P. Balasubramani
Characterizations of the 0-distributive semilattice

Persistent URL: http://dml.cz/dmlcz/134177

Terms of use:

© Institute of Mathematics AS CR, 2003

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use.*
CHARACTERIZATIONS OF THE 0-DISTRIBUTIVE SEMILATTICE

P. BALASUBRAMANI, Perundurai

(Received February 22, 2002)

Abstract. The 0-distributive semilattice is characterized in terms of semiideals, ideals and filters. Some sufficient conditions and some necessary conditions for 0-distributivity are obtained. Counterexamples are given to prove that certain conditions are not necessary and certain conditions are not sufficient.

Keywords: semilattice, prime ideal, filter

MSC 2000: 06A12, 06A99, 06B10, 06B99

1. Introduction and preliminaries

The 0-distributive lattice and the 0-distributive semilattice have been studied by Varlet [7], [8], Pawar and Thakare [4], [5], Jayaram [3] and Balasubramani and Venkatanarasimhan [1]. In this paper we obtain some characterizations of the 0-distributive semilattice. For the lattice theoretic concepts which have now become commonplace the reader is referred to Szasz [6] and Grätzer [2].

A semilattice is a partially ordered set in which any two elements have a greatest lower bound. Let S be a semilattice. A semiideal of S is a nonempty subset A of S such that $a \in A$, $b \leq a$ ($b \in S$) $\Rightarrow b \in A$. An ideal of S is a semiideal A of S such that the join of any finite number of elements of A, whenever it exists, belongs to A. If $a \in S$, then $\{x \in S; x \leq a\}$ is an ideal. It is called the principal ideal generated by a and is denoted by (a). A filter of S is a nonempty subset F of S such that (i) $a \in F$, $b \geq a$ ($b \in S$) $\Rightarrow b \in F$ and (ii) $a, b \in F \Rightarrow a \land b \in F$. The dual of a principal ideal is called a principal filter. The principal filter generated by a is denoted by $[a]$. A maximal ideal (filter) of S is a proper ideal (filter) which is not contained in any other proper ideal (filter). A prime semiideal (ideal) is a proper semiideal (ideal)
A such that \(a \land b \in A \Rightarrow a \in A \) or \(b \in A \). A minimal prime semiideal (ideal) is a prime semiideal (ideal) which does not contain any other prime semiideal (ideal). Let \(F(S) \) denote the set of filters of \(S \). A prime filter of \(S \) is a filter \(A \) such that \(B, C \in F(S), B \cap C \subseteq A, B \cap C \neq \emptyset \Rightarrow B \subseteq A \) or \(C \subseteq A \). If \(A \) is a prime filter of \(S \) and \(A_1, \ldots, A_n \in F(S), A_1 \cap \ldots \cap A_n \subseteq A, A_1 \cap \ldots \cap A_n \neq \emptyset \), then \(A_i \subseteq A \) for some \(i \in \{1, \ldots, n\} \).

Let \(A \) be a nonempty subset of a semilattice \(S \) with \(0, A^* = \{x \in S; a \land x = 0 \) for all \(a \in A \} \) and \(A^0 = \{x \in S; a \land x = 0 \) for some \(a \in A \} \). Then \(A^* \) is called the annihilator of \(A \) and \(A^0 \) is called the pseudoannihilator of \(A \). If \(a \in S \), we write \(\langle a \rangle^* \) for \(\{a\}^* \) and \(\langle a \rangle^0 \) for \(\{a\}^0 \). We say that \(a \) is dense if \((a)^* = \{0\} \). If \(\sup(a)^* \in (a)^* \), it is called the pseudocomplement of \(a \) and is denoted by \(a^* \). A pseudocomplemented semilattice is a semilattice with \(0 \) in which every element has a pseudocomplement. An ideal (semiideal) \(A \) of a semilattice \(S \) with \(0 \) is said to be normal if \(A^{**} = A \).

The following five lemmas are contained in Venkatanarasimhan [9].

Lemma 1.1. The set \(I(S) \) of all ideals of a semilattice \(S \) forms a lattice under set inclusion as the partial ordering relation. The meet in \(I(S) \) coincides with the set intersection.

Lemma 1.2. Let \(S \) be a semilattice and \(\{a_i; i \in I\} \) any subset of \(S \). Then \(\land a_i (\lor a_i) \) exists if and only if \(\cap(a_i) (\cup(a_i)) \) is a principal ideal (principal filter). Whenever \(\land a_i (\lor a_i) \) exists then \(\cap(a_i) = (\land a_i) (\cup(a_i)) \).

Lemma 1.3. Let \(S \) be a semilattice. Then for \(a_1, \ldots, a_n \in S, a_1 \lor \ldots \lor a_n \) exists if and only if \((a_1) \lor \ldots \lor (a_n) \) is a principal ideal. Whenever \(a_1 \lor \ldots \lor a_n \) exists then \((a_1) \lor \ldots \lor (a_n) = (a_1 \lor \ldots \lor a_n) \).

Lemma 1.4. If \(\{A_i; i \in I\} \) is a family of ideals of a semilattice, then \(\lor A_i = \{x; (x) \subseteq (a_{i1}) \lor \ldots \lor (a_{in}); a_{i1}, \ldots, a_{in} \in \bigcup A_i\} \).

Lemma 1.5. Every proper filter of a semilattice with \(0 \) is contained in a maximal filter.

The following lemma is easily proved.

Lemma 1.6. Let \(A \) be a nonempty subset of a semilattice \(S \) with \(0 \) and \(x \in S \). Then \(A^* \) and \(A^0 \) are semiideals of \(S \) and \((x)^* = [x]^0 = (x)^0 = (x)^* \).

The following four lemmas are contained in Venkatanarasimhan [10].
Lemma 1.7. Let A be a nonempty proper subset of a semilattice S with 0. Then A is a filter if and only if $S - A$ is a prime semiideal.

Lemma 1.8. Let A be a nonempty subset of a semilattice S with 0. Then A is a maximal filter if and only if $S - A$ is a minimal prime semiideal.

Lemma 1.9. Any prime semiideal of a semilattice with 0 contains a minimal prime semiideal.

Lemma 1.10. Let A be a nonempty subset of a semilattice S with 0. Then A^* is the intersection of all minimal prime semiideals not containing A.

The following lemma is contained in Pawar and Thakare [4].

Lemma 1.11. Let A be a proper filter of a semilattice S with 0. Then A is maximal if and only if for each x in $S - A$, there is some a in A such that $a \land x = 0$.

Lemma 1.12. Let A and B be filters of a semilattice S with 0 such that A and B^0 are disjoint. Then there is a minimal prime semiideal containing B^0 and disjoint from A.

Proof. It is easily seen that $A \lor B$ is a proper filter of S. Hence by Lemma 1.5, $A \lor B \subseteq M$ for some maximal filter M. Now $B \subseteq M$ and so $M \cap B^0 = \emptyset$. By Lemma 1.8, $S - M$ is a minimal prime semiideal. Clearly $B^0 \subseteq S - M$ and $(S - M) \cap A = \emptyset$. \Box

Lemma 1.13. Let A be a filter of a semilattice S with 0. Then A^0 is the intersection of all minimal prime semiideals disjoint from A.

Proof. Let N be any minimal prime semiideal disjoint from A. If $x \in A^0$, then $x \land a = 0$ for some $a \in A$ and so $x \in N$.

