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Abstract. In this note we consider the third order linear difference equations of neutral
type

(E) A%[z(n) = p(n)(o(n))] + dg(n)z(r(n)) = 0, n € N(no),

where § = £1, p,q: N(ng) — Ry; o,7: N(ng) — N, lim o(n) = lim 7(n) = co. We

n—oo n—oo
examine the following two cases:

{0<p(n) <1, on)=n+k, 7(n)=n+1},
{p(n) >1, o(n)=n—k, 7(n) =n—1},

where k, | are positive integers and we obtain sufficient conditions under which all solutions
of the above equations are oscillatory.
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1. INTRODUCTION

Consider the third order neutral difference equations
(E) A?[z(n) — p(n)z(a(n))] + dq(n)a(r(n)) =0, n € N(no),

where ¢ = 1, N(no) = {no,no + 1,...}, no is fixed in N = {1,2,...} and A is
the forward difference operator defined by Ax(n) = x(n + 1) — x(n), A*lz(n) =
A(Atz(n)) for i = 1,2,..., A%z(n) = x(n). For k € N we use the usual factorial
notation

nE=nn—-1)...(n—k+1) withn®=1.
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The following hypotheses are always assumed to hold:

(H1) p,q: N(no) — Ry;

(H2) o: N(ng) — N, o is strictly increasing and o (N (ng)) = N(n.) for some

ne € N

(H3) 7: N(no) — N, nliﬁr)noo 7(n) = oo.
By a solution of equation (E) we mean a real sequence which is defined for n >
g;no{r(z), o(i)} and which satisfies equation (E) for all n > ng. We consider only
such solutions which are nontrival for all large n. As usual a solution x of equation
(E) is called oscillatory if for any M > ng there exists n > M such that x, 2,41 < 0.
Otherwise it is called nonoscillatory.

In recent years there has been increasing interest in the study of the oscillation of

neutral difference equations. For example, the first order linear difference equation
of neutral type

A(yn +pnynfk) +qr7.yn7l = 0; n= 071727"'5

and its special cases, have been investigated in [5], [9]-[11] and the nonlinear case has
been considered in [6], [12], [14], [16], [17], [19], see also the monographs of Agarwal
[1] and Agarwal, Grace and O’Regan [2]. Compared to the study of first order neutral
type difference equations, the study of higher order equations, and in particular third
order neutral difference equations, has received considerably less attention (see, for
example [7], [13], [15], [20], and the references contained therein). The purpose of
this paper is to obtain sufficient conditions for oscillation of all solutions of equations
(E). The results in this paper have been motivated by results in [3], [4]. Observe
that a similar problem has been investigated for a third order differential equation
in [8], and in [15] for the third order difference equation

A(en A(dnA(Yn + PrYn—k))) + nf (Yn—m) = en

where 0 < p, < 1,¢q, > 0.

2. SOME BASIC LEMMAS
To prove our results we need the following lemmas which can be found in [12].
Lemma 1. Suppose that the conditions (H1), (H2) and

0<pn)<1l formn>=ng
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hold. Let x be a nonoscillatory solution of the inequality
z(n)[z(n) — p(n)z(o(n))] <0

defined in a neighbourhood of the infinity.
(i) Suppose that o(n) < n, for n > ng. Then x is bounded. If, moreover,

(1) 0<pn)<A<l1 for n > ng

for some positive constant A, then lim z(n)=0.
n—-aoo

(ii) Suppose that o(n) > n for n = ng. Then z is bounded away from zero. If,

moreover, (1) holds, then nhjlm |z(n)| = .
Lemma 2. Suppose that conditions (H1), (H2) and
p(n) = 1 for n > ng
hold. Let x be a nonoscillatory solution of the inequality
s(m[a(n) — p(n)a(o(m)] > 0

defined in a neighbourhood of the infinity.
(i) Suppose that o(n) > n for n > ng. Then x is bounded. If, moreover,

(2) 1 < v < p(n) for n = ny,

for some positive constant v, then lim z(n) = 0.
n—-mao0o

(ii) Suppose that o(n) < n for n = ng. Then z is bounded away from zero. If,

moreover (2) holds, then lim |xz(n)| = oco.
n——-aoo
The next lemma can be found in [1], [14].
Lemma 3. Assume g is a positive real sequence and m is a positive integer. If
n+m—1

m—+1
timinf 3 o) > (0)

then
(i) the difference inequality

Au(n) — g(n)u(n +m) =0
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has no eventually positive solution,
(ii) the difference inequality

Au(n) — g(n)u(n +m) <0

has no eventually negative solution.

