Vladimir D. Samodivkin
Minimal acyclic dominating sets and cut-vertices

Mathematica Bohemica, Vol. 130 (2005), No. 1, 81–88

Persistent URL: http://dml.cz/dmlcz/134216

Terms of use:

© Institute of Mathematics AS CR, 2005

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use.*
MINIMAL ACYCLIC DOMINATING SETS AND CUT-VERTECIES

VLADMIR SAMODIVKIN, Sofia

(Received April 7, 2004)

Abstract. The paper studies minimal acyclic dominating sets, acyclic domination number and upper acyclic domination number in graphs having cut-vertices.

Keywords: cut-vertex, dominating set, minimal acyclic dominating set, acyclic domination number, upper acyclic domination number

MSC 2000: 05C69, 05C40

For the graph theory terminology not presented here, we follow Haynes et al. [3]. All our graphs are finite and undirected with no loops or multiple edges. We denote the vertex set and the edge set of a graph G by $V(G)$ and $E(G)$, respectively. The subgraph induced by $S \subseteq V(G)$ is denoted by $\langle S, G \rangle$. For any vertex v of G its open neighborhood $N(v, G)$ is $\{x \in V(G); vx \in E(G)\}$ and its closed neighborhood $N[v, G]$ is $N(v, G) \cup \{v\}$. For a set $S \subseteq V(G)$ its open neighborhood $N(S, G)$ is $\bigcup_{v \in S} N(v, G)$, its closed neighborhood $N[S, G]$ is $N(S, G) \cup S$. A subset of vertices A in a graph G is said to be acyclic if $\langle A, G \rangle$ contains no cycles. Note that the property of being acyclic is a hereditary property, that is, any subset of an acyclic set is itself acyclic. A dominating set in a graph G is a set of vertices D such that every vertex of G is either in D or is adjacent to an element of D. A dominating set D is a minimal dominating set if no proper subset $D' \subset D$ is a dominating set. The set of all minimal dominating sets of a graph G is denoted by $\text{MDS}(G)$. The domination number $\gamma(G)$ of a graph G is the minimum cardinality taken over all dominating sets of G. The literature on this subject has been surveyed and detailed in the two books by Haynes et al. [4], [5].

A given graph invariant can often be combined with another graph theoretical property P. Harary and Haynes [3] defined the conditional domination number $\gamma(G : P)$ as the smallest cardinality of a dominating set $S \subseteq V(G)$ such that the
subgraph $\langle S, G \rangle$ induced by S has property P. One of the many possible properties imposed on S is:

P_{ad}: $\langle S, G \rangle$ has no cycles.

The conditional domination number $\gamma(G : P_{ad})$ is called the \textit{acyclic domination number} and is denoted by $\gamma_a(G)$. The concept of acyclic domination in graphs was introduced by Hedetniemi et al. [6]. An acyclic dominating set D is a \textit{minimal acyclic dominating set} if no proper subset $D' \subset D$ is an acyclic dominating set. The \textit{upper acyclic domination number} $\Gamma_a(G)$ is the maximum cardinality of a minimal acyclic dominating set of G. The set of all minimal acyclic dominating sets of a graph G is denoted by $\text{MD}_aS(G)$. For every vertex x of a graph G let $\text{MD}_aS(x, G) = \{D \in \text{MD}_aS(G); x \in D\}$.

Let us introduce the following assumption

(*) a graph H is the union of two connected graphs H_1 and H_2 having exactly one common vertex x and $|V(H_i)| \geq 2$ for $i = 1, 2$.

In this paper we deal with minimal acyclic dominating sets, acyclic domination number and upper acyclic domination number in graphs having cut-vertices. Observe that domination and some of its variations in graphs having cut-vertices has been the topic of several studies—see for example [1, 7, 5 Chapter 16].

1. \textbf{Minimal acyclic dominating sets}

In this section we begin an investigation of minimal acyclic dominating sets in graphs having cut-vertices.

