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Abstract. A generalization of Nevanlinna’s First Fundamental Theorem to superharmonic
functions on Green balls is proved. This enables us to generalize many other theorems,
on the behaviour of mean values of superharmonic functions over Green spheres, on the
Hausdorff measures of certain sets, on the Riesz measures of superharmonic functions, and
on differences of positive superharmonic functions.
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1. INTRODUCTION

Nevanlinna’s First Fundamental Theorem is concerned with superharmonic func-
tions on balls, and has applications to superharmonic functions on R™ and §-
subharmonic functions on balls [5], [6]. Here we prove a generalization to superhar-
monic functions on Green balls, which are sets of the form

BD(LL'O,T) = {y € D: GD(J’.an) > T(T)},

where D is a Dirichlet regular Greenian open set, Gp is its Green function, 7(r) =
—logrifn=2,7(r) =r?"ifn >3,and0 <r < 1ifn=2,0<r < coifn > 3. Any
Green ball Bp(zg,r) is a bounded domain with its closure in D [11], and is Dirichlet
regular. Our result involves the mean values of superharmonic functions over Green
spheres, introduced in [11]. Easy corollaries generalize results of Armitage [2], Kuran
[7], and Parker [8].

The theorem leads to generalizations of several other results, including some on
the behaviour of quotients of differences of mean values of §-subharmonic functions

1



in [14], on the size of the sets where certain singularities occur in [13], on conditions
for a positive measure to be the Riesz measure for a superharmonic function with a
harmonic minorant in [6] p. 128, and on conditions for a d-subharmonic function to
be expressible as a difference of two positive superharmonic functions in [5] p.510.
Our results are analogues of theorems on supertemperatures given in [15].

We note that Armitage [1] has given a Nevanlinna theorem for superharmonic
functions on half-spaces, but his approach is not related to ours.

For all z,y € R", we put G(z,y) = 7(||]x — y||) and

Bz, r) ={y: Gla,y) > 7(r)} = {y: llz —yll <r}

for all 7 > 0. We also put p,, = max{1,n — 2}, and note that 7/(r) = —p,r'=" for
all n > 2.

For almost every r such that 7(r) > 0, the set {y € D: Gp(zo,y) = 7(r)} is a
smooth regular (n — 1)-dimensional manifold. Such a value of r is called regular. If r
is a regular value, then the set is the Green sphere 0Bp(xg, ), and the surface mean
value Lp of a function u is defined by

1
/ IVGp(zo, )lludo
pnon OBp (I[),T)

whenever the integral exists. Here o,, denotes the surface area of the unit ball in R™,

LD(U, Zo, T) =

and o denotes surface area measure. If Gp is replaced by G, then the formula for
Lp(u,zg,r) reduces to the standard formula for the mean value of u over the sphere
0B(xq,r), which we denote by L(u,xq,T).

2. THE GENERALIZATION OF NEVANLINNA’S FIRST FUNDAMENTAL THEOREM

In this section we present our generalization of formula (3.9.6) in [6]. We also
present some immediate consequences, which generalize, and to some extent unify,
results of Armitage [2], Kuran [7] and Parker [8].

Theorem 1. Let E be an open set, let D be a Dirichlet regular Greenian open
superset of E, let xq € E, and let r and s be regular values such that 0 < r < s and
Bp(wg,s) C E. If u is superharmonic on E with Riesz measure i, then

(1) Lp(u,z0,7) = Lp(u,xo, s) +Pn/ t"" (B p(xo,t)) dt
and
@) w(@o) = L (u, 0, 5) + pr / 1" (B (z0,1)) dt.
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Proof. Let V be a bounded open set such that ED(:EO,S) CVand V CE.
Then there is a harmonic function A such that

u=Gpuy +h

on V. Recall that, by [11] Theorem 1, the means Lp are finite-valued and
Lp(h,xg,7) = h(xg). It follows that
Lp(u,zo,7) — Lp(u,x0,) = Lp(Gppv,zo,7) — Lp(Gppv, xo, s)
= / (LD(GD(',Q),QEO,T) _LD(GD(’y)a‘rO?S))dM(y)
v

- /V (G (w0, 5) AT(r)) — (Gp(z0,9) A 7(5))) dpa(y)

by [12] Theorem 2. By definition of Bp(xg,r), we have Gp(xo,y) A 7(r) = 7(r) if
and only if y € Bp(w,r). Therefore

(Gp(z0,y) AT(1)) — (Gp(T0,y) A T(8)) _
7(r) —7(s) if y € Bp(xo,T),
=< Gp(xo,y) —1(s) if y € Bp(zo,s)\ Bp(zo,r),
0 ify¢§[)($0,8).