3. MAIN RESULTS

In this section we establish oscillation theorems for equations (E). We begin by
classifying all possible nonoscillatory solutions of equations (E) on the basis of a well
known lemma of Kiguradze [18] (also see [1, Theorem 1.8.11]).

Lemma 4. Let y be a sequence of real numbers and let y(n) and A™y(n) be of
constant sign with A™y(n) not eventually identically zero. If

3) dy(n)A™y(n) <0,
then there exist integers | € {0,1,...,m} and N > 0 such that (—1)™*!=1§ = 1 and

y(n)Aly(n) >0 forj=0,1,...,1,

(4) » : o
(=1 y(n)Aly(n) >0 forj=1+1,...,m,

forn > N.

A sequence y satisfying (4) is called a Kiguradze sequence of degree .
Let = be a nonoscillatory solution of equation (E) and let

(5) u(n) = z(n) — p(n)z(a(n)), n e N(no).

It is clear that u is eventually of one sign, so that either

(6) z(n)z(n) — p(n)z(a(n))] >0
(7) z(n)z(n) — p(n)z(o(n))] <0

for all sufficiently large n.
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Let N;* [or A;7] denote the set of solutions z of equation (E) satisfying (6) [or
(7)] for which u(n) = z(n) — p(n)x(c(n)) is of degree I. Then we have the following
classification of the set A/ of all nonoscillatory solutions of equation (E):

N =N"UNSUN; UNy  for 6§ = —1;

8
®) N =N UNSUNT UN; ford=1.

In addition to the hypothesis (H1)-(H3), we assume that p, 0 and 7 are subject to
one of the following two cases:

I 0<pn)<1l,on)=n+k, 7(n)=n+l,

(II) p(n) >1,0(n)=n—k, 7(n) =n—1,
where k, [ are positive integers. For simplicity, equation (E) subject to the case (I)
or (II) will be referred to as equation

(ED) A (z(n) = p(n)z(n + k)) — q(n)a(n +1) =0, n € N(ng),
(EIT) A3(z(n) — p(n)z(n — k) + q(n)z(n —1) =0, n € N(ng).

Theorem 1. Let k+2>1> 3. If

n—3
(9) lim sup Z (n—i—1)2% q(i)>2,
(10) > dali) = oo,
i:no
. S q(i)
(11) lim sup n2 Z —— > 2,
PO et k—l41 pli—k+1)
and
n+l—1 a(i)
- . . [\t
(12) lim inf Z Z G-+ 0a6) > ()

for some a: N — N such that a(n) > n, then all solutions of equation (EI) are

oscillatory:.

Proof. Assume, aiming at contradiction, that = is an eventually positive solu-
tion of equation (EI). Then there exists an integer ni > ng, such that x(n) > 0 for
all n > ny. By (8), there are four cases to consider:
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n) > 0, Adu(n) >0

n) < 0, Au(n) >0
) (n) >0
) (n)

n)>0

u(n) > 0, Au(n) > 0, A?u(
(n) <0, Au(n) < 0, A2u(
u(n) <0, Au(n) >0, A2%u(n) < 0, Ay
u(n) > 0, Au(n) > 0, A?u(n) < 0, Adu
eventually.

Case (A-I). Let us take no > n; so large that

u(n) >0, Au(n)>0, A%u(n)>0, A’u(n)>0, forn >ns.
Equation (EI) can be written in the form
(13) A3u(n) = g(n)z(n +1).

From discrete Taylor’s formula (see [1, Theorem 1.8.5]), we have

n—3

(14)  um) =Y WAi[u(ng)] + % 3 (n—j - 12A%(), n>mno.

i=0 j=na

Therefore, we obtain

[\DI»—l

Ejn J—1)2A%(j)

and by (13), we have

%_Z n 3~ 12lg(i)e( + D)

By (5)
z(n) = u(n) + p(n)z(n + k) = u(n)
Therefore
1 "= 1 n—3
5271 F=D3Ha(G)u(G+1)] 52 n—j—1)*q(j)u(j+1)] for n >
j=n Jj=n—I
Since u is increasing, one can see that
1 n—3
5 Z n—j—1)%(j).
j=n—1
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Dividing both sides of the above inequality by u(n) we obtain

= n,],l q(7),

l\.’))—‘

for all large n, which is a contradiction to (9).
Case (B-I). Let us take n3 > ny so large that

u(n) <0, Au(n) <0, A%u(n)<0, A%u(n)>0 forn >ns.