Let $y \in S - A^0$. Then $a \land y \neq 0$ for all $a \in A$. Hence $A \lor [y] \neq S$. By Lemma 1.5, $A \lor [y] \subseteq M$ for some maximal filter M. By Lemma 1.8, $S - M$ is a minimal prime semiideal. Clearly $(S - M) \cap A = \emptyset$ and $y \notin S - M$. \Box

Lemma 1.14. Let S be a semilattice with 0. Then the set complement of a prime filter is a prime ideal. If S is finite, then the set complement of a prime ideal is a prime filter.

Proof. Let A be a prime filter of S. By Lemma 1.7, $S - A$ is a prime semiideal. Let $x_1, \ldots, x_n \in S - A$ and suppose $x_1 \lor \ldots \lor x_n$ exists. Since A is prime it follows that $x_1 \lor \ldots \lor x_n \in S - A$. Thus $S - A$ is a prime ideal. \Box
Let S be finite and let A be any prime ideal of S. By Lemma 1.7, $S - A$ is a filter. Since S is finite, every filter of S is principal. Let $a, b \in A$ be such that $[a] \cap [b] \neq \emptyset$. Let $[a] \cap [b] = \{c_1, \ldots, c_n\}$ and $c = c_1 \land \ldots \land c_n$. Then $c \geq a, b$. If $d \geq a, b$ then $d = c_j$ for some j and so $d \geq c$. Thus $c = a \lor b \in A$. Hence $(a) \cap (b) \not\subseteq S - A$ proving $S - A$ is prime.

2. Definition and characterizations

Definition 2.1. A 0-distributive lattice is a lattice with 0 in which $a \land b = 0 = a \land c$ implies $a \land (b \lor c) = 0$.

Varlet [7], has proved that a lattice L bounded below is 0-distributive if and only if the ideal lattice $I(L)$ is pseudocomplemented. He also observed that for an ideal lattice, the two notions of pseudocomplementedness and 0-distributivity are equivalent. These results motivate the following definition.

Definition 2.2. A 0-distributive semilattice is a semilattice S with 0 such that $I(S)$, the lattice of ideals of S, is 0-distributive.

Theorem 2.3. Let S be a semilattice with 0. Then the following statements are equivalent:

1. S is 0-distributive.
2. If A, A_1, \ldots, A_n are ideals of S such that $A \cap A_1 = \ldots = A \cap A_n = (0)$, then $A \cap (A_1 \lor \ldots \lor A_n) = (0)$.
3. If a, a_1, \ldots, a_n are elements of S such that $(a) \cap (a_1) = \ldots = (a) \cap (a_n) = (0)$, then $(a) \cap ((a_1) \lor \ldots \lor (a_n)) = (0)$.
4. If M is a maximal filter of S, then $S - M$ is a minimal prime ideal.
5. Every minimal prime semiideal of S is a minimal prime ideal.
6. Every prime semiideal of S contains a minimal prime ideal.
7. Every proper filter of S is disjoint from a minimal prime ideal.
8. For each nonzero element a of S, there is a minimal prime ideal not containing a.
9. For each nonzero element a of S, there is a prime ideal not containing a.

Proof. 1 \Rightarrow 2: Suppose 1 holds and let $A, A_1, \ldots, A_n \in I(S)$ be such that $A \cap A_1 = \ldots = A \cap A_n = (0)$. By 1, $I(S)$ is 0-distributive. Hence $A \cap (A_1 \lor A_2) = (0)$. Assume $A \cap (A_1 \lor \ldots \lor A_{k-1}) = (0)$ for $2 < k \leq n$. Then $A \cap (A_1 \lor \ldots \lor A_{k-1} \lor A_k) = A \cap (B \lor A_k)$ where $B = A_1 \lor \ldots \lor A_{k-1}$. By our induction hypothesis $A \cap B = (0)$. Also $A \cap A_k = (0)$. Consequently $A \cap (A_1 \lor \ldots \lor A_k) = A \cap (B \lor A_k) = (0)$. Thus the result follows by induction.

Obviously 2 \Rightarrow 3 and 8 \Rightarrow 9.
3 ⇒ 1: Suppose 3 holds. Let $A, B, C \in I(S)$ be such that $A \cap B = (0] = A \cap C$. Then $(a] \cap (b] = (0] = (a] \cap (c]$ for all $a \in A, b \in B$ and $c \in C$. Let $x \in A \cap (B \lor C)$. Then $x \in B \lor C$. Hence $(x] \subseteq (b_1] \lor \ldots \lor (b_m] \lor (c_1] \lor \ldots \lor (c_n]$ for some $b_1, \ldots, b_m \in B$ and $c_1, \ldots, c_n \in C$. Also $x \in A$. Consequently $(x] \cap (b_i] = (0]$ for $i = 1, \ldots, m$ and $(x] \cap (c_j] = (0]$ for $j = 1, \ldots, n$. By 3, $(x] \cap ((b_1] \lor \ldots \lor (b_m] \lor (c_1] \lor \ldots \lor (c_n]) = (0]$. It follows that $x = 0$. Thus $A \cap (B \lor C) = (0]$.

3 ⇒ 4: Suppose 3 holds. Let M be any maximal filter of S. By Lemma 1.8, $S - M$ is a minimal prime semialideal. Let $x_1, \ldots, x_n \in S - M$ be such that $x_1 \lor \ldots \lor x_n$ exists. By Lemma 1.11, $a_1 \land x_1 = \ldots = a_n \land x_n = 0$ for some $a_1, \ldots, a_n \in M$. Let $a = a_1 \land \ldots \land a_n$. Then $a \in M$ and $a \land x_i = 0$ for $i = 1, \ldots, n$. By Lemma 1.2, $(a] \cap (x_i] = (0]$ for $i = 1, \ldots, n$. By Lemma 1.3, $(a] \cap (x_1 \lor \ldots \lor x_n] = (a] \cap ((x_1] \lor \ldots \lor (x_n]) = (0]$. It follows that $a \land (x_1 \lor \ldots \lor x_n) = 0$. Hence $x_1 \lor \ldots \lor x_n \in S - M$. Thus $S - M$ is an ideal.

4 ⇒ 5: Suppose 4 holds. Let N be any minimal prime semialideal of S. By Lemma 1.8, $S - N$ is a maximal filter. By 4, $N = S - (S - N)$ is a minimal prime ideal.

5 ⇒ 6: Suppose 5 holds and let A be any prime semialideal of S. By Lemma 1.9, $A \supseteq N$ for some minimal prime semialideal N. By 5, N is a minimal prime ideal.

6 ⇒ 7: Suppose 6 holds and let A be any proper filter of S. By Lemma 1.7, $S - A$ is a prime semialideal. By 6, $S - A$ contains a minimal prime ideal N. Clearly $A \cap N = \emptyset$.

7 ⇒ 8: Suppose 7 holds and let a be any nonzero element of S. By 7, $(a]$ is disjoint from a minimal prime ideal N. Clearly $a \notin N$.