The following lemma will be used in the sequel, without specific reference.

\textbf{Lemma A} [5, Lemma 2.1]. For any graph G, $\text{MD}_aS(G) \subseteq \text{MDS}(G)$.

\textbf{Theorem 1.1.} Let H_1, H_2 and H be graphs satisfying (*). Let $M \in \text{MD}_aS(x, H)$ and $M_j = M \cap V(H_j)$, $j = 1, 2$. Then one of the following holds:

(i) $M_j \in \text{MD}_aS(x, H_j)$ for $j = 1, 2$;

(ii) there are l and m such that $\{l, m\} = \{1, 2\}$, $M_l \in \text{MD}_aS(x, H_l)$, and $M_m - \{x\}$ is the unique subset of M_m which belongs to $\text{MD}_aS(H_m)$.

\textbf{Proof.} Since $x \in M$ then M_j is an acyclic dominating set of H_j, $j = 1, 2$. Let there be $i \in \{1, 2\}$ such that $M_i \not\in \text{MD}_aS(x, H)$. Suppose $M_j \not\in \text{MD}_aS(x, H_j)$ for $j = 1, 2$. Then there is a vertex $u_1 \in M_1$ and a vertex $u_2 \in M_2$ such that $M_j - \{u_j\}$ is an acyclic dominating set of H_j, $j = 1, 2$. Hence $(M_1 - \{u_1\}) \cup (M_2 - \{u_2\}) = M - ((\{u_1\} \cup \{u_2\})$ is an acyclic dominating set of H—a contradiction. So, without loss of generality let $M_1 \not\in \text{MD}_aS(x, H_1)$ and $M_2 \in \text{MD}_aS(x, H_2)$. Hence there is a
vertex $u \in M_1$ such that $M_1 - \{u\}$ is an acyclic dominating set of H_1. If $u \neq x$ then $M - \{u\}$ is an acyclic dominating set of H, which is a contradiction. Hence $u = x$ and $M_1 - \{x\}$ is an acyclic dominating set of H_1. Suppose $M_1 - \{x\} \notin M_{D_aS}(H_1)$. Then there is a vertex $w \in M_1 - \{x\}$ such that $M_1 - \{x, w\}$ is an acyclic dominating set of H_1. But then $M - \{w\}$ is an acyclic dominating set of H—a contradiction. Therefore $M_1 - \{x\} \notin M_{D_aS}(H_1)$. Let $v \in M_1 - \{x\}$. Suppose $M_1 - \{v\}$ is an acyclic dominating set of H_1. Then $M - \{v\}$ is an acyclic dominating set of H—a contradiction. \hfill \Box

Theorem 1.2. Let H_1, H_2 and H be graphs satisfying (\ast). Let $M \in M_{D_aS}(H)$, $x \notin M$ and $M_j = M \cap V(H_j)$, $j = 1, 2$. Then one of the following holds:

(i) $M_j \in M_{D_aS}(H_j)$ for $j = 1, 2$;
(ii) there are l and m such that $\{l, m\} = \{1, 2\}$, $M_l \in M_{D_aS}(H_l)$, $M_m \in M_{D_aS}(H_m - x)$ and M_m is no dominating set in H_m.

Proof. Clearly, there is $i \in \{1, 2\}$ such that M_i is an acyclic dominating set of H_i. Without loss of generality let $i = 1$. Suppose $M_1 \notin M_{D_aS}(H_1)$. Then there is $u \in M_1$ such that $M_1 - \{u\}$ is an acyclic dominating set of H_1 and then $M - \{u\}$ is an acyclic dominating set of G—a contradiction. So $M_1 \in M_{D_aS}(H_1)$. Analogously, if M_2 is an acyclic dominating set of H_2, then $M_2 \in M_{D_aS}(H_2)$. Now, let M_2 be not an acyclic dominating set of H_2. Then M_2 is an acyclic dominating set of $H_2 - x$. Suppose $M_2 \notin M_{D_aS}(H_2 - x)$. Then there is $v \in M_2$ such that $M_2 - \{v\}$ is an acyclic dominating set of $H_2 - x$ and hence $M - \{v\}$ is an acyclic dominating set of H—a contradiction. \hfill \Box