Hence

Lp(u,x0,7) = Lp(u, 70, 5) = / ((Gp(xo,y) A7(r)) —7(s)) dp(y)-

Bp(xo,s)

If we now put A(t) = u(Bp(wo,t)) whenever 0 < t < s, we obtain

Lp(u,xo,7) — Lp(u,zg,s) = o ]((T(t) AT(r)) —7(s)) dA(t)
= (7(r) = 7(s))AM0) + ((r(t) A7(r)) — 7())AD)[5+
— [ T(®)A)dt

This proves (1). Making r — 0 in (1), we obtain (2). O

Remarks. The formula (2) is a direct extension of Nevanlinna’s first fundamen-
tal theorem ([6] p.127). If n = 2, consider the case E = D = B(0,r9) and zo = 0.
Then, whenever 0 < r < 1, we have

Bp(xo,7) = {x € B(0,70): GB(0,r0)(0,2) > 7(r)} = B(0,770)



and

LDuhxmr>=n;{/ VG 0,00y (0, )|l
9Bp(0,r)

1
= mgl/ —udo = L(u, 0, 7r0),
9B(0,rro) ||IH

so that (2) becomes

s STo
u(0) = L(u, 0, sro)—i—pn/ t~tu(B(0,tro)) dt = L(u, 0, sro)—i—pn/ t~tu(B(0,t)) dt

0 0
for 0 < s < 1. On the other hand, if n > 3 we can take £ = B(0,7¢), xo = 0, and
D = R™. Then, whenever 0 < r < co, we have Bp(zg,r) = B(0,r) and

Lp(u,xzg,r) :ngl/ (2fn)||9:||17"uda:L(u,(),r)7
oB(0,r)

so that we can obtain the classical formula from (2) by removing the subscripts D.

Similarly, formula (1) extends a variant of the classical result given, for example,
in [2] Lemma 3.
If we put

Np(an.s) =pu [ 7 u(Bieo.t)
0

then Np(zo,-) is obviously increasing, and a standard argument ([6] p. 127) shows
that there is a convex function ¢ such that Np(zg, ) =@ o .

We now give three corollaries of Theorem 1, all of which are extensions of known
results. Theorem 3 (iv), (v) of [11] imply that the surface means can be replaced by

the corresponding volume means in the first two corollaries.

Corollary 1. Let E be an open set, let D be a Dirichlet regular Greenian open
superset of E, and let xog € E. If u is superharmonic on E with Riesz measure u,
then as r — 0 through regular values

LD(U, £, ’I’)

(3) lim 0

= n({zo}):

Proof. Given ¢ > 0, choose § > 0 such that |u(Bp(wo,t)) — p({zo})| < € for
all t < 0. Fix a regular value of s < d. Then, whenever r is a regular value and r < s,
we have

(4) LD(U,fEO,T') = LD(UH:E07 S) +p’ﬂ/ tl_nM(ED(w()at)) dt



by (1). Since s < §, as r — 0 we have

(n({zo}) +e)(7(r) = 7(s))
7(r)

Pn /S =" u(Bp(zo,t))dt < — pu({zo}) +e,

7(r)

so that
lim sup Pn_ / t' " u(Bp(wo,t)) dt < p({mo}) +&.

7(r)

Similarly

limn i sz:) / O u(Bp(ao, ) dt > p({ao}) - <,

so that the corresponding limit exists and is pu({zo}). The result (3) now follows from

(4). O

The cases D = R™ with n > 3, and D a ball centred at x¢ with n = 2, of Corollary 1
were proved by Parker ([8] Lemma). Earlier, Armitage ([2] Lemma 3 Corollary 1)
had proved (for the same cases) that if either side of (3) is zero then so is the other,
and Kuran ([7] Theorem 2) had proved that if u(xg) = 0 then pu({zo}) = 0.

Corollary 2. Let D be a Dirichlet regular Greenian open set, let xo € D, and let
u be superharmonic with Riesz measure p on D. If uw > 0, then

(5) 7(r)p(Bp(zo,7)) < Lp(u,xo,7)

for all regular values of r.

Proof. Letr and s be regular values such that r < s. Put R=1if n = 2, and
R=o00ifn>3. Then 0 < r < s < R, so that by (1)

Lo(u,20,7) > p / " (B (o, 1)) dt

R —
> w(Bp(zo,7))pn / £=7 dt = u(Bp (a0, 7)) (r).

O

Remarks. The special case of Corollary 2 in which D = R and n > 3, was
proved earlier by Kuran ([7] Theorem 4) and Armitage ([2] Lemma 3 Corollary 2).
The proof given above follows that of Armitage.