9 ⇒ 3: Suppose 9 holds. Let $a, a_1, \ldots, a_n \in S$ such that $(a] \cap (a_1] = \ldots = (a] \cap (a_n] = (0]$ and $(a] \cap ((a_1] \lor \ldots \lor (a_n]) \neq (0]$. Then there exists $x \in (a] \cap ((a_1] \lor \ldots \lor (a_n])$ such that $x \neq 0$. By 9 there is a prime ideal A such that $x \notin A$. By Lemma 1.7, $S - A$ is a proper filter and clearly $a \in S - A$. Consequently $a_1, \ldots, a_n \in A$. It follows that $(a_1] \lor \ldots \lor (a_n] \subseteq A$ and so $x \in A$. Thus we get a contradiction. Hence $(a] \cap (a_1] = \ldots = (a] \cap (a_n] = (0] \Rightarrow (a] \cap ((a_1] \lor \ldots \lor (a_n]) = (0]$. \hfill \qedsymbol

Theorem 2.4. Let S be a semilattice with 0. Then the following statements are equivalent:

1. S is 0-distributive.
2. If A is a nonempty subset of S and B is a proper filter intersecting A, there is a minimal prime ideal containing A^* and disjoint from B.
3. If A is a nonempty subset of S and B is a proper filter intersecting A, there is a prime ideal containing A^* and disjoint from B.
4. If A is a nonempty subset of S and B is a prime semiideal not containing A, there is a minimal prime ideal containing A^* and contained in B.

241
5. If A is a nonempty subset of S and B is a prime semiideal not containing A, there is a prime ideal containing A^* and contained in B.
6. For each nonzero element a of S and each proper filter B containing a, there is a prime ideal containing $(a)^*$ and disjoint from B.
7. For each nonzero element a of S and each prime semiideal B not containing a, there is a prime ideal containing $(a)^*$ and contained in B.
8. If A and B are filters of S such that A and B^0 are disjoint, there is a minimal prime ideal containing B^0 and disjoint from A.
9. If A and B are filters of S such that A and B^0 are disjoint, there is a prime ideal containing B^0 and disjoint from A.
10. If A is a filter of S and B is a prime semiideal containing A^0, there is a minimal prime ideal containing A^0 and contained in B.
11. If A is a filter of S and B is a prime semiideal containing A^0, there is a prime ideal containing A^0 and contained in B.
12. For each nonzero element a in S and each filter A disjoint from $(a)^*$, there is a prime ideal containing $(a)^*$ and disjoint from A.
13. For each nonzero element a in S and each prime semiideal B containing $(a)^*$, there is a prime ideal containing $(a)^*$ and contained in B.

Proof. $1 \Rightarrow 2$: Suppose 1 holds. Let A be a nonempty subset of S and B any proper filter such that $B \cap A \neq \emptyset$. By Lemma 1.7, $S - B$ is a prime semiideal and by Lemma 1.9, $S - B \supset N$ for some minimal prime semiideal N. Clearly $N \cap B = \emptyset$. Also $S - B \supseteq A$ and so $N \supseteq A$. By Lemma 1.10, $N \supseteq A^*$. Since S is 0-distributive, N is a minimal prime ideal [see Theorem 2.3, 5].

By Lemma 1.7, it follows that $2 \Rightarrow 4$, $3 \Rightarrow 5$, $8 \Rightarrow 10$, $9 \Rightarrow 11$ and $12 \Rightarrow 13$.

Obviously $2 \Rightarrow 3$, $2 \Rightarrow 6$, $4 \Rightarrow 5$, $4 \Rightarrow 7$, $8 \Rightarrow 9$, $10 \Rightarrow 11 \Rightarrow 13$ and $5 \Rightarrow 7$.

$1 \Rightarrow 8$: Suppose 1 holds. Let A and B be filters of S such that $A \cap B^0 \neq \emptyset$. By Lemma 1.12, there is a minimal prime semiideal N such that $N \supseteq B^0$ and $N \cap A = \emptyset$. Since S is 0-distributive it follows that N is a minimal prime ideal [see Theorem 2.3, 5].

$8 \Rightarrow 12$: By Lemma 1.6, $(x)^* = [x]^0$ for all $x \in S$. Hence the result.

$6 \Rightarrow 1$: Suppose 6 holds. Let a be any nonzero element of S. Now $[a]$ is a proper filter containing a. By 6, there is a prime ideal N containing $(a)^*$ and disjoint from $[a]$. Clearly $a \notin N$. Thus S is 0-distributive [see Theorem 2.3, 9].

$7 \Rightarrow 1$: Suppose 7 holds. Let a be any nonzero element of S. Now $S - [a]$ is a prime semiideal not containing a. By 7 there is a prime ideal N containing $(a)^*$ and contained in $S - [a]$. Clearly $a \notin N$. Thus S is 0-distributive [See Theorem 2.3, 9].

$13 \Rightarrow 1$: Suppose 13 holds and let a be any nonzero element of S. By Lemma 1.7, $S - [a]$ is a prime semiideal not containing a. Since $(a) \cap (a)^* = (0) \subseteq S - [a]$ it
follows that \(S - [a) \) contains \((a)^*\). By 13, there is a prime ideal \(N \) containing \((a)^*\) and contained in \(S - [a) \). Clearly \(a \in N \). Thus \(S \) is 0-distributive [see Theorem 2.3, 9].

\[\square \]

Theorem 2.5. Let \(S \) be a semilattice with 0. Then the following statements are equivalent:

1. \(S \) is 0-distributive.
2. For any nonempty subset \(A \) of \(S \), \(A^* \) is the intersection of all minimal prime ideals not containing \(A \).
3. For any filter \(A \) of \(S \), \(A^0 \) is the intersection of all minimal prime ideals disjoint from \(A \).
4. For each \(a \) in \(S \), \((a)^* \) is an ideal.
5. Every normal semiideal of \(S \) is an intersection of minimal prime ideals.
6. For any finite number of ideals \(A, A_1, \ldots, A_n \) of \(S \),

\[(A \cap (A_1 \lor \ldots \lor A_n))^* = (A \cap A_1)^* \cap \ldots \cap (A \cap A_n)^*. \]

7. For any three ideals \(A, B, C \) of \(S \),

\[(A \cap (B \lor C))^* = (A \cap B)^* \cap (A \cap C)^*. \]

8. For any finite number of ideals \(A, A_1, \ldots, A_n \) of \(S \),

\[((A \lor A_1) \cap \ldots \cap (A \lor A_n))^* = A^* \cap (A_1 \cap \ldots A_n)^*. \]

9. For any three ideals \(A, B, C \) of \(S \),

\[((A \lor B) \cap (A \lor C))^* = A^* \cap (B \lor C)^*. \]

10. For any finite number of elements \(a, a_1, \ldots, a_n \) of \(S \),

\[([a] \cap ((a_1) \lor \ldots \lor (a_n)))^* = ([a] \cap (a_1))^* \cap \ldots \cap ([a] \cap (a_n))^*. \]

11. For any finite number of elements \(a_1, \ldots, a_n \) of \(S \),

\[((a_1) \lor \ldots \lor (a_n))^* = (a_1)^* \cap \ldots \cap (a_n)^*. \]

12. \(I(S) \) is pseudocomplemented.

Proof. 1 \(\Rightarrow \) 2: Follows by Lemma 1.10 and Theorem 2.3, 5.

1 \(\Rightarrow \) 3: Follows by Lemma 1.13 and Theorem 2.3, 5.

243
By Lemma 1.6, \((a)^* = [a]^0\). Hence the result.

Suppose 4 holds. Let \(a, a_1, \ldots, a_n \in S\) be such that \((a) \cap (a_1) = \ldots = (a) \cap (a_n) = (0)\). Then \(a_1, \ldots, a_n \in (a)^*\). By 4 it follows that \((a_1) \lor \ldots \lor (a_n) \subseteq (a)^*\). Hence \((a) \cap ((a_1) \lor \ldots \lor (a_n)) = (0)\). Thus \(S\) is 0-distributive [see Theorem 2.3, 3].