Theorem 1.3. Let H_1, H_2 and H be graphs satisfying (\ast). Let $M_j \in M_{D_aS}(H_j)$ for $j = 1, 2$ and $x \notin M_1 \cup M_2$. Then one of the following holds:

(i) $M_1 \cup M_2 \in M_{D_aS}(H)$;
(ii) there are $l \in \{1, 2\}$ and $u \in V(H_l)$ such that $\{u\} = N(x, H_l) \cap M_l$, $M_l - \{u\} \in M_{D_aS}(H_l - x)$ and $(M_1 \cup M_2) - \{u\} \in M_{D_aS}(H)$.

Proof. Let $M = M_1 \cup M_2$. Then M is an acyclic dominating set of H. Suppose $M \notin M_{D_aS}(H)$. Hence, there is a vertex $u \in M$ such that $M - \{u\}$ is an acyclic dominating set of H. Without loss of generality let $u \in V(H_1)$. Then $M_1 - \{u\}$ is no acyclic dominating set of H_1 and hence $M_1 - \{u\}$ is an acyclic dominating set of $H_1 - x$. Therefore $\{u\} = N(x, H_1) \cap M_1$. Suppose $M_1 - \{u\} \notin M_{D_aS}(H_1 - x)$. Then there is a vertex $v \in M_1 - \{u\}$ such that $M_1 - \{u, v\}$ is an acyclic dominating set of $H_1 - x$. Hence $M_1 - \{v\}$ is an acyclic dominating set of H_1—a contradiction. So $M_1 - \{u\} \in M_{D_aS}(H_1 - x)$. Suppose $M - \{u\} \notin M_{D_aS}(H)$. Hence there is a vertex $w, w \in M - \{u\}$ that $M - \{u, w\}$ is an acyclic dominating set of H. If $w \in V(H_1)$,
then $M_1 - \{u, w\}$ is an acyclic dominating set of $H_1 - x$—a contradiction. Therefore $w \in V(H_2)$ and then $M_2 - \{w\}$ is an acyclic dominating set of H_2—a contradiction. So $M - \{u\} \notin \text{MD}_a S(H)$.

\[\square\]

Theorem 1.4. Let H_1, H_2 and H be graphs satisfying (\ast). Let $M_j \in \text{MD}_a S(x, H_j)$ for $j = 1, 2$. Then $M_1 \cup M_2 \in \text{MD}_a S(x, H)$.

Proof. Let $M = M_1 \cup M_2$. Obviously M is an acyclic dominating set of H. Suppose $M \notin \text{MD}_a S(H)$. Then there is a vertex $u \in M$ such that $M - \{u\}$ is an acyclic dominating set of H. First, let $u \neq x$ and without loss of generality let $u \in V(H_1) - \{x\}$. Then $M_1 - \{u\}$ is an acyclic dominating set of H_1—a contradiction. Secondly, let $u = x$. Now, there is $i \in \{1, 2\}$ such that $M_i - \{x\}$ is an acyclic dominating set of H_i, which is a contradiction. So $M \notin \text{MD}_a S(H)$ and since $x \in M$ we have $M \in \text{MD}_a S(x, H)$.

\[\square\]

Theorem 1.5. Let H_1, H_2 and H be graphs satisfying (\ast). Let $M_1 \in \text{MD}_a S(x, H_1)$, $M_2 \in \text{MD}_a S(H_2)$, $x \notin M_2$ and $M = M_1 \cup M_2$. Then one of the following holds:

(i) $M \in \text{MD}_a S(H)$;

(ii) $M_1 - \{x\} \in \text{MD}_a S(H_1 - x)$ and $M - \{x\} \in \text{MD}_a S(H)$;

(iii) there is $U \subseteq M_2$ such that $(M_2 - U) \cup \{x\} \in \text{MD}_a S(H_2)$ and $M - U \in \text{MD}_a S(H)$;

(iv) no subset of M is an acyclic dominating set of H.

