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GENERALIZED DEDUCTIVE SYSTEMS

IN SUBREGULAR VARIETIES
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Abstract. An algebra A = (A,F ) is subregular alias regular with respect to a unary
term function g if for each Θ,Φ ∈ ConA we have Θ = Φ whenever [g(a)]Θ = [g(a)]Φ for
each a ∈ A. We borrow the concept of a deductive system from logic to modify it for
subregular algebras. Using it we show that a subset C ⊆ A is a class of some congruence
on Θ containing g(a) if and only if C is this generalized deductive system. This method is
efficient (needs a finite number of steps).
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ference system

MSC 2000 : 08A30, 08B05, 03B22

Let A = (A, F ) be an algebra and ∅ 6= C ⊆ A a subset. The problem to decide

whether C is a class of some congruence Θ ∈ Con A has been a problem of long
standing. In general, it was solved by A. I.Mal’cev in 1954. However, his method

is far from being effective. Essential progress was done for certain subsets of A for
algebras having a constant 0. A.Ursini introduced a concept of an ideal in universal

algebra [8] and it was shown by him and H.-P.Gumm [7] that in varieties permutable
at 0 every 0-class of each congruence on A is just an ideal of A and vice versa. It

turns out that for varieties which are permutable at 0 and weakly regular this method
is effective, i.e. for a finite algebra of a finite type it can be decided by a finite number

of steps of the corresponding algorithmical scheme. This method was extended for
an arbitrary congruence class of algebra A of a regular and permutable variety

and it was generalized by the author and R.Bělohlávek [2] to algebras in regular
varieties. Recently, we have used another method, the so called deductive systems,
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to characterize 0-classes in weakly regular varieties (see [5]) or arbitrary congruence

classes in algebras of regular varieties, see [3].
If the concept of regularity is weakened to the so called subregularity (see e.g. [1]),

one can still use an effective method to characterize certain congruence classes. This

is the aim of our paper.
Let us recall that an algebra A = (A, F ) is regular if every Θ, Φ ∈ Con A coincide

whenever they have a class in common. An algebra A with a constant 0 is weakly
regular if every Θ, Φ ∈ ConA coincide whenever [0]Θ = [0]Φ.
These concepts have a common generalization.

Definition 1. Let g be a unary term function of an algebra A = (A, F ). A

is regular with respect to g if Θ = Φ for Θ, Φ ∈ ConA whenever [g(a)]Θ = [g(a)]Φ
for each a ∈ A. Let g be a unary term of variety V . We say that V is regular with

respect to g if each A ∈ V has this property (with respect to the corresponding term
function gA).

Regularity with respect to g is known also under the name subregularity, see [1],
provided the term g is implicitly given.

Let us mention that if g(x) = x (the identity term) then regularity with respect to
g is the regularity; if 0 is a constant of A and g(x) = 0 then regularity with respect
to g is just the weak regularity.

Definition 2. Let g be a unary term of a variety V . A finite set {p1, . . . , pn} of
ternary terms p1, . . . pn of V is called a g-difference system for V if

[ p1(x, y, z) = g(z) & . . . & pn(x, y, z) = g(z)] if and only if x = y.

� ��
��������
. If g(z) = 0 where 0 is a constant of V then the g-difference system is

just the Gödel equivalence system as introduced in [4] (of course, then every pi(x, y, z)
is independent of the last variable thus it is properly binary). If g(z) = z then we

have the difference system as introduced in [3].

If g(z) = z and V is a variety of groups then for p(x, y, z) = x−y+z the singleton

{p} is a g-difference system; if V is the variety of Boolean algebras then {p} is a g-
difference system for p(x, y, z) = x⊕y⊕z, where ⊕ denotes the so called symmetrical
difference.
Analogously, if V is the variety of pseudocomplemented semilattices and g(x) =

x∗∗ then {p} is a g-difference system for p(x, y, z) = (x + y) + z where

x + y = ((x ∧ y∗)∗ ∧ (x∗ ∧ y)∗)∗.
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An example of a difference system having more than one term was found for MV-

algebras in [3].
The following useful result was proved in [1]:

Proposition 1. Let g be a unary term of a variety V . Then V is regular with

respect to g if and only if there exist ternary terms p1, . . . , pm such that

{p1, . . . , pm} is a g-difference system of V .

Moreover, every variety V which is regular with respect to g is n-permutable for

some n > 2.

Let us note that m and n in Proposition 1 need not coincide. E.g. for groups we
have n = 2 and m = 1.
In the sequel we will use the following result which is considered to be a folklore

but its formal proof can be found in [6]:

Proposition 2. A variety V is n-permutable for some n > 2 if and only if for
each A ∈ V and every binary relation R on A the following implication holds: if R

is reflexive, transitive and compatible then R ∈ ConA .