Obviously 6 \(\Rightarrow\) 7, 8 \(\Rightarrow\) 9 and 6 \(\Rightarrow\) 10.

Suppose 2 holds. Let \(A\) be any normal semiideal of \(S\). Then \(A = B^*\) for some semiideal \(B\). By 2, \(B^*\) is the intersection of all minimal prime ideals not containing \(B\). Hence the result.

Suppose 4 holds. Let \(A, A_1, \ldots, A_n \in I(S)\). If \(Q\) is any minimal prime ideal of \(S\) such that \(Q \not\supseteq A \cap (A_1 \lor A_2 \lor \ldots \lor A_n)\), then \(Q \not\supseteq A \cap A_j\) for some \(j \in \{1, \ldots, n\}\).

By 2 it follows that \((A \cap (A_1 \lor \ldots \lor A_n))^* \supseteq (A \cap A_1)^* \cap \ldots \cap (A \cap A_n)^*\). The reverse inclusion is obvious.

Suppose 7 holds. Then for \(A, B, C \in I(S)\) we have \((A \cap (B \lor C))^* = (A \cap B)^* \cap (A \cap C)^*\). By replacing \(A\) by \(B \lor C\) it follows that \((B \lor C)^* = B^* \lor C^*\).

Suppose \(A \lor B = (0) = A \lor C\). Then \((a) \cap (b) = (0) = (a) \cap (c)\) for all \(a \in A, b \in B\) and \(c \in C\). Hence \(a \in B^* \lor C^*\) for all \(a \in A\). Hence \(a \in (B \lor C)^*\). Consequently \(A \subseteq (B \lor C)^*\). It follows that \(A \lor B = (0)\).

Suppose 2 holds, let \(A, A_1, \ldots, A_n\) be ideals of \(S\) and let \(Q\) be any minimal prime ideal such that \(Q \not\supseteq (A \lor A_1) \lor \ldots \lor (A \lor A_n)\). Then \(Q \not\supseteq A \lor A_1, \ldots, A \lor A_n\) and so \(Q \not\supseteq A\) or \(Q \not\supseteq A_j\) for \(j \in \{1, \ldots, n\}\). By 2 it follows that \(((A \lor A_1) \lor \ldots \lor (A \lor A_n))^* \supseteq A^* \lor (A_1^* \lor \ldots \lor A_n^*)\). The reverse inclusion is obvious.

Suppose 9 holds. Then for any three ideals \(A, B, C, S\), \(((A \lor B) \lor (A \lor C))^* = A^* \lor (B \lor C)^*\). By replacing \(C\) by \(B\) and \(A\) by \(C\) it follows that \((B \lor C)^* = B^* \lor C^*\).

Suppose \(A \lor B = (0) = A \lor C\). Then \((a) \cap (b) = (0) = (a) \cap (c)\) for all \(a \in A, b \in B\) and \(c \in C\). Hence \(a \in B^* \lor C^*\) for all \(a \in A\). Hence \(a \in (B \lor C)^*\) for all \(a \in A\). Consequently \(A \subseteq (B \lor C)^*\). It follows that \(A \lor B = (0)\). Thus \(S\) is 0-distributive.

Suppose 10 holds. Let \(a, a_1, \ldots, a_n \in S\) such that \((a) \cap (a_1) = \ldots = (a) \cap (a_n) = (0)\). Then \(((a) \cap (a_1))^* \lor \ldots \lor ((a) \cap (a_n))^* = S\). Hence \(((a) \cap (a_1))^* \lor \ldots \lor ((a) \cap (a_n))^* = S\). By 10, \(((a) \lor ((a_1) \lor \ldots \lor (a_n))^* = S\). Consequently \((a) \lor ((a_1) \lor \ldots \lor (a_n))^* = (0)\). It follows that \(S\) is 0-distributive [see Theorem 2.3, 3].

Suppose 6 holds. Then for any finite number of ideals \(A, A_1, \ldots, A_n\) of \(S\), \((A \cap (A_1 \lor \ldots \lor A_n))^* = (A \cap A_1)^* \lor \ldots \lor (A \cap A_n)^*\). By taking \(A = A_1 \lor \ldots \lor A_n\) it follows that \((A_1 \lor \ldots \lor A_n)^* = A_1^* \lor \ldots \lor A_n^*\). Hence the result.

Suppose 11 holds. Let \(a, a_1, \ldots, a_n \in S\) be such that \((a) \cap (a_1) = \ldots = (a) \cap (a_n) = (0)\). Then \(a \in (a_1)^* \lor \ldots \lor (a_n)^*\). By 11 it follows that \(a \in ((a_1) \lor \ldots \lor (a_n))^*\). Hence \((a) \lor ((a_1) \lor \ldots \lor (a_n))^* = (0)\). Thus \(S\) is 0-distributive [see Theorem 2.3, 3].
2 \Rightarrow 12: Suppose 2 holds. Let $A \in I(S)$. Then by 2 it follows that A^* is an ideal. If $B \in I(S)$ is such that $A \cap B = (0)$ and $x \in B$, then $a \land x = 0$ for all $a \in A$ and so $x \in A^*$. Thus $B \subseteq A^*$. It follows that A^* is the pseudocomplement of A.

12 \Rightarrow 1: Suppose 12 holds. Then every principal ideal of S has a pseudocomplement in $I(S)$. Let $a, a_1, \ldots, a_n \in S$ be such that $(a) \cap (a_1) = \ldots = (a) \cap (a_n) = (0)$. Then $(a_i) \subseteq (a)^*$ for $i = 1, \ldots, n$ and so $((a_1) \lor \ldots \lor (a_n)) \subseteq (a)^*$. Consequently $(a) \cap ((a_1) \lor \ldots \lor (a_n)) = (0)$. Thus S is 0-distributive [see Theorem 2.3, 3].

Remark 2.6. According to Varlet [8], an ideal of a semilattice S is a nonempty subset I of S such that (i) $y \leq x$ and $x \in I$ imply $y \in I$; (ii) for any $x, y \in I$ there exists a $z \in I$ such that $z \geq x$ and $z \geq y$. According to him a semilattice S with 0 is said to be 0-distributive if for any $a \in S$, the subset $(a)^* = \{ x \in S; \ x \land a = 0 \}$ is an ideal.

Let S be a 0-distributive semilattice in Varlet’s sense. Then for each $a \in S$, $(a)^*$ is a Varlet ideal and therefore an ideal in our sense. Thus S is 0-distributive in our sense. The converse is not true. Consider the semilattice $S = \{ 0, a, b, c \}$ in which the ordering is defined by $0 < a, b, c; a \parallel b; a \parallel c$; and $b \parallel c$. Clearly S is 0-distributive in our sense but not in Varlet’s sense.

We give below some additional characterizations when the semilattice is finite.

