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Abstract. In this paper we consider the nonlinear difference equation with several delays
m
k k k
(ani1 +ben)® — (c2n)* + 3 piln)h g, =0
i=1

where a,b,¢c € (0,00), k = ¢/r,q,r are positive odd integers, m, o; are positive integers,

{pi(n)}, i =1,2,...,m, is a real sequence with p;(n) > 0 for all large n, and lim inf p;(n) =
n—oo
p; < 00,4 =1,2,...,m. Some sufficient conditions for the oscillation of all solutions of the

above equation are obtained.

Keywords: nonlinear difference equtions, oscillation, eventually positive solutions, char-
acteristic equation

MSC 2000: 39A10

1. INTRODUCTION

Consider the nonlinear difference equation
(1) (aZpy1 + bxp)® — (cxp)® + Zpi(n)xfl_ai =0
i=1

where a,b, ¢ € (0,00), ¢ > b, k = q/r, q,r are positive odd integers, m, o; are positive
integers, {p;(n)} are real sequences with p;(n) > 0 for all large n, and lim inf p;(n) =
n—oo
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pi < 00,4 =1,2,...,m. It is easy to see that if ¢ < b then (1) cannot have an
eventually positive solution. The corresponding “limiting” equation of (1) is

m

(2) (a2nt1 +ban)® — (can)f + > peal_, =0
i=1

with the characteristic equation

(3) (X +b)F —cF + Zpi/\_k‘” =0.

=1

For the special case where k = a = 1,¢ = b+ 1, equation (1) reduces to the linear
difference equation
m
Tpt1 — Tn + Zpi(”)fl?nfai =0.
i=1
There have been a lot of activities concerning the oscillation of solutions of linear
difference equations. But there have been few results for the oscillation of solutions

of the nonlinear equation (1). Under the condition that 0 < <% < 1, a sufficient
condition of nonexistence of eventually positive solutions for (1) was obtained in
[5], [6]. In this paper we obtain several new sufficient conditions for oscillation of
all solutions of (1) by removing the condition =2 < 1. A sufficient and necessary
condition for oscillation of all solutions of (2) is obtained as well.

A solution {z,} of equation (1) is said to oscillate about zero or simply to oscillate
if the terms x,, of the sequence {x,,} are neither eventually all positive nor eventually

all negative. Otherwise, the solution is called nonoscillatory.

2. MAIN RESULTS
Lemma 1 [3]. If 2,y are positive numbers and x # y, then

re" Ne—y) =" —y >y N —y) for r>1.

Theorem 1. If (3) has no positive roots, then every solution of (1) oscillates.

Proof. By way of contradiction, assume that {x,} is an eventually positive
solution of (1). By (1) we have

k m k
Tn+1 k Infai
4 il ) — > piln) | =) =o.
(4) (aw +) c Jri_lp(n)< . ) 0

n
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xn+1

For sufficiently large n, set = (. Then eventually

0<6n<ﬂ,
a

and (4) yields

m o k
5) i+ =+ no(T15:2,) —o
i=1 j=1
Set
limsup 8, = 3.

n—oo

It follows from (5) that 0 < 8 < <2, We also claim that

(@B+b)F =+ pis* <.

=1

Indeed, by virtue of lim inf p;(n) = p; < oo, for every ¢ € (0, 1) there exists an n. > 0
n—oo
such that
pin) =21 —¢e)p; for i=1,2,...,m and n>=n..

Therefore,

(aBn +b)F —c* +( Z (Hﬁn ]> <0 for n>ne.
=1

Let N. > n. be such that
Bn < (l14+¢)8 for n> N..

Then

(@Bn +0)F ="+ (1—2)> pi(l+e)F B~ <0 for n>N:+ai,
=1

ie.,

(@ + D < — (1= ) 314 2) R,
=1

which implies
(@B+b)F <= (1-2)> pi(l+e)Foipho,
=1
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As this is true for every ¢ € (0,1), it follows that

(6) (@B +b)F <= pis o,
i=1

which proves our claim. Set

(7) F(\) = (e +b)kF — & + zm: pidTRoi

i=1

Then F(0+) = +o0 and F(8) < 0. It follows that (3) has a positive root. This
contradiction completes the proof. g

Corollary 1. Every solution of (2) oscillates if and only if (3) has no positive

roots.

Proof. Sufficiency can be directly derived from Theorem 1. So it suffices to
prove Necessity. Suppose that (3) has a positive root .
Let

T, =N n=12....

Then we have

(azni1 + bxy)F — (cxp)F + Zpi:rflfai = \kn {(a)\ +0)F —cF 4 Zpi)\_k'”] =0.
i=1

i=1

Hence, {x,} is an eventually positive solution of (2). This contradiction completes
the proof. (I

Corollary 2. Assume that liminfp;(n) = p; < o0, i = 1,2,...,m, k > 1, and

n—oo
that
m

piakai (kO‘i + 1)kai+1
2 ek 1(c — b)Foit (kay o

1=

> 1.

Then every solution of (1) oscillates.

Proof. Let
F(A) = (aA+b)F =+ piaroe.
=1
Then
FO) >0 for A>

a
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For A\

Lemma 1, we have

FO) > {¢* — (aA + b)F { 1+chkllA k:;b)}.

Since

min
0<A< L

Afkai B akai(ko,i 4 1)kcri+1
kek=1(c—aX—b) | kch—1(c — b)koitl(kgi)koi’

by the condition of Corollary 2 we get

ka ko;+1
pZ i(ko; 4+ 1)k c—b
F(\) = {cF—(ax+b)* { 1+ E . k- D) (hoT) >0 for
By Theorem 1, every solution of (1) oscillates. The proof is completed. O

Define a sequence {\;} by

c—b

1
— 1 L\
(8) AL = 7 A1 = aKCk;le ) b], 1=12,...

