, for some constants 0 < λ � Λ < ∞:

(1.2)
the function x �→ A(x, ξ) is measurable for all ξ ∈ �n , and

the function ξ �→ A(x, ξ) is continuous for a.e. x ∈ �n ;

for all ξ ∈ �n and a.e. x ∈ �n

A(x, ξ) · ξ � λ|ξ|p,(1.3)

|A(x, ξ)| � Λ|ξ|p−1,(1.4)

(A(x, ξ) −A(x, ζ)) · (ξ − ζ) > 0(1.5)
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whenever ξ �= ζ. A prime example of the operators is the p-Laplacian

−∆pu = − div(|∇u|p−2∇u).

Here we understand the divergence in the sense of distributions, i.e.

− divA(·,∇u)(ϕ) =
∫
A(x,∇u) · ∇ϕdx, ϕ ∈ C∞

0 (Ω).

Definition. We say that a closed set E ⊂ Ω is removable for A-harmonic func-
tions in F , if every u ∈ F that is A-harmonic in Ω \ E is A-harmonic in the whole
of Ω.

��������. The following results are well known and can be found e.g. in [11]
or [17].

A set E is removable for A-harmonic functions inW 1,p
loc (Ω) if and only if capp(E) =

0; here the p-capacity of the set E is defined as

cap
p
(E) = inf

ϕ

∫

�n

|∇ϕ|p + |ϕ|p dx,

where the infimum is taken over all ϕ that are � 1 on an open neighborhood of E.
Observe that capp E = 0 roughly means that the Hausdorff dimension of E does not

exceed n− p.
Similarly, E is removable for A-harmonic functions in L∞(Ω) if and only if

capp(E) = 0.
Further, E is removable forA-harmonic functions in Ls(Ω) if and only if capq(E) =

0, where
p < q =

ps

s− p
� n.

Next, I consider the case where F = C0,α(Ω), 0 < α � 1. The following theorem
was proved in [14]:

1.6. Theorem. A closed set E is removable forA-harmonic functions in C0,α(Ω)

if and only if E is of n − p+ α(p − 1) Hausdorff measure zero. For the only if part
we assume that 0 < α < �, where � is the best local Hölder continuity exponent for

the A-harmonic functions.

For the p-Laplacian we have � = 1. In the case when α = � the necessity part
does not hold. Then the problem is a way more difficult. For instance, in the case of

the classical Laplacian the question which sets are removable for Lipschitz continuous
p-harmonic functions was treated by David and Mattila [7] in the case n = p = 2:
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a compact set E of finite 1-Hausdorff measure is removable for Lipschitz continuous

harmonic functions if and only if E is purely unrectifiable. The other cases have
remained open.
Carleson [5] proved Theorem 1.6 for the Laplacian (p = 2). As to the quasilin-

ear case, Heinonen and Kilpeläinen [10, 4.5] proved the sufficiency part for α = 1.
Trudinger and Wang [19] had a version of sufficiency under the assumption that u

has an A-superharmonic extension to Ω, which assumption can be dispensed with
for small α.

Our method of proof combines some ideas from [12], [15], and [19]. We use solu-
tions of equations

− divA(x,∇u) = µ,

where µ is a nonnegative Radon measure from W−1,p′
loc (Ω).

�	�
�� � 
�� ��� � ������ 1.61. Suppose first that

Hn−p+α(p−1)(E) = 0

and let u ∈ C0,α(Ω) be A-harmonic in Ω\E. Let v be the smallest A-superharmonic
function not smaller than u, i.e. v is the pointwise infimum of all functions ṽ ∈
W 1,p
loc (Ω) such that

− divA(x,∇ṽ) � 0
and ṽ � u in Ω. Then v is A-superharmonic [11] and there is a nonnegative Radon
measure µ such that

µ = − divA(x,∇v).

�����: µ(B(x, r)) � crn−p+α(p−1) if B(x, 8r) ⊂ Ω.
We consider two separate cases:
���� (i): u(x) = v(x). Then one can show by using the weak Harnack inequality

that
osc(v, B(x, r)) � c osc(u, B(x, 2r)) � c rα,

whence for a usual cut-off function η ∈ C∞
0 (B(x, 2r))

µ(B(x, r)) �
∫

B(x,2r)
ηp dµ =

∫

B(x,2r)
A(y,∇v) · ∇ηp dy

� cr(n−p)/p

( ∫

B(x,2r)
|∇v|pηp dy

)(p−1)/p

� c rn−p osc(v, B(x, 2r))p−1

� c rn−p+α(p−1),

which shows the claim in the case (i).

1A detailed proof can be found in [14].
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���� (ii): u(x) < v(x). Now either B(x, r) ∩ {u = v} = ∅, whence µ = 0 in

B(x, r), or there is a point y ∈ B(x, r) such that u(y) = v(y). Next we have by case
(i) that

µ(B(x, r)) � µ(B(y, 2r)) � c rn−p+α(p−1),

as desired.

Using the above estimate we can easily conclude the proof for the “if” part: Let
K ⊂ E be compact and ε > 0. Choose balls B(xj , rj), xj ∈ K so that

∑

j

r
n−p+α(p−1)
j < ε.