Theorem 2.7. Let S be a finite semilattice. Then the following statements are equivalent:

1. S is 0-distributive.
2. If a, b, c are elements of S such that $(a) \cap (b) = (0) = (a) \cap (c)$ then $(a) \cap ((b) \lor (c)) = (0)$.
3. Every maximal filter of S is prime.
4. Each nonzero element of S is contained in a prime filter.
5. If A is a nonempty subset of S and B is a proper filter intersecting A, there is a prime filter containing B and disjoint from A^*.
6. If A is a nonempty subset of S and B is a prime semiideal not containing A, there is a prime filter containing $S - B$ and disjoint from A^*.
7. For each nonzero element a of S and each proper filter B containing a, there is a prime filter containing B and disjoint from $(a)^*$.
8. For each nonzero element a of S and each prime semiideal B not containing a, there is a prime filter containing $S - B$ and disjoint from $(a)^*$.
9. If A and B are filters of S such that A and B^0 are disjoint, there is a prime filter containing A and disjoint from B^0.
10. If A is a filter of S and B is a prime semiideal containing A^0, there is a prime filter containing $S - B$ and disjoint from A^0.

245
11. For each nonzero element a in S and each filter A disjoint from $(a)^*$, there is a prime filter containing A and disjoint from $(a)^*$.

12. For each nonzero element a in S and each prime semiideal B containing $(a)^*$, there is a prime filter containing $S - B$ and disjoint from $(a)^*$.

Proof. Obviously $1 \Rightarrow 2, 6 \Rightarrow 8, 10 \Rightarrow 12, 5 \Rightarrow 7$ and $9 \Rightarrow 11$.

$2 \Rightarrow 1$: Suppose 2 holds and let $a, a_1, \ldots, a_n \in S$ be such that $(a) \cap (a_1) = \ldots = (a) \cap (a_n) = (0)$. Let $A = (a_1) \cup \ldots \cup (a_n)$, let $B = \{b_1, \ldots, b_m\}$ be the set of existing supremas of nonempty subsets of A and $b \in B$. Then $(a_1) \cup \ldots \cup (a_n) = (b_1) \cup \ldots \cup (b_m)$ and $b = c_1 \lor \ldots \lor c_k$ for some $c_1, \ldots, c_k \in A$. If $p, q \in \{1, \ldots, k\}$, clearly b is an upperbound of $\{c_p, c_q\}$. Thus the set C of upperbounds of $\{c_p, c_q\}$ is nonempty and $\inf C = c_p \lor c_q$. Also $(a) \cap (c_p) = (0) = (a) \cap (c_q)$, so that $(a) \cap ((c_p) \lor (c_q)) = (0)$ by 2. It is easily seen that every nonempty subset of $\{c_1, \ldots, c_k\}$ has a supremum and by induction it follows that $(a) \cap (b) = (a) \cap ((c_1) \lor \ldots \lor (c_k)) = (0)$. Hence $(a) \cap ((a_1) \lor \ldots \lor (a_n)) = (a) \cap ((b_1) \cup \ldots \cup (b_m)) = (a) \cap (b_1) \cup \ldots \cup ((a) \cap (b_m)) = (0)$. Consequently S is 0-distributive [see Theorem 2.3, 3].

$1 \Rightarrow 3$: Suppose 1 holds. Let M be any maximal filter of S. Since S is finite, every filter of S is principal. Let $a, b \in S - M$ be such that $(a) \cap (b) \neq 0$. Let $(a) \cap (b) = \{c_1, \ldots, c_n\}$ and $c = c_1 \land \ldots \land c_n$. Then $c \geq a, b$ as $c_i \geq a, b$ for all i. If $d \in S$ and $d \geq a, b$, then $d = c_j$ for some j, so that $d \geq c$. Thus $c = a \lor b$. Also $S - M$ is an ideal [see Theorem 2.3, 4]. Hence $a \lor b \in S - M$. It follows that $(a) \cap (b) = (a \lor b) \not\in M$, proving M is prime.

$3 \Rightarrow 4$: Suppose 3 holds. Let a be any nonzero element of S. By Lemma 1.5, (a) is contained in a maximal filter M. By 3, M is prime. Clearly $a \in M$.

$4 \Rightarrow 1$: Suppose 4 holds. Let a be any nonzero element of S. By 4, $a \in B$ for some prime filter B. By Lemma 1.14, $S - B$ is a prime ideal and clearly $a \not\in S - B$. It follows that S is 0-distributive [see Theorem 2.3, 9].

$3 \Rightarrow 5$: Suppose 3 holds. Let A be a nonempty subset of S and B a proper filter such that $B \cap A \neq \emptyset$. By Lemma 1.5, $B \subseteq M$ for some maximal filter M. By 3, M is prime. By Lemma 1.8, $S - M$ is a minimal prime semiideal and clearly $S - M \not\subseteq A$. Hence $S - M \supseteq A^*$ and so $M \cap A^* = \emptyset$.

$5 \Rightarrow 6$: Suppose 5 holds. Let A be a nonempty subset of S and B a prime semiideal such that $B \not\subseteq A$. By Lemma 7, $S - B$ is a proper filter and clearly $(S - B) \cap A \neq \emptyset$. By 5 there is a prime filter containing $S - B$ and disjoint from A^*.

$7 \Rightarrow 8$: Similar to $5 \Rightarrow 6$.

$8 \Rightarrow 1$: Suppose 8 holds and let a be any nonzero element of S. Now $S - (a)$ is a prime semiideal not containing a. By 8 there is a prime filter N containing $(S - (a)) = (a)$ and disjoint from $(a)^*$. By Lemma 1.14, $S - N$ is a prime ideal and clearly $a \not\in S - N$. Thus S is 0-distributive [see Theorem 2.3, 9].
3 ⇒ 9: Suppose 3 holds. Let A and B be filters of S such that A and B^0 are disjoint. By Lemma 1.12, there is a minimal prime semiideal N such that $N \supseteq B^0$ and $N \cap A = \emptyset$. By Lemma 1.8, $S - N$ is a maximal filter. Clearly $S - N \supseteq A$ and $(S - N) \cap B^0 = \emptyset$. By 3, $S - N$ is prime.

9 ⇒ 10: Suppose 9 holds. Let A be a filter of S and B a prime semiideal such that $B \supseteq A^0$. By Lemma 1.7, $S - B$ is a proper filter and clearly $(S - B) \cap A^0 = \emptyset$. By 9, there is a prime filter containing $S - B$ and disjoint from A^0.

11 ⇒ 12: Similar to 5 ⇒ 6.

12 ⇒ 4: Suppose 12 holds. Let a be any nonzero element of S. Now $S - [a]$ is a prime semiideal not containing (a). Since $(a) \cap (a)^* = (0) \subseteq S - [a]$ it follows that $(a)^* \subseteq S - [a]$. By 12 there is a prime filter N containing $S - (S - [a]) = [a]$ and disjoint from $(a)^*$. Clearly $a \in N$. □

Theorem 2.8. Let S be a finite semilattice. Then the following statements are equivalent:

1. S is 0-distributive.
2. For any finite number of filters A, A_1, \ldots, A_n of S such that $A \cap A_i \neq \emptyset$ for all $i \in \{1, \ldots, n\}$,

 \[((A \cap A_1) \lor \ldots \lor (A \cap A_n))^0 = A^0 \cap (A_1 \lor \ldots \lor A_n)^0. \]

3. For any three filters A, B, C of S such that $A \cap B \neq \emptyset$ and $A \cap C \neq \emptyset$,

 \[((A \cap B) \lor (A \cap C))^0 = A^0 \cap (B \lor C)^0. \]

4. For all a, b, c in S such that $[a] \cap [b] \neq \emptyset$ and $[a] \cap [c] \neq \emptyset$,

 \[(((a) \cap [b]) \lor ([a] \cap [c]))^0 = [a]^0 \cap ([b] \lor [c])^0. \]