Recall that a relation R on an algebra A = (A, F ) is compatible (with respect to
F ) if for each n-ary f ∈ F and a1, . . . , an, b1, . . . bn ∈ A,

〈ai, bi〉 ∈ R (i = 1, . . . , n) ⇒ 〈f(a1, . . . , an), f(b1, . . . , bn)〉 ∈ R;

in other words, R is compatible if it is a subalgebra of the square A ×A .
The crucial concept of our paper is the following one:

Definition 3. Let g be a unary term function of an algebra A = (A, F ) and
let t1, . . . , tn be ternary term functions of A , z ∈ A. A subset D ⊆ A is called a
(g, z)-deductive system of A with respect to {t1, . . . , tn} if
(i) g(z) ∈ D,

(ii) a ∈ D and ti(a, b, z) ∈ D for i = 1, . . . , n imply b ∈ D,

(iii) a ∈ D implies ti(g(z), a, z) ∈ D for i = 1, . . . , n.

Let us note that (i) and (ii) imply the converse of (iii), thus

a ∈ D ⇔ ti(g(z), a, z) ∈ D for i = 1, . . . , n.

� ��
��������
. Let “⇒” be the connective implication of an arbitrary (e.g. classical,

non-classical, intuitionistic, multiple-valued, etc.) logic and D the subset of “tau-

tologies”. Then for g(z) = 1 (the tautology) and n = 1, t1(x, y, z) := x ⇒ y we
surely have
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1 ∈ D,

a ∈ D and (a ⇒ b) ∈ D implies b ∈ D,
a ∈ D implies (1 ⇒ a) ∈ D.

Let R be a binary relation on a set A and x ∈ A. Denote [x]R = {a ∈ A; 〈a, x〉 ∈
R}.

Definition 4. Let t1, . . . , tn be ternary term functions of an algebra A = (A, F )
and D ⊆ A, z ∈ A. Define a binary relation ΘD,z on A induced by {t1, . . . , tn} as
follows:

(∗) 〈a, b〉 ∈ ΘD,z if and only if ti(b, a, z) ∈ D for i = 1, . . . , n.

We are ready to characterize the classes [g(z)]ΘD,z of ΘD,z.

Lemma 1. Let t1, . . . , tn be ternary term functions of an algebra A = (A, F ), let
g be a unary term function of A and z ∈ A. If D is a (g, z)-deductive system of A
with respect to {t1, . . . , tn} and ΘD,z is induced by {t1, . . . , tn} then D = [g(z)]ΘD,z .
���������

. Let a ∈ D. By (iii) we have ti(g(z), a, z) ∈ D for i = 1, . . . , n and,

by (∗), 〈a, g(z)〉 ∈ ΘD,z which yields a ∈ [g(z)]ΘD,z . Conversely, if a ∈ [g(z)]ΘD,z

then 〈a, g(z)〉 ∈ ΘD,z, thus ti(g(z), a, z) ∈ D for i = 1, . . . , n. Applying (i) we infer

g(z) ∈ D and, by virtue of (ii), also a ∈ D. Together, D = [g(z)]ΘD,z . �

Lemma 2. Let t1, . . . , tn be ternary term functions of an algebra A = (A, F ),
let g be a unary term function of A and z ∈ A, D ⊆ A. Let ΘD,z be induced

by {t1, . . . , tn}. If ΘD,z is reflexive and transitive and D = [g(z)]ΘD,z then D is a

(g, z)-deductive system of A with respect to {t1, . . . , tn}.
���������

. Suppose a ∈ D and ti(a, b, z) ∈ D for i = 1, . . . , n. Then 〈b, a〉 ∈ ΘD,z.

Since D = [g(z)]ΘD,z , also 〈a, g(z)〉 ∈ ΘD,z. Due to transitivity of ΘD,z, we have b ∈
[g(z)]ΘD,z , i.e.D satisfies (ii) of Definition 3. The condition (i) follows by reflexivity

of ΘD,z (since g(z) ∈ [g(z)]ΘD,z = D).
If a ∈ D then 〈a, g(z)〉 ∈ ΘD,z, thus ti(g(z), a, z) ∈ D for i = 1, . . . , n, i.e.D

satisfies also (iii) and hence it is a (g, z)-deductive system of A w.r.t. {t1, . . . , tn}.
�

Since congruences are compatible relations on an algebra A = (A, F ), we must
respect also the substitution property (with respect to F ) to describe their classes.
Hence, we define:

Definition 5. Let g be a unary and p1, . . . , pn n-ary term functions of an algebra
A = (A, F ). We say that D ⊆ A is a compatible (g, z)-deductive system of A
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with respect to {p1, . . . , pn} if D is a (g, z)-deductive system of A with respect to

{p1, . . . , pn} and for each k-ary operation f ∈ F and every a1, . . . , ak, b1, . . . , bk ∈ A

the following implication holds:

if pi(a1, b1, z) ∈ D, . . . , pi(ak, bk, z) ∈ D for i = 1, . . . , n

then pi(f(a1, . . . , ak), f(b1, . . . , bk), z) ∈ D for i = 1, . . . , n.