Summing both sides of (13) from n to s — 1 we obtain

s—1
A?u(s) Zq (i +1).
Since A?u(n) < 0, letting s — co we get
(15) N Zq (i +1).
Because
un—k+l)=z(n—k+1)—pn—-k+1z(n+1),
we have ( ) ( E )
u(n —k+1 rx(n—Fk+
= - l
pn—k+D) ~p—krn D
and
(16) (n+1) > ————uln — h+)
z(n > ——u(n-— .
p(n—k+1)
Substituting (16) into (15), we obtain
A2 q(i)u(i —k + l)
(17) A%y Z i ErD)

Now, we consider the identity

n—1

(18) Y iAPu(i) = nA%u(n) - NA*u(N) = Au(n+ 1)+ Au(N +1), N € N(np).

i=N
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From (13) we have

i iA3u(i) = . - iq(t)x(i +1).

Hence, by (16), we obtain

and then
S
nA%u(n) — NAu(N) = Au(n+ 1) + Au(N +1) > = S i— D y(i — k+1).
N
From the above inequalities we get

Au(n +1) — nA%u(n) + NA?u(N) <

and using (10) and letting n — oo, we have

lim [Au(n+1) — nA%u(n) + NA*u(N)] < i iq(Du(i —k+1)

e i=N
< u(N—k:—i—l)iiq(z) =—00
i=N
Therefore
(19) lim [Au(n + 1) — nA%u(n)] = —cc.
Thus
(20) Au(n + 1) < nA2%u(n)

for sufficiently large n. Since

|
-

n

[Au(i +1) — iA*u(i)] = 2u(n + 1) — nAu(n) — 2u(N + 1) + NAu(N),

i
=
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from (19), we obtain
n—1

lim [2u(n + 1) — nAu(n)] = lim Z [Au(i 4 1) — iA2u(i)] = —oo.

n—oo n—oo

Thus 1
un+1) < §nAu(n)

and, by (20) and (17), we get

1 _ 1 q(u(i —k+1)
1) < =nZ2A%u(n — 1) n2
u(n+1) < 5 u(n lgl o=kt D)
1 —  q()u(i—k+1) 2 = q(i)
< =n2 Z < nw(n +1) Z
2 i=n+k—Il+1 (Z —k + l) 2 i=n+k—I1+1 (Z —k + l)
Hence
— q(d)
P (U
i=ntk—l+1 pli—k+1)

which contradicts (11).
Case (C-I) Let us take ng > n; so large that

u(n) <0, Au(n) >0, A%u(n)<0, A%u(n)>0 forn >ny.

From the equality (cf. [1], Problem 1.9.35 p. 43)

Yyl +(Z.i_7:)!* D= pus)
(21) = i
) e 3 =0+ — = )PAG),

where ny <n < s,0 < v <m—1, with regard to equation (EI) for v =1 and m = 3,
we get

2

(22) Au(n) = Z(,l)(i—m (s —n+i—2)=L

Auls) + 3G~ n+ Daiats +1)

p (i—1)! =
for ngy <n <s.
Therefore, we have
s—1
Au(n) = Z(] —n+1)q(j)x(j +1), forn >=ny.
j=n
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Since u(n) < 0, from Lemma 1(ii), it follows that x is bounded away from zero, so
there exists a constant ¢ > 0 such that z(n) > ¢, for n = ns > ny.
Hence, from the above inequality we get

s—1
Au(n) = CZ (j—n+1)q(j) forn=mns.
j=n

Then .
Au(ng) > ¢ > (i —ns + 1)q(j).

i=ns
Letting s — oo, we get a contradiction with (10).
Case (D-I). Let us take ng > n; so large that

u(n) >0, Au(n) >0, A%u(n)<0, A’u(n)>0 forn > ne.

From (22), we have

s—1

Au(n) = Au(s) = (s = n)A%(s) + Y (j = n+ 1)g(j)z(j +1)-

j=n
Since x(n) > u(n) we have

s—1
Au(n) > (j—n+1Dg(ju(j+1) for all s > n.
J

n

Thus
a(n) a(n)
Au(n) > Y7 (G =n+DaG)u +1) Zuln+0) 3 (= n+1)g()

for every a: N — N such that a(n) > n. Hence
a(n)
Au(n) —u(n +1) Z (j—n+1)q(j) = 0.

j=n

By Lemma 3, with regard to (12) the last inequality can not have an eventually
positive solution, which is a contradiction. This completes the proof. O
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Theorem 2. Let k > 1+ 3. If

_q@)

(23) lim sup n—i—1)=2 > 2,

n—o0 17;+l (Z+k—l)
(24) > iqli) = oo,

i:n()
(25) lim sup n? Z q(i) > 2,
nee i=n4l+1

and

n+k—I1—1 o(i)

(j—i+1)q(y) k—1 k-1

2 lim inf ( )
(26) minf >, D, Gt k—-0) ~ \k—i+1

i=n j=t

for some a: N — N such that a(n) > n, then all solutions of equation (EII) are

oscillatory:.