5. For any finite number of filters A, A_1, \ldots, A_n of S such that $A_1 \cap \ldots \cap A_n \neq \emptyset$,

 \[(A \lor (A_1 \cap \ldots \cap A_n))^0 = (A \lor A_1)^0 \cap \ldots \cap (A \lor A_n)^0. \]

6. For any three filters A, B, C of S such that $B \cap C \neq \emptyset$,

 \[(A \lor (B \cap C))^0 = (A \lor B)^0 \cap (A \lor C)^0. \]

7. For any finite number of elements a, a_1, \ldots, a_n of S such that $[a_1] \cap \ldots \cap [a_n] \neq \emptyset$,

 \[([a] \lor ([a_1] \cap \ldots \cap [a_n]))^0 = ([a] \lor [a_1])^0 \cap \ldots \cap ([a] \lor [a_n])^0. \]

247
8. For all \(a, b, c \) in \(S \), with \([b] \cap [c] \neq \emptyset \),
\[
([a] \lor ([b] \cap [c]))^0 = ([a] \lor [b])^0 \cap ([a] \lor [c])^0.
\]

9. For any finite number of elements \(a_1, \ldots, a_n \) of \(S \) such that \([a_1] \cap \ldots \cap [a_n] \neq \emptyset \),
\[
([a_1] \cap \ldots \cap [a_n])^0 = [a_1]^0 \cap \ldots \cap [a_n]^0.
\]

10. For all \(a, b \) in \(S \) with \([a] \cap [b] \neq \emptyset \),
\[
([a] \cap [b])^0 = [a]^0 \cap [b]^0.
\]

11. For all \(a, b, c \) in \(S \),
\[
((a) \cap ((b) \lor (c)))^* = ((a) \cap (b))^* \cap ((a) \cap (c))^*.
\]

12. For all \(a, b, c \) in \(S \),
\[
(((a) \lor (b)) \cap ((a) \lor (c)))^* = (a)^* \cap ((b) \lor (c))^*.
\]

13. For all \(a, b \) in \(S \),
\[
((a) \lor (b))^* = (a)^* \cap (b)^*.
\]

Proof. 1 \(\Rightarrow \) 2: Suppose 1 holds and let \(A, A_1, \ldots, A_n \) be filters of \(S \) such that \(A \cap A_i \neq \emptyset \) for all \(i \in \{1, \ldots, n\} \). If \(Q \) is any minimal prime ideal of \(S \) such that \(Q \cap (A \cap A_1) \lor \ldots \lor (A \cap A_n) = \emptyset \), then \(Q \cap (A \cap A_1) = \ldots = Q \cap (A \cap A_n) = \emptyset \). By Lemma 1.14, \(S - Q \) is a prime filter and \(S - Q \supseteq (A \cap A_1), \ldots, (A \cap A_n) \). Hence \(S - Q \supseteq A \) or \(S - Q \supseteq A_1 \lor \ldots \lor A_n \) and so \(Q \cap A = \emptyset \) or \(Q \cap (A_1 \lor \ldots \lor A_n) = \emptyset \). It follows that \((A \cap A_1) \lor \ldots \lor (A \cap A_n))^0 \supseteq A^0 \cap (A_1 \lor \ldots \lor A_n)^0 \) [see Theorem 2.5, 3]. The reverse inclusion is obvious.

Obviously 2 \(\Rightarrow \) 3 \(\Rightarrow \) 4, 5 \(\Rightarrow \) 6 \(\Rightarrow \) 8 and 5 \(\Rightarrow \) 7 \(\Rightarrow \) 8.

4 \(\Rightarrow \) 10: Follows by taking \(c = b \) in 4.

1 \(\Rightarrow \) 5: Suppose 1 holds. Let \(A, A_1, \ldots, A_n \) be filters of \(S \) such that \(A \cap \ldots \cap A_n \neq \emptyset \). If \(Q \) is any minimal prime ideal of \(S \) such that \(Q \cap (A \lor (A_1 \cap \ldots \cap A_n)) = \emptyset \), then \(Q \cap A = \emptyset = Q \cap (A_1 \cap \ldots \cap A_n) \). By Lemma 1.14, \(S - Q \) is a prime filter and clearly \(S - Q \supseteq A \lor A_j \) and so \(Q \cap (A \lor A_j) = \emptyset \) for some \(j \in \{1, \ldots, n\} \). It follows that \((A \lor (A_1 \cap \ldots \cap A_n))^0 \supseteq (A \lor A_1)^0 \cap \ldots \cap (A \lor A_n)^0 \) [see Theorem 2.5, 3]. The reverse inclusion is obvious.

10 \(\Rightarrow \) 9: Suppose 10 holds and let \(a_1, \ldots, a_n \in S \) be such that \([a_1] \cap \ldots \cap [a_n] \neq \emptyset \). Then \(([a_1] \cap [a_2])^0 = [a_1]^0 \cap [a_2]^0 \). Assume \(([a_1] \cap \ldots \cap [a_{k-1}]) = [a_1]^0 \cap \ldots \cap [a_{k-1}]^0 \) for \(2 < k \leq n \). Let \(x \in [a_1]^0 \cap \ldots \cap [a_k]^0 \). Then \(x \in [a_1]^0 \cap \ldots \cap [a_{k-1}]^0 = ([a_1] \cap \ldots \cap [a_{k-1}])^0 \) by our induction hypothesis. Hence \(x \lor y = 0 \) for some \(y \in ([a_1] \cap \ldots \cap [a_{k-1}]) \). Thus \(x \in [y]^0 \cap [a_k]^0 \). Assume \(([a_1] \cap \ldots \cap [a_k])^0 \subseteq ([a_1] \cap \ldots \cap [a_k])^0 \) so that \(([a_1]^0 \cap \ldots \cap [a_k]^0) \subseteq ([a_1] \cap \ldots \cap [a_k])^0 \). The reverse inclusion is obvious. By induction it follows that \(([a_1] \cap \ldots \cap [a_n])^0 = [a_1]^0 \cap \ldots \cap [a_n]^0 \).

9 \(\Rightarrow \) 1: Suppose 9 holds. Let \(a \in S \) and let \(a_1, \ldots, a_n \in (a)^* \) be such that \(a_1 \lor \ldots \lor a_n \) exists. Then \(a \lor a_1 = \ldots = a \lor a_n = 0 \) and so \(a \in [a_1]^0 \cap \ldots \cap [a_n]^0 = 0 \).
\[(a_1 \cap \ldots \cap a_n)^0 \] by 9. That is \(a \in [a_1 \lor \ldots \lor a_n]^0\). Hence \(a \land (a_1 \lor \ldots \lor a_n) = 0\), so that \(a_1 \lor \ldots \lor a_n \in (a)^*\). Thus \((a)^*\) is an ideal. It follows that \(S\) is 0-distributive [see Theorem 2.5, 4].