Theorem 1. Let g be a unary term of a variety V and {p1, . . . , pn} a g-difference

system for V . Let A = (A, F ) ∈ V , Θ ∈ Con A , z ∈ A and D = [g(z)]Θ. Then
(a) ΘD,z = Θ;
(b) D is a compatible (g, z)-deductive system of A with respect to {p1, . . . , pn}.
���������

. If 〈a, b〉 ∈ ΘD,z then pi(b, a, z) ∈ D = [g(z)]Θ for i = 1, . . . , n and

hence 〈pi(b, a, z), g(z)〉 ∈ Θ. Applying Proposition 1, we infer 〈b, a〉 ∈ Θ, thus also
〈a, b〉 ∈ Θ proving ΘD,z ⊆ Θ.
Conversely, if 〈a, b〉 ∈ Θ then 〈b, a〉 ∈ Θ and, by Proposition 1 again, 〈pi(b, a, z),

g(z)〉 ∈ Θ for i = 1, . . . , n, thus pi(b, a, z) ∈ [g(z)]Θ = D. By (∗) of Definition 4 we
conclude 〈a, b〉 ∈ ΘD,z giving Θ ⊆ ΘD,z. We have shown Θ = ΘD,z.
By Lemma 2, D is a (g, z)-deductive system of A with respect to {p1, . . . , pn}.

Since Θ ∈ Con A is compatible, it is an easy exercise to show that also D is com-
patible. �

Theorem 2. Let g be a unary term of a variety V and {p1, . . . , pn} a g-difference

system for V . Let A = (A, F ) ∈ V , z ∈ A and let D be a compatible (g, z)-
deductive system of A with respect to {p1, . . . , pn}. Then the relation ΘD,z induced

by {p1, . . . , pn} is a congruence on A and D = [g(z)]ΘD,z .
���������

. By Proposition 1, V satisfies pi(x, x, z) = g(z) for i = 1, . . . , n and hence

the relation ΘD,z induced by {p1, . . . , pn} is reflexive. Since the (g, z)-deductive
system D is compatible, also ΘD,z is compatible. Prove transitivity of ΘD,z: let

〈a, b〉 ∈ ΘD,z and 〈b, c〉 ∈ ΘD,z. Then pi(c, b, z) ∈ D for i = 1, . . . , n and, by virtue
of compatibility of ΘD,z,

〈a, b〉 ∈ ΘD,z ⇒ 〈pi(c, a, z), pi(c, b, z)〉 ∈ ΘD,z

whence pj(pi(c, b, z), pi(c, a, z), z) ∈ D for j = 1, . . . , n. However, D is a (g, z)-
deductive system of A with respect to {p1, . . . , pn}, thus, by (ii) of Definition 3, we
conclude pi(c, a, z) ∈ D for i = 1, . . . , n. Hence 〈a, c〉 ∈ ΘD,z.
By Proposition 1, V is m-permutable for some m > 2 and, by Proposition 2, ΘD,z

is also symmetrical. Together, we have ΘD,z ∈ Con A . By Lemma 1 we conclude
D = [g(z)]ΘD,z . �
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Corollary 1. Let V be a variety which is regular with respect to g. Then V has

a g-difference system {p1, . . . , pn} and for each A = (A, F ) ∈ V , z ∈ A and D ⊆ A,

D is a congruence class containing g(z) if and only if D is a (g, z)-deductive system
of A with respect to {p1, . . . , pn}.

Although the involved method of (g, z)-deductive systems enables us to character-
ize only the congruence classes containing g(a) for some a ∈ A and for A = (A, F )
from a variety which is regular with respect to g, this method is effective in the
following sense: if A is finite and of a finite type, we need to verify only a finite
number of conditions of Definition 3 and Definition 5. Thus there exists an algorith-

mical scheme deciding whether a subset C ⊆ A is a congruence class of A in a finite
number of steps. This scheme depends on the computability of functions p1, . . . , pn.

Applying the same reasoning and a computation as in [3], we obtain:

Corollary 2. Let V be a variety regular with respect to g and of a finite type

with k fundamental operation symbols. Let σ(fi) be the arity of the i-th operation

symbol fi. Let {p1, . . . , pn} be its g-difference system. If A = (A, F ) ∈ V is finite

and C ⊆ A, a ∈ A, g(a) ∈ C and |A| = m, |C| = r then there exists an algorithmical

scheme for deciding whether C is a congruence class and this scheme needs

n

k∑

i=1

m2σi(fi) + k ·m2 · n + r · (m · n + m + n)

steps.
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