Proof. Let $M \notin \text{MD}_a S(H)$ and let there exist $M_3 \subset M$ such that $M_3 \in \text{MD}_a S(H)$. First, let $x \notin M_3$. Then $M_1 - \{x\}$ is an acyclic dominating set of $H_1 - x$. Suppose $M_1 - \{x\} \notin \text{MD}_a S(H_1 - x)$. Now, there is a vertex $v \in M_1 - \{x\}$ that $M_1 - \{x, v\}$ is an acyclic dominating set of $H_1 - x$. Hence $M_1 - \{v\}$ is an acyclic dominating set of H_1—a contradiction. So, $M_1 - \{x\} \in \text{MD}_a S(H_1 - x)$ and $M - \{x\}$ is an acyclic dominating set of H. Now, suppose $M - \{x\} \notin \text{MD}_a S(H)$. Then there is a vertex $w \in M - \{x\}$ such that $M - \{x, w\}$ is an acyclic dominating set of H. If $w \in V(H_1)$ then $M_1 - \{x, w\}$ is an acyclic dominating set of $H_1 - x$—a contradiction. If $w \in V(H_2)$, then $M_2 - \{w\}$ is an acyclic dominating set of H_2—a contradiction. So $M - \{x\} \in \text{MD}_a S(H)$. Secondly, let $x \in M_3$. Let $U = M - M_3$. If there is $u \in U \cap M_1$, then $M_1 - \{u\}$ is an acyclic dominating set of H_1—a contradiction. Hence, $U \subseteq M_2$. Then $(M_2 - U) \cup \{x\} = M_3 \cap V(H_2)$ is an acyclic dominating set of H_2. Since M is no minimal acyclic dominating set of H we have $U \neq \emptyset$ and hence $M_2 - U$ is no dominating set of H_2. If there is $v \in M_2 - U$ such that $(M_2 - (U \cup \{v\}) \cup \{x\}$ is an acyclic dominating set of H_2 then $M_3 - \{v\}$ is an acyclic dominating set of H—a contradiction. Hence $(M_2 - U) \cup \{x\}$ is a minimal acyclic dominating set of H_2. \[\square\]
2. Γ_a-sets and γ_a-sets

In this section we present some results concerning the acyclic domination number and the upper acyclic domination number of graphs having cut-vertices.

Let $\mu(G)$ be a numerical invariant of a graph G defined in such a way that it is the minimum or maximum number of vertices of a set $S \subseteq V(G)$ with a given property P. A set with the property P and with $\mu(G)$ vertices in G is called a μ-set of G. Fricke et al. [2] define a vertex v of a graph G to be

(i) μ-good, if v belongs to some μ-set of G and
(ii) μ-bad, if v belongs to no μ-set of G.

Theorem 2.1. Let H_1, H_2 and H be graphs satisfying (*).

1. Let x be a Γ_a-good vertex of a graph H. Then $\Gamma_a(H) \leq \Gamma_a(H_1) + \Gamma_a(H_2)$. If $\Gamma_a(H) = \Gamma_a(H_1) + \Gamma_a(H_2)$, M is a Γ_a-set of H and $x \in M$, then there are l and m such that \(\{l, m\} = \{1, 2\} \). If $\Gamma_a(H_1) + \Gamma_a(H_2) - 1 = \Gamma_a(H)$, M_j is a Γ_a-set of H_j, $j = 1, 2$ and \{x\} = $M_1 \cap M_2$ then $M_1 \cup M_2$ is a Γ_a-set of H.