Then by the above claim

µ(K) �
∑

j

µ(B(xj , rj)) �
∑

j

r
n−p+α(p−1)
j < ε,

whence µ(E) = 0. It follows that v is A-harmonic in Ω.
Next, we make the same construction from below: let w be such that −w is the

smallest A-superharmonic function not smaller than −u. Arguing as above, we find

that w is also A-harmonic. Because w and v coincide on the boundary of Ω with u,
the uniqueness yields that v = w. It follows that u = v is A-harmonic in Ω.
To prove the “only if” part we need the following regularity theorem which is of

independent interest.

1.7. Theorem. Suppose that u ∈ W 1,p
loc (Ω) and µ = − divA(x,∇u) is a non-

negative Radon measure. Then u ∈ C0,α(Ω) if and only if there is a constantM > 0

such that

µ(B(x, r)) � Mrn−p+α(p−1)

whenever B(x, 3r) ⊂ Ω. For the if part we assume that 0 < α < �, where � is the

best local Hölder continuity exponent for the A-harmonic functions.
If Hn−p+α(p−1)(K) > 0 for some compact K ⊂ E, then by Frostman’s lemma ([1],

5.1.12, [5]) there is a nonnegative Radon measure µ on K with µ(K) > 0 and

µ(B(x, r) � rn−p+α(p−1).

Any solution u ∈ W 1,p
loc (Ω) to

− divA(x,∇u) = µ

is A-harmonic in Ω \ E [16, 3.19] and u ∈ C0,α(Ω) by Theorem 1.7, but u fails to

have an A-harmonic extension to E, since µ(E) > 0.
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2. Uniqueness

A question that is under intensive research is the unique solvability of the Dirichlet

problem

(P)

{
− divA(x,∇u) = µ on Ω,

u = 0 on ∂Ω.

Choosing µ = δ, the Dirac measure, one easily sees that |∇u|p−1 cannot in general
be in L

n/(n−1)
loc . Thus the best regularity one can hope for is not W 1,p(Ω), but

W
1,n(p−1)/(n−1)
0 (Ω). We reformulate the problem:

(P′)





− divA(x,∇u) = µ on Ω,

u ∈ ⋂
q< n(p−1)

n−1

W 1,q
0 (Ω).

The ����
���� of solutions to problem (P′) is well known, cf. [3]: If µ is in the

dual of W 1,p(Ω), this is the classical Leray-Lions result. If not, then approximate µ

by smooth nonnegative functions µj with uniformly bounded masses such that

µj → µ weakly in the sense of measures.

Then solve the problem

{
− divA(x,∇uj) = µj on Ω,

uj = 0 ∈ W 1,p
0 (Ω)

and prove the estimate

‖uj‖1,q � c for all q <
n(p− 1)
n− 1 .

Then infer that there is
u ∈ ⋂

q< n(p−1)
n−1

W 1,q
0 (Ω)

such that uj → u and ∇uj → ∇u a.e. so that − divA(x,∇u) = µ.
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���
 ���
 
�� �����������

������� (Serrin [18]). Given q < 2 = p, there is a linear operator

Lu = − div a(x,∇u)

and u ∈ W 1,q
0 (Ω) such that u �≡ 0, but Lu = 0. This example shows that the

uniqueness of solutions to (P′) fails in general (at least if n � 3) and one needs an
extra condition to get both the existence and uniqueness.

One would like to prove uniqueness for (P′) by using the difference of two solutions

as the test function. This is, however, not legitimate. There are different attempts
to treat uniqueness by changing the concept of solution to one that allows testing by

(truncations of) solutions: For example,

– entropy solution [2], i.e.

∫
A(x,∇u) · ∇Tk(u− ϕ) dx �

∫
Tk(u− ϕ) dµ

for all ϕ ∈ C∞
0 (Ω) and k > 0; here Tk(t) = min(max(t,−k), k) is the truncation at

level k;

– renormalized solution [6], i.e.

∫
A(x,∇u) · ∇(h(u)ϕ) dx =

∫
h(u)ϕdµ

for all ϕ ∈ C∞
0 (Ω) and h ∈ W 1,∞(�) with h(u)ϕ ∈ W 1,p(Ω).

The following result has been proved by several authors, see [4], [13], [6].

2.1. Theorem. If µ is absolutely continuous with respect to the p-capacity,

then there is a unique entropy/renormalized solution of (P′) with

Tku ∈ W 1,p(Ω) for all k > 0.

Trudinger and Wang [20] have recently proved the following very interesting result
which does not employ any artificial concept of solutions:

2.2. Theorem. If Ω is Lipschitz and µ is absolutely continuous with respect

the p-capacity, then there is a unique solution of (P′) with

Tku ∈ W 1,p(Ω) for all k > 0.
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In the borderline case p = n there are a couple of good uniqueness results; usually

they apply for operators satisfying a strong monotonicity assumption. Therefore we
formulate them only for the n-Laplacian: Suppose that p = n, Ω is smooth and

A(x, ξ) = |ξ|n−2ξ.

Then [9] there is a unique solution u of (P′) in W 1,n)(Ω), i.e.

u ∈ ⋂
q<n

W 1,q
0 (Ω) and sup

ε>0
ε

∫
|∇u|n−ε < ∞;

[8] there is a unique solution u of (P′) such that

u ∈ ⋂
q<n

W 1,q
0 (Ω) and ∇u ∈ weakLn(Ω),

i.e.

sup
t>0

tn|{∇u > t}| < ∞.

Finally, Zhong proved in his thesis [21] that for p = n and Ω “smooth” there is a

unique solution u of (P′).
There are other partial results concerning uniqueness, but for p < n the problem

seems not to be well understood yet.
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