Proof. Assume, aiming at contradiction, that x is an eventually positive solu-
tion of equation (EII). Then, there exists an integer n; > ng, such that z(n —1) > 0
for all n > n;. By (8)

(A-IT) u(n) < 0, Au(n) < 0, A%u(n) < 0, Adu(n) <0,

(B-1I) u(n) > 0, Au(n) > 0, A?u(n) >0, Adu(n) <0

(C-II) u(n) > 0, Au(n) < 0, A%u(n) > 0, Adu(n) <0
(D-11) u(n) < 0, Au(n) < 0, A?u(n) > 0, Adu(n)
eventually.

Case (A-II). Let us take ny > n; so large that

, there are four cases to consider:

n) <0

u(n) <0, Au(n) <0, A%u(n)<0, A’u(n)<0 forn >ns.

From (14), we have

i (n— j— 1)2A%().

MI»—

and hence

(27) in—y—lz el ~ D).

l\:>|>—A

From (5), for o(n) = n — k, we obtain

u(n) > —p(n)xz(n — k).
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Hence

and

p(n+k—1)
Using the above inequality in (27), we get
n—3
1 q()uli +k—1)
_ > = _ 2
u(n) 2;;2(" U A P

j=n—k+1 PG +k=1D)
Therefore
1 nig q(5)
125 (n—j—1)? ——,
2 T (g +k—1)

which contradicts (23).
Case (B-II). Let us take n3 > ng so large that

u(n) >0, Au(n) >0, A%u(n)>0, A%u(n)<0 forn >ns.

Summing equation (EII) from n to oo, we get

A?u(n) > Zq(z)x(z =1)
Since x(n — 1) = u(n — 1), we have
A?u(n) > Zq(z)u(z —1).

From the identity (18) and (EII), we get

- i iq(i)x(i — 1) = nA%u(n) — NA%u(N) — Au(n + 1) + Au(N + 1),
=N
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and thus

"z_: iq(i)u(i — 1) < —nA2u(n) + NA%u(N) + Au(n +1).
i=N

Since u is an increasing sequence, it follows from (24) that

lim [Au(n + 1) — nA%u(n)] = oco.

n—oo

Thus
Au(n +1) = nA%u(n) for n > N > no,

where N is sufficienly large. Then, similarly as in the proof of Theorem 1, case (B-I),

we get
1, = )
u(n+1) > §n—u(n +1) | Z q(2).
i=n+Il+1
Hence
2>n? Z q(2),
i=n+Il+1

which contradicts (24).
Case (C-II). For n > n; we have

u(n) >0, Au(n) <0, A%u(n)>0, A%u(n)<O0.
From Lemma 2(ii), it follows that x is bounded away from zero. So, there exists
¢ > 0, such that z(n) > ¢ for n > n3 > n;. From equality (21), with regard to

equation (EII), for v = 1 and using

Au(n) = —q(n)a(n — 1),

we get
29 Bu() < = 3G~ + Da(i)e( - D,

for s > n > ng + 1 = ng. Therefore, we have

Au(ng) < —c z_: (5 —na+ 1)g(y),

j=na
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hence

Rl i (7 = na+1)a()-

Letting s — oo, we get a contradiction with (24).
Case (D-II). Let us take ns > ny so large that

u(n) <0, Au(n) <0, A%u(n)>0, A%u(n)<0 forn >ns.
From (28) and using

d(m)z(n — 1) > —gn)u(n+k—1)

pln+k—1) ~
we get
Sy g(j)uli+k—1)
Au(n) < ;(J -n+ 1)W
Then
a(n) 3 i
B N ()R )
Au(n) L;(J R sy e o ] <0,

for any a: N — N such that «(n) > n, and since u is decreasing

Au(m_u<n+k_l>[“(f(j_n+1)L] <0
=~ p(i+k—1)] =

By Lemma 3(ii) with regard to (26) the last inequality cannot have an eventually
negative solution, which is a contradiction. This completes this proof. ]

Remark 1. It is easy to extend the above results to nonlinear equations of the

form

A’lw(n) — p(n)z(o(n))] + dg(n) f(x((n))) =0, n € N(no),

where f is a real valued function satisfying x f(x) > 0 for 2 # 0, under the condition
that there exists a constant B > 0 such that |f(z)| > B|z| for all z.
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