2. Let x be a Γ_a-good vertex of graphs H_1 and H_2. Then $\Gamma_a(H_1) + \Gamma_a(H_2) - 1 \leq \Gamma_a(H)$. If $\Gamma_a(H_1) + \Gamma_a(H_2) - 1 = \Gamma_a(H)$, M_j is a Γ_a-set of H_j, $j = 1, 2$ and \{x\} $= M_1 \cap M_2$ then $M_1 \cup M_2$ is a Γ_a-set of H.

3. Let x be a Γ_a-bad vertex of a H_1 and H_2. Then $\Gamma_a(H) \geq \Gamma_a(H_1) + \Gamma_a(H_2) - 1$. If $\Gamma_a(H) = \Gamma_a(H_1) + \Gamma_a(H_2)$ and M_j is a Γ_a-set of H_j, $j = 1, 2$ then there are $l \in \{1, 2\}$ and $u \in V(H_l)$ such that \{u\} $= N(x, H_l) \cap M_l$ and $M_1 \cup M_2 - \{u\}$ is a Γ_a-set of H.

4. Let x be a Γ_a-bad vertex of H. Then $\Gamma_a(H) \leq \max\{\Gamma_a(H_1) + \Gamma_a(H_2), \Gamma_a(H_1 - x) + \Gamma_a(H_2), \Gamma_a(H_1) + \Gamma_a(H_2 - x)\}$.

Proof.

1. Let M be a Γ_a-set of H, $x \in M$ and $M \cap V(H_j) = M_j$, $j = 1, 2$.

Case $M_j \in \text{MD}_aS(x, H_j)$, $j = 1, 2$: Then $\Gamma_a(H) = |M| = |M_1| + |M_2| - 1 \leq \Gamma_a(H_1) + \Gamma_a(H_2) - 1$.

Case there are l, m such that \{l, m\} = \{1, 2\}, $M_l \in \text{MD}_aS(x, H_l)$ and $M_m - \{x\} \in \text{MD}_aS(H_m)$: We have $\Gamma_a(H) = |M| = |M_l| + |M_m - \{x\}| \leq \Gamma_a(H_l) + \Gamma_a(H_m)$.

If $\Gamma_a(H) = \Gamma_a(H_1) + \Gamma_a(H_2)$, then $|M_l| = \Gamma_a(H_l)$ and $|M_m - \{x\}| = \Gamma_a(H_m)$. Hence M_l is a Γ_a-set of H_l and $M_m - \{x\}$ is a Γ_a-set of H_m.

There are no other possibilities because of Theorem 1.1.

2. Let M_j be a Γ_a-set of H_j, $j = 1, 2$ and \{x\} $= M_1 \cap M_2$. It follows from Theorem 1.4 that $M_1 \cup M_2 \in \text{MD}_aS(x, H)$. Hence $\Gamma_a(H) \geq |M_1 \cup M_2| = |M_1| + |M_2| - 1 = \Gamma_a(H_1) + \Gamma_a(H_2) - 1$. If $\Gamma_a(H) = \Gamma_a(H_1) + \Gamma_a(H_2) - 1$ then $|M_1 \cup M_2| = \Gamma_a(H)$. Hence $M_1 \cup M_2$ is a Γ_a-set of H.

3. Let M_j be a Γ_a-set of H_j, $j = 1, 2$ and $M = M_1 \cup M_2$. If $M \in \text{MD}_aS(H)$ then $\Gamma_a(H) \geq |M| = |M_1| + |M_2| = \Gamma_a(H_1) + \Gamma_a(H_2)$. Otherwise it follows from
Theorem 1.3 that there are $l \in \{1, 2\}$ and $u \in V(H_l)$ such that \(\{u\} = N(x, H_l) \cap M_l\) and $M - \{u\} \in \text{MD}_{aS}(H)$. Hence $\Gamma_a(H) \geq |M - \{u\}| = |M_1| + |M_2| - 1 = \Gamma_a(H_1) + \Gamma_a(H_2) - 1$. If $\Gamma_a(H) = \Gamma_a(H_1) + \Gamma_a(H_2) - 1$ then $|M - \{u\}| = \Gamma_a(H)$. Hence $M - \{u\}$ is a Γ_a-set of H.