8 \(\Rightarrow\) 1: Suppose 8 holds and let \(a, b, c \in S\) such that \((a) \cap (b) = (0) = (a) \cap (c)\). Let \(X = \{x_1, \ldots, x_n\}\) be the set of existing suprema of nonempty subsets of \((b) \cup (c)\) and \(x \in X\). Then \((b) \lor (c) = (x_1) \cup \ldots \cup (x_n)\) and \(x = y_1 \lor \ldots \lor y_m\) for some \(y_1, \ldots, y_m \in (b) \cup (c)\). If \(p, q \in \{1, \ldots, m\}\), clearly \(x\) is an upperbound of \(\{y_p, y_q\}\). Thus the set \(Y\) of upperbounds of \(\{y_p, y_q\}\) is nonempty and inf \(Y = y_p \lor y_q\). Also \(a \land y_p = 0 = a \land y_q\). Hence \(\big((a) \lor [y_p]\big)^0 = \big((a) \lor [y_q]\big)^0\). Let \(z \in (a) \cap ((y_p) \lor (y_q))\). Then \(z \leq a\) and \(z \leq y_p \lor y_q\). Now \(z \in S = \big((a) \lor [y_p]\big)^0 \cap \big((a) \lor [y_q]\big)^0 = \big((a) \lor ([y_p] \cap [y_q])\big)^0 = \big((a) \lor [y_p] \lor [y_q]\big)^0\) by 8, so that \(z \land t = 0\) for some \(t \in [a] \lor [y_p] \lor [y_q]\). Thus \(z = z \land a \lor (y_p) \lor (y_q) \leq z \land t = 0\) and consequently \((a) \cap ((y_p) \lor (y_q)) = (0)\). It is easily seen that every nonempty subset of \(\{y_1, \ldots, y_m\}\) has a supremum and by induction it follows that \((a) \land (x) = (a) \land ((y_1) \lor \ldots \lor (y_m)) = (0)\). Hence \((a) \land ((b) \lor (c)) = (a) \land ((x_1) \lor \ldots \lor (x_n)) = ((a) \land (x_1)) \lor \ldots \lor ((a) \land (x_n)) = (0)\). Thus \(S\) is 0-distributive [see Theorem 2.7, 2].

1 \(\Rightarrow\) 11: Suppose 1 holds. Then for all \(A, B, C \in I(S)\) we have \((A \cap (B \lor C))^* = (A \land B)^* \cap (A \lor C)^*\) [see Theorem 2.5, 7]. Hence 11 follows.

1 \(\Rightarrow\) 12: Suppose 1 holds. Then for all \(A, B, C \in I(S)\) we have \((A \lor B) \cap (A \land C)^* = A^* \cap (B \land C)^*\) [see Theorem 2.5, 9]. Hence 12 follows.

12 \(\Rightarrow\) 13: Follows by taking \(c = b\) in 12.

13 \(\Rightarrow\) 1: Suppose 13 holds. Let \(a, b, c \in S\) be such that \((a) \cap (b) = (0) = (a) \cap (c)\). Then \((a) \in (b)^* \land (c)^* = ((b) \lor (c))^*\) by 13. Hence \((a) \land ((b) \lor (c)) = (0)\). Thus \(S\) is 0-distributive [see Theorem 2.7, 2].

11 \(\Rightarrow\) 1: Suppose 11 holds. Let \(a, b, c \in S\) be such that \((a) \cap (b) = (0) = (a) \land (c)\). Then \(((a) \cap (b))^* \land ((a) \land (c))^* = S\). Hence By 11, \(((a) \land ((b) \lor (c)))^* = S\). It follows that \((a) \land ((b) \lor (c)) = (0)\). Thus \(S\) is 0-distributive [see Theorem 2.7, 2]. \(\square\)

Theorem 2.9. Any one of the conditions 3 to 12 of Theorem 2.7 is sufficient for a semilattice \(S\) with 0 (not necessarily finite) to be 0-distributive. These conditions are also necessary in the case of a lattice.

Proof. Suppose 3 of Theorem 2.7 holds and let \(M\) be any maximal filter of \(S\). By Lemma 1.8, \(S - M\) is a minimal prime semiideal. Let \(x_1, \ldots, x_n \in S - M\) and suppose \(x_1 \lor \ldots \lor x_n\) exists. By 3, \(M\) is prime and clearly \([x_i] \notin M\) for \(i = 1, \ldots, n\). Hence by Lemma 1.2, \([x_1 \lor \ldots \lor x_n] = [x_1] \cap \ldots \cap [x_n] \notin M\). Consequently \(x_1 \lor \ldots \lor x_n \in S - M\) and so \(S - M\) is an ideal. It follows that \(S\) is 0-distributive [see Theorem 2.3, 4]. \(\square\)
The sufficiency of the condition 4 of Theorem 2.7 follows by Lemma 1.14 and Theorem 2.3 [see Theorem 2.3, 9]. The sufficiency of the conditions 5 to 12 of Theorem 2.7 follows by Lemma 1.14 and Theorem 2.4 [see Theorem 2.4, 3, 5, 6, 7, 9, 11, 12, 13].

Theorem 2.10. Any one of the conditions 2 to 10 of Theorem 2.8 is sufficient for a semilattice S with 0 (not necessarily finite) to be 0-distributive. These conditions are also necessary in the case of a lattice.

Proof. Obviously $2 \Rightarrow 3 \Rightarrow 4$ and $5 \Rightarrow 6 \Rightarrow 8$.

$4 \Rightarrow 10$: Follows by taking $c = b$ in 4.

$10 \Rightarrow 9$: Same proof as in Theorem 2.8.

Suppose 9 holds. Let $a \in S$ and let $a_1, \ldots, a_n \in (a)^*$ be such that $a_1 \vee \ldots \vee a_n$ exists.

Then $a \wedge a_1 = \ldots = a \wedge a_n = 0$ and so $a \in [a_1]^0 \cap \ldots \cap [a_n]^0 = ([a_1] \cap \ldots \cap [a_n])^0$ by 9. That is $a \in [a_1 \vee \ldots \vee a_n]^0$. It follows that $a \wedge (a_1 \vee \ldots \vee a_n) = 0$. Hence $a_1 \vee \ldots \vee a_n \in (a)^*$. Thus $(a)^*$ is an ideal and so S is 0-distributive [see Theorem 2.5, 4].

$8 \Rightarrow 7$: Suppose 8 holds and let $a, a_1, \ldots, a_n \in S$ be such that $[a_1] \cap \ldots \cap [a_n] \neq \emptyset$.

Then $(a) \vee ([a_1] \cap [a_2]))^0 = ([a] \vee ([a_1])^0 \cap ([a] \vee [a_2])^0$. Assume $([a] \vee ([a_1] \cap \ldots \cap [a_{k-1}]))^0 = ([a] \vee [a_1])^0 \cap \ldots \cap ([a] \vee [a_{k-1}])^0$ for $2 < k \leq n$. Let $x \in ([a] \vee [a_1])^0 \cap \ldots \cap ([a] \vee [a_{k-1}])^0$. Then $x \in ([a] \vee [a_1])^0 \cap \ldots \cap ([a] \vee [a_{k-1}])^0 = ([a] \vee (([a_1] \cap \ldots \cap [a_{k-1}])))^0$ by our induction hypothesis and $x \in ([a] \vee [a_k])^0$. Hence $x \wedge y = a$ for some $y \in [a] \vee ([a_1] \cap \ldots \cap [a_{k-1}])$ and $x \wedge z = 0$ for some $z \in [a] \vee [a_k]$. Thus $x \wedge a \wedge t = 0$ for some $t \in [a_1] \cap \ldots \cap [a_{k-1}]$ and $x \wedge a \wedge a_k = 0$ so that $x \in [a \wedge t]^0 \cap [a \wedge a_k]^0 = ([a] \vee [t])^0 \cap ([a] \vee [a_k])^0 = ([a] \vee ([t] \cap [a_k]))^0$ by 8. Consequently $x \wedge a \wedge u = 0$ for some $u \in [t] \cap [a_k] \subseteq [a_1] \cap \ldots \cap [a_k]$ and so $x \in ([a] \vee ([a_1] \cap \ldots \cap [a_k]))^0$. Thus $([a] \vee [a_1])^0 \cap \ldots \cap ([a] \vee [a_k])^0 \subseteq ([a] \vee ([a_1] \cap \ldots \cap [a_k]))^0$. The reverse inclusion is obvious. By induction it follows that $([a] \vee [a_1])^0 \cap \ldots \cap ([a] \vee [a_n])^0 = ([a] \vee ([a_1] \cap \ldots \cap [a_n]))^0$.