The case where D = B(0, g9) and n = 2 of Corollary 2, implies the second in-
equality of [7] Theorem 4. For then, taking 2o = 0, we have Bp(zo,r) = B(0,700),
and Lp(u,xg,7) = L(u,0,700), so that (5) becomes

(108 %) (B0, r00)) < L(u, 0, 70)

whenever 0 < r < 1. If we now put ¢ = rgp, and confine r to 0, [ for some 6 < 1,
we get

u(B0,0) < (o) L(w0.0) < (log3)  L(u,0,0)

which is (13) of [7].

Corollary 3. Let D be a Dirichlet regular Greenian open set, and let u be
superharmonic with Riesz measure p on D. Put R =1 ifn = 2, and R = oo if
n > 3. If u > 0, then

lim ()u(Bp(z, ) = 0

for all x € D.

Proof. The greatest harmonic minorant h of u is given by
h(z) = li%LD(u,x,r)

for all z € D, in view of [11] Theorem 1 and [3] p.123, (11.1). Since p is the Riesz
measure for v — h, it therefore follows from Corollary 2 above and [11] Theorem 1
that

7(r)u(Bp(x,r)) < Lp(u— h,x,r) = Lp(u,x,r) — h(z) — 0

as r — R through regular values. Therefore, given ¢ > 0 we can find K such that
w(Bp(z,7)) < e/7(r) for all regular values of r > K, and hence for every r > K
because 1/7 is continuous and u(Bp(z,-)) is an increasing function. O

The case where D = R™ and n > 3 of Corollary 3 was first proved by Kuran [7]
Theorem 1.



3. THE BEHAVIOUR OF THE MEANS FOR SMALL REGULAR VALUES

Theorem 2 below generalizes part of [14] Theorem 2, which dealt only with the
classical spherical means.

We need some notation. Let E be an open set, and let D be a Dirichlet regular
Greenian open superset of E. If Bp(xg,s) C F,v is a positive measure on E, and
0 <r<s, weput

I, p(zo;7,s) :Pn/ t'"""v(Bp(wo,t))dt.

Theorem 2. Let E be an open set, let D be a Dirichlet regular Greenian open
superset of E, let u be §-subharmonic on E with Riesz measure i, and let v be a
positive measure on I£. Then

lim sup Lp(u,2,r) — Lp(u, z,5) < limsup 7M(§D(x’t))

0<r<s—0 IV,D(fE;Ta 5) t—0 V(BD($7t))

whenever the latter exists. Furthermore, if u(z) is defined and finite, and I, p(;
0,s) < oo for all sufficiently small values of s, then

. u(z) — Lp(u,z,5) _ .
lim su < limsu
saop I, p(z;0,s) tﬁOp v(

(z,1))

(z,1))

Proof. The proof of the first inequality is similar to the proof of the first part

D
D

of [14] Theorem 2. The proof of the second part is similar again, using (2) instead
of (1). O

Theorem 2 can easily be rewritten in a form that generalizes [14] Theorem 6.

Theorem 3. Let E be an open set, and let D be a Dirichlet regular Greenian
open superset of E. Let u be d-subharmonic with Riesz measure u, and let v be
superharmonic with Riesz measure v, on E. Then
#(Bp(z,t))

lim su < limsup ————%
0<7‘<S—1?0 LD(U,I,’I’) 7LD(U7‘T75) t_’Op V(BD(:E7t))

Lp(u,z,r) — Lp(u,x,s)

whenever the latter exists. Furthermore, if u(z) is defined and finite, and v(x) < oo,

then _
—L B t
lim sup U(I) D(U,.’,E,S) < limsup M(_D(I, ))
s—0 v(x) — Lp(v,z,s) t—o0  v(Bp(z,t))

Proof. In view of Theorem 1 and the finiteness of the means ([11] Theorem 1),
the result follows from Theorem 2. g

We can also generalize [14] Theorem 5, as follows.



Theorem 4. Let E be an open set, let D be a Dirichlet regular Greenian open
superset of E, and let u be §-subharmonic with Riesz measure u on E. Let a > 0,
let f be a positive, increasing, absolutely continuous function on [0, o], and let

f(r, s) = pn/ tl_”f(t) dt
whenever 0 < r < s < «. Then

Bp(z,t
lim sup - < lim sup M
0<r<s—0 f(’l’, S) t—0 f(t)

for all x in E. Furthermore, if u(z) is defined and finite, and f(0,s) < oo for all
sufficiently small values of s, then

—L B t
thU.p U(I) D(U,.’,E,S) < thU.p :u( D(I, ))

s—0 £(0,s) t—0 f)

Proof. Given x, we choose o < a such that Bp(z, 0) C E, and define a positive
measure v on F by putting