4. Let M be a Γ_a-set of H and $M_j = M \cap V(H_j)$, $j = 1, 2$. If $M_j \in \text{MD}_{aS}(H_j)$, $j = 1, 2$ then $\Gamma_a(H) = |M| = |M_1| + |M_2| \leq \Gamma_a(H_1) + \Gamma_a(H_2)$. Otherwise it follows from Theorem 1.2 that $M_l \in \text{MD}_{aS}(H_l)$ and $M_m \in \text{MD}_{aS}(H_m - x)$ for some l, m such that \(\{l, m\} = \{1, 2\}\). Hence $\Gamma_a(H) = |M| = |M_1| + |M_m| \leq \Gamma_a(H_l) + \Gamma_a(H_m - x)$. \qed

Theorem 2.2. Let G be a graph of order at least two. Then for each vertex $v \in V(G)$ we have $\gamma_a(G) - 1 \leq \gamma_a(G - v) \leq |V(G)| - 1$. If $v \in V(G)$ and $\gamma_a(G) - 1 = \gamma_a(G - v)$ then

(i) v is a γ_a-good vertex of the graph G;

(ii) if v is not isolated and $u \in N(v, G)$ then u is a γ_a-bad vertex of the graph $G - v$.

Proof. Clearly $\gamma_a(G - v) \leq |V(G - v)| = |V(G)| - 1$. Assume $\gamma_a(G - v) < \gamma_a(G)$. Then for an arbitrary γ_a-set M of the graph $G - v$ we have $N[M, G] = V(G) - \{v\}$ and then $N(v, G) \cap M = \emptyset$. Hence $M \cup \{v\}$ is an acyclic dominating set of G and then $\gamma_a(G) \leq |M \cup \{v\}| = |M| + 1 = \gamma_a(G - v) + 1 \leq \gamma_a(G)$. Therefore $\gamma_a(G) - 1 = \gamma_a(G - v)$ and $M \cup \{v\}$ is a γ_a-set of G. Hence v is a γ_a-good vertex of G. Since $N(v, G) \cap M = \emptyset$ we conclude that each vertex belonging to $N(v, G)$ is a γ_a-bad vertex of $G - v$. \qed

Theorem 2.3. Let H_1, H_2 and H be graphs satisfying (\ast). Then

1. $\gamma_a(H) \geq \gamma_a(H_1) + \gamma_a(H_2) - 1$.

2. Let x be a γ_a-bad vertex of the graph H, $\gamma_a(H) = \gamma_a(H_1) + \gamma_a(H_2) - 1$ and let M be a γ_a-set of H. Then there are l, m such that \(\{l, m\} = \{1, 2\}\), $M \cap V(H_l)$ is a γ_a-set of H_l, $M \cap V(H_m)$ is a γ_a-set of $H_m - x$ and $\gamma_a(H_m - x) = \gamma_a(H_m) - 1$.

3. Let x be a γ_a-good vertex of H, $\gamma_a(H) = \gamma_a(H_1) + \gamma_a(H_2) - 1$, let M be a γ_a-set of H and $x \in M$. Then $M \cap V(H_j)$ is a γ_a-set of H, $j = 1, 2$.

4. Let x be a γ_a-good vertex of graphs H_1 and H_2. Then $\gamma_a(H) = \gamma_a(H_1) + \gamma_a(H_2) - 1$. If M_j is a γ_a-set of H_j, $j = 1, 2$ and \(\{x\} = M_1 \cap M_2\) then $M_1 \cup M_2$ is a γ_a-set of the graph H.

5. Let x be a γ_a-bad vertex of graphs H_1 and H_2. Then $\gamma_a(H) = \gamma_a(H_1) + \gamma_a(H_2)$.

Proof. 1: Let M be a γ_a-set of H and $M_i = M \cap V(H_i)$, $i = 1, 2$.