Suppose 7 holds. Let $a \in S$ and let $a_1, \ldots, a_n \in (a)^*$ be such that $a_1 \vee \ldots \vee a_n$ exisits. Then $a \wedge a_1 = \ldots = a \wedge a_n = 0$ and so $a \in [a_1]^0 \cap \ldots \cap [a_n]^0$. Replacing a by $a_1 \vee \ldots \vee a_n$ in 7, we have $([a_1] \cap \ldots \cap [a_n])^0 = [a_1]^0 \cap \ldots \cap [a_n]^0$. Thus $a \in ([a_1] \cap \ldots \cap [a_n])^0 = [a_1 \vee \ldots \vee a_n]^0$. Hence $a \wedge (a_1 \vee \ldots \vee a_n) = 0$ and consequently $a_1 \vee \ldots \vee a_n \in (a)^*$. Thus $(a)^*$ is an ideal. It follows that S is 0-distributive [see Theorem 2.5, 4].

Remark 2.11. The conditions 3 to 12 of Theorem 2.7 are not necessary for an infinite semilattice to be 0-distributive. These conditions are both necessary and sufficient in the case of a lattice.

Clearly each of the conditions 3 to 12 implies the condition 4. Hence it is enough to prove that 4 is not necessary.
Let C be an infinite chain without the least element and $S = C \cup \{0, a, b, d\}$. Define an ordering on S as follows: $0 < a, b, d$; $a \parallel b$; $a \parallel d$; $b \parallel d$ and $a, b, d < c$ for all $c \in C$. Clearly S is a 0-distributive semilattice with respect to this ordering. But no prime filter of S contains the nonzero element a. Thus 4 is not necessary.

Remark 2.12. The conditions 2 to 10 of Theorem 2.8 are not necessary for an infinite semilattice to be 0-distributive. These conditions are both necessary and sufficient in the case of a lattice.

Clearly $2 \Rightarrow 3 \Rightarrow 4 \Rightarrow 10$, $5 \Rightarrow 6 \Rightarrow 8$, $7 \Rightarrow 8$, and $9 \Rightarrow 10$. Hence it is enough to prove that 8 and 10 are not necessary.

Let C be an infinite chain without the least element and $S = C \cup \{0, a, b, d\}$. Define an ordering on S as follows: $0 < a, b, d, e$; $a < e$; $a \parallel b$; $a \parallel d$; $b \parallel d$; $b \parallel e$; $d \parallel e$; $a, b, d, e < c$ for all $c \in C$; $e \parallel c$ for all $c \in C$. It is easily seen that S is a 0-distributive semilattice with respect to this ordering. Now $[e] \lor [b] = S = [e] \lor [d]$, so that $((e) \lor (b))^0 \land ((e) \lor (d))^0 = S$. Also $[e] \lor ([b] \land [d]) = [a]$ and hence $((e) \lor ([b] \land [d]))^0 = \{0, b, d\}$. Thus $((e) \lor ([b] \land [d]))^0 \neq ((e) \lor [b])^0 \land ((e) \lor [d])^0$, proving 8 is not necessary.

Consider the 0-distributive semilattice S from Remark 2.11. Now $([a] \land [b])^0 = \{0\}$ and $[a]^0 \land [b]^0 = \{0, d\}$. Thus $([a] \land [b])^0 \neq [a]^0 \land [b]^0$, proving 10 is not necessary.

Remark 2.13. The condition 2 of Theorem 2.7 and the conditions 11, 12, 13 of Theorem 2.8 are necessary for a semilattice (not necessarily finite) to be 0-distributive.

Proof. The necessity of the condition 2 of Theorem 2.7 is obvious. The necessity of the conditions 11, 12, 13 of Theorem 2.8 follows by Theorem 2.5 [see Theorem 2.5, 10, 8, 11].

Remark 2.14. The condition 2 of Theorem 2.7 and the conditions 11, 12, 13 of Theorem 2.8 are not necessary for an infinite semilattice with 0 to be 0-distributive.

Clearly the condition 12 of Theorem 2.8 implies the condition 13 of Theorem 2.8 and the condition 13 of Theorem 2.8 implies the condition 2 of Theorem 2.7. Hence it is enough to show that the conditions 11 and 12 of Theorem 2.8 are not sufficient.

Let C_1, C_2, C_3 be infinite chains without greatest and least elements and let $S = C_1 \cup C_2 \cup C_3 \cup \{0, a, b, c, d, e, f, g, 1\}$. Define an ordering on S as follows. $0 < a$, b, c, d; $a < e$; $b < f$; $c < g$; $d < e$; $d < f$; $d < g$; $e < c_1 < 1$ for all $c_1 \in C_1$; $e < c_2 < 1$ for all $c_2 \in C_2$; $f < c_1$ for all $c_1 \in C_1$; $f < c_3 < 1$ for all $c_3 \in C_3$; $g < c_2$ for all $c_2 \in C_2$; $g < c_3$ for all $c_3 \in C_3$; $a \parallel b$; $a \parallel c$; $a \parallel d$; $a \parallel f$; $a \parallel g$; $a \parallel c_3$ for all $c_3 \in C_3$; $b \parallel c$; $b \parallel d$; $b \parallel e$; $b \parallel g$; $b \parallel c_2$ for all $c_2 \in C_2$; $c \parallel d$; $c \parallel e$; $c \parallel f$; $c \parallel c_1$ for all $c_1 \in C_1$; $c_1 \parallel c_2$ for all $c_1 \in C_1$ and $c_2 \in C_2$; $c_1 \parallel c_3$ for all $c_1 \in C_1$ and $c_3 \in C_3$; $c_2 \parallel c_3$ for all $c_2 \in C_2$ and $c_3 \in C_3$. Clearly S is a semilattice with respect to this ordering.
Also for all $x, y, z \in S$, we have $((x \cap ((y] \lor (z]))^* = ((x] \cap (y])^* \cap ((x] \cap (z])^*$ and $((x] \lor (y]) \cap ((x] \lor (z])^* = (x]^* \cap ((y] \lor (z])^*$. Now $(d] \cap (a] = (0] = (d] \cap B$ where $B = (b] \lor (c]$. But $(d] \cap ((a] \lor B) \neq (0]$. Thus S is not 0-distributive.

I would like to thank Prof. P. V. Venkatanarasimhan for his valuable suggestions in the preparation of this paper. I also thank the referee whose valuable comments helped in shaping the paper into its present form.

References

Author’s address: P. Balasubramani, Department of Mathematics, Kongu Engineering College, Perundurai, Erode-638 052, India, e-mail: pbalu-20032001@yahoo.co.in.