Lemma 2. Suppose that {\;} is defined by (8). Then 0 < A\, < A; < =2 and
cfb].

llim Al = A, where A, is the largest root of equation (3) on (0,

Proof. First, we prove the sequence {\;} is nonincreasing. Since

1 - ko g c—b
Ao = E[(C’“—ZPVHk ) —b} <— = A1,
i—1

hence, by induction, supposing that \; < \;_1, we have

1 LN 1 AT
I =
1=1 =1

Hence, the sequence {\;} is nonincreasing. From (3) it is obvious that A\; > A, and

by induction

m 1 m 1
. 1 k —ko; F 1 k —ko; F .
AmaKc f;pi)\l ) b] >a[(c f;pm* —b| =\,
Hence, {\;} is nonincreasing and bounded. Therefore, lim \; exists. Letting I — oo

in (8) and noting that A, is the largest root of (3), we conclude llim Al = Ai. The
proof is completed. O
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Theorem 2. Assume that (3) has positive roots, A, is the largest root of (3) and

m L k m
1 —o)\ " ko
(9) 1imsup{[a<m E pi(n—l—l))\’j(l 1)) —l—b] + E pi(n)A; kal} S ¢k
i=1

n—oo ;
i=1

Then every solution of (1) oscillates.

Proof. Suppose that {z,} is an eventually positive solution of (1). Then there
exists ny; > 0 such that z, >0 and ,_,, >0,i=1,2,...,m, for n > ny. From (1)
we have

(azpt1 + bxn)k - (Czn)k =- Zpi(n)xfl—a'i <0,
i=1

ie.,
(aZpi1 + bxn)® < (capn)k.

Since k = ¢/r, ¢, are positive odd integers, we have

(10) Tnt1 < Oz, for n>ng,
where 6 = C;b. By virtue of hnnllgfpz(n) = p; < 00, for every € € (0, 1) there exists
an n. > ni such that
(11) pin) =21 —¢e)p; for i=1,2,...,m and n>n..
Define a sequence {p;(€)} by

p1(e) =0, puta(e) = 1{ {Ck -(1- E)Zm:pi(ul(ff))kgi]i - b}, 1=12,....

a i=1

From (10) we get
(12) zﬁﬁ,i > (p1(e)) 7%zt for n>n.+ o0

From (1), (11), and (12) we have

(aznr1 + ban)* < (czq)* — (1-¢) Zpi(m(s))*’“”xﬁ,

ie.,
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That is

Tn+1 < M2(€)x’na n 2 ne + Ti,
which gives
Tn g ,LL2(€)£17,1,1 < (M2(€))2xn72 g v < (/LQ(E))Uixnfaia nz Ne + 20'1'7

ie.,
Tnog, = (p2(e)) 7 p.

Repeating the above process, we obtain

1 m R
i1 < 5{ [k - ;piwu(s))-“] - b}

ie.,
(13) Tpg1 < pi(&)xn, n = n.+ (I —1)o;.

Since lin%) wi(e) = A and llim Al = A, for a sequence {g;} with ¢, > 0 and g; — 0 as
E— — 00

[ — o0, by (13) there exists a sequence {n;} such that n; — co as | — oo and

(14) Tn+1 < (>\* + El)iﬂn, n>n,
and
(15) Tn_g; 2 (>\* +5[)7Ui$n, n>n;+ o;.

On the other hand, from (1) we have
(bF — Fyak + ipi(n)xﬁ_ai <0,
i=1
ie.,
(16) (P —bF)ak > ipi(n)zfl_ai.
i=1
From (15) and (16) we obtain

(F = 8M)ah > 3 pi(n) O + e =ah
=1
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ie.,

E

(17) - { — sz ) (A 4 e)FOT "’)] , n>n+ o

From (1) we have

(18) k= (b +H T ) +Zpl

From (15), (17) and (18) we obtain

m L k
1 N
k> { {a(m g pi(n+ 1) (A +&)F0 ’)> + b}
+ E pi(n)(As + 1) ’“”"}-

(19)

Let [ — oo, then (19) implies

. 1 - (1—0;) ko; k
hmsup{[a(WZpi(n—i—l))\ ) +b} +sz A, < v,

n—oo :
i=1

which contradicts (9) and completes the proof. O

Remarks 1. Theorems 1 and 2 extend the results on linear difference equations
in [2], [9].

Example 1. Consider equation (1). Let

4 3

p1(0) = 3 p1(l) = 7 pi(n+2)=pi(n) for n=0,1,2,...,
3 1

p2(0) = 1 P2 ()= 3 pa(n+2)=pa(n) for n=0,1,2,...,

k=3, a=1,b=1,¢c=2,01=1, 09 =2, m=2.

Then 3 .
liminf p;(n) = T lim inf po(n) = 5
and ,
akoi (ko 1)koit+1
pia’? (koi +1) =1.32...>1.

k:c’“l (C _ b)kai+1 (ko-i)ka'i

i=1

Thus according to Corollary 2, every solution of (1) oscillates.
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Example 2. Consider equation (1). Let

p1(0) =1, p1(1) =7, p1(n+2) =pi(n) for n=0,1,2,...,
k=3, a=1,b=1,¢c=2,01=1, m=1.

Then

liminf py (n) = 1.

n—oo

Hence, the characteristic equation (3) has the largest root A, = 0.8586. Therefore,

n—oo

m L k m
1 —o)\ "

i=1

Thus according to Theorem 2, every solution of (1) oscillates.
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