Case $x \notin M$: If $M_j \in \text{MD}_{aS}(H_j)$ for $j = 1, 2$ then $\gamma_a(H) = |M| = |M_1| + |M_2| \geq \gamma_a(H_1) + \gamma_a(H_2)$. Otherwise it follows by Theorem 1.2 that there are l, m such that \(\{l, m\} = \{1, 2\}\), $M_l \in \text{MD}_{aS}(H_l)$ and $M_m \in \text{MD}_{aS}(H_m - x)$.
\[\gamma_a(H) = |M| = |M_l| + |M_m| \geq \gamma_a(H_l) + \gamma_a(H_m - x). \]
Now, Theorem 2.2 yields \[\gamma_a(H) \geq \gamma_a(H_1) + \gamma_a(H_2) - 1. \]

Case \(x \in M \) and \(M_j \in \text{MD}_aS(H_j), \ j = 1, 2 \): It follows that \(\gamma_a(H) = |M| = |M_l| + |M_2| - 1 \geq \gamma_a(H_1) + \gamma_a(H_2) - 1. \)

Case \(x \in M \) and there are \(l, m \) such that \(\{l, m\} = \{1, 2\}, M_l \in \text{MD}_aS(H_l) \) and \(M_m - \{x\} \in \text{MD}_aS(H_m): \) We have \(\gamma_a(H) = |M| = |M_l| + |M_m - \{x\}| \geq \gamma_a(H_1) + \gamma_a(H_m). \)

There are no other possibilities because of Theorem 1.1.

2: Let \(M \cap V(H_i) = M_i, i = 1, 2. \) From the proof of 1 we have that there are \(l, m \) such that \(\{l, m\} = \{1, 2\}, M_l \in \text{MD}_aS(H_l), M_m \in \text{MD}_aS(H_m - x), |M_l| = \gamma_a(H_l) \) and \(|M_m| = \gamma_a(H_m - x) = \gamma_a(H_m) - 1. \) Hence the result follows.

3: It follows from the proof of 1 that \(M \cap V(H_i) \in \text{MD}_aS(H_i) \) and \(|M \cap V(H_i)| = \gamma_a(H_i) \) for \(i = 1, 2. \) Hence \(M \cap V(H_i) \) is a \(\gamma_a \)-set of \(H_i, i = 1, 2. \)

4: Let \(M_j \) be a \(\gamma_a \)-set of \(H_j, j = 1, 2 \) and \(\{x\} = M_1 \cap M_2. \) It follows from Theorem 1.4 that \(M_1 \cup M_2 \in \text{MD}_aS(H). \) Hence \(\gamma_a(H) \leq |M_1 \cup M_2| = |M_l| + |M_2| - 1 = \gamma_a(H_1) + \gamma_a(H_2) - 1. \) Now from 1 we have that \(\gamma_a(H) = \gamma_a(H_1) + \gamma_a(H_2) - 1. \) Then \(|M_1 \cup M_2| = \gamma_a(H). \) Therefore \(M_1 \cup M_2 \) is a \(\gamma_a \)-set of \(H. \)

5: Suppose \(\gamma_a(H) = \gamma_a(H_1) + \gamma_a(H_2) - 1. \) If \(x \) is a \(\gamma_a \)-good vertex of \(H \) then by 2 there exists \(m \in \{1, 2\} \) such that \(\gamma_a(H_m - x) = \gamma_a(H_m) - 1. \) Hence by Theorem 2.2 \(x \) is a \(\gamma_a \)-good vertex of \(H_m \)—a contradiction. If \(x \) is a \(\gamma_a \)-good vertex of \(H, M \) is a \(\gamma_a \)-set of \(H \) and \(x \in M \) then by 3 we have \(M \cap V(H_s) \) is a \(\gamma_a \)-set of \(H_s, s = 1, 2. \)

But then \(x \) is a \(\gamma_a \)-good vertex of \(H_s, s = 1, 2, \) which is a contradiction.

Hence \(\gamma_a(H) \geq \gamma_a(H_1) + \gamma_a(H_2). \)

Let \(M_j \) be a \(\gamma_a \)-set of \(H_j, j = 1, 2 \) and \(M = M_1 \cup M_2. \)

Case there are \(l \in \{1, 2\} \) and \(u \in V(H_l) \) such that \(\{u\} = N(x, H_l) \cap M_l, M_l - \{u\} \in \text{MD}_aS(H_l - x) \) and \(M - \{u\} \in \text{MD}_aS(H). \) Let \(\{m\} = \{1, 2\} - \{l\}. \) Hence \(\gamma_a(H) \leq |M - \{u\}| = |M_l - \{u\}| + |M_m| = |M_l| - 1 + |M_m| = \gamma_a(H_1) + \gamma_a(H_2) - 1, \) which is a contradiction.

Case \(M \in \text{MD}_aS(H): \) Then \(\gamma_a(H_1) + \gamma_a(H_2) \leq \gamma_a(H) \leq |M| = |M_l| + |M_2| = \gamma_a(H_1) + \gamma_a(H_2). \) Hence \(\gamma_a(H) = \gamma_a(H_1) + \gamma_a(H_2) \) and then \(|M| = \gamma_a(H). \) Therefore \(M \) is a \(\gamma_a \)-set of \(H. \)

The result now follows because of Theorem 1.3.

Remark 2.4. In [1] Brigham, Chinn and Dutton obtained that, in the above notation, \(\gamma(H_1) + \gamma(H_2) \geq \gamma(H) \geq \gamma(H_1) + \gamma(H_2) - 1. \)

Observe that if \(m \) is a positive integer then there exists a graph \(H \) (in the above notation) such that \(m = \gamma_a(H) - \gamma_a(H_1) - \gamma_a(H_2). \) Indeed, let \(n \) and \(p \) be integers, \(m + 1 \leq n \leq p, V(H) = \{x, y, z; a_1, \ldots, a_{m+1}; b_1, \ldots, b_p; c_1, \ldots, c_p\}, E(H) = \{xy, xz, yz; xa_1, \ldots, xa_{m+1}; yb_1, \ldots, yb_p; zc_1, \ldots, zc_p\}, H_1 = \langle \{x; a_1, \ldots, a_{m+1}\}, H \rangle \)
and $H_2 = \langle \{x, y, z; b_1, \ldots, b_n; c_1, \ldots, c_p\}, H \rangle$. Then $\gamma_a(H) = 3 + m$, $\gamma_a(H_1) = 1$ and $\gamma_a(H_2) = 2$. Hence $m = \gamma_a(H) - \gamma_a(H_1) - \gamma_a(H_2)$.

Theorem 2.5. Let G be a connected graph with blocks G_1, G_2, \ldots, G_n. Then $\gamma_a(G) \geq \sum_{i=1}^{n} \gamma_a(G_i) - n + 1$.

Proof. We proceed by induction on the number of blocks n. The statement is immediate if $n = 1$. Let the blocks of G be $G_1, G_2, \ldots, G_n, G_{n+1}$ and without loss of generality let G_{n+1} contain only one cut-vertex of G. Hence Theorem 2.3 implies that $\gamma_a(G) \geq \gamma_a(G_{n+1}) + \gamma_a(Q) - 1$ where $Q = \left\langle \bigcup_{i=1}^{n} V(G_i), G \right\rangle$. The result now follows from the inductive hypothesis. \hfill \Box

References

Author’s address: Vladimir Samodivkin, Department of Mathematics, University of Architecture, Civil Engineering and Geodesy, Hristo Smirnenski 1 Blv., 1046 Sofia, Bulgaria, e-mail: vlsam_fte@uacg.bg.