@ = 19 G ()P (5) 7@ )Xo .0 A+ £(0) a5

where 71 denotes the inverse function of 7, x4 denotes the characteristic function
of a set A, A denotes n-dimensional Lebesgue measure, and J,, denotes the unit mass
at . If 0 <t < p, it follows from results in [11] pp. 309310 that

WBoe.t) =" [ - IVGo (e )2 (L) e Gote ) ar+ 1)

—t | t ( / o VG ) da) ar + £(0)

t
:/ Lo(L,z,7)f () dr + £(0 / £y dr+ £(0) = £(2).
0
Therefore, whenever 0 < r < s < p,
Loirs) =pn [ ) de = f(r, )

The results now follow from Theorem 2. O

The corollaries of [14] Theorem 5 can now easily be generalized. We leave this to
the reader.



4. THE HAUSDORFF MEASURE OF CERTAIN SETS

We use Theorem 4 to study the size of the set of points z where

— Lp(u,z,s)
(r,s)

is unbounded, or is positive, for a given function f and superharmonic function w.

lim sup
0<r<s—0

Lp(u,z,7)
f

The size is estimated in terms of Hausdorff measures [9]. Our results generalize
theorems of Armitage [2] and Watson [13] in two directions, namely the mean values
considered and the Hausdorff measures used.

Theorem 5. Letn > 3, let E be an open set, let D be a Dirichlet regular Greenian
open superset of E, and let v be superharmonic on E. Let h be an increasing,
absolutely continuous function on [0, oo[ such that h(0) = 0 and h(2s) < Kh(s) for
all s > 0, where K is a constant. Put

h(r,s) = pn/ tH"h(t) dt.

Then the set

(6) {IGE: lim sup Lp(w,r) = Lp(u, @, 5) :oo}
0<r<s—0 h(T, S)

has h-measure zero, and

(7) {:17 € E: limsup Lp(u,z,r) = Lp(w,, ) > O}
0<r<s—0 h(r, s)

is o-finite with respect to h-measure.

Proof. Let p denote the Riesz measure for u. It suffices to prove the results lo-
cally, and we may therefore suppose that E is bounded and p is finite. By Theorem 4,
the set (6) is a subset of

- p(Bp(z,t)) _
(8) {er. 111:1_%1p#—00},

and the set (7) is contained in

T N(ED(xvt))
©)) {!EEE. lll:ljélpT>O}.



Since n > 3, Gp(x,y) < ||lx — y||*> ™ for all z,y € D, so that Bp(z,t) C B(xz,t) for
all t > 0. Therefore Bp(x,t) is contained in a closed interval I(z, s) of centre z and
edge length s = 2r, which is contained in F if r is sufficiently small. It follows that
the set (8) is a subset of

T p(x,s)) _
(10) {xEE. 111;1_5)ng —oo},

and that the set (9) is a subset of

o p(z,s))
(11) {IGE. hriljélpm >O}.

If i is chosen so that 2¢~! > \/n, then
h(s/2) = K~'h(2""ts) > K 'h(sv/n) = K *h(diam I (z, s)).
Therefore the sets (10) and (11) are contained in the sets

S:{xEE: limsupmzoo}

s—0 h(sy/n)
and

1 p(I(z,s))
T= {;E e E: 111?5ng > 0}

respectively. By a result of Rogers and Taylor ([10], Lemma 2), for each & > 0 the
set

Sk = {IEE: 111?53p% >k}

has h-measure h — m(Sx) < Mu(FE)/k for some constant M. It follows that
h—m(S) =0, and that T is o-finite with respect to h-measure. This implies
the results of the theorem. ]

Corollary 1. Let n > 3, and let E, D, h and h be as in Theorem 5. If u is
d-subharmonic on E, and fz(O, a) = oo for some «, then the set

L
{SE S 1imsupM = oo}
s—0 h(S,CY)

has h-measure zero, and

L
{x ekl limsupw > 0}

s—0 h(S, Oé)

is o-finite with respect to h-measure.
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Proof. Let pu denote the Riesz measure of u. It is enough to prove the result
locally, and so we may suppose that E is bounded (and hence Greenian) and that
1 has finite total variation. Since Gpu < Gg|p|, we may also suppose that p is
positive (so that u is superharmonic). Using the method of proof of [14] Theorem 5
Corollary 1, we can now show that

L L _ L
limsupw < limsup D(U,.”L',T) D(U,I,S),
5—0 h(s,a) 0<r<s—0 h(r, s)
and so the result follows from Theorem 5. O

In the next result, we denote by mg the h-measure constructed from the function
h(s) = s, where 3 > 0.

Corollary 2. Let n > 3, and let E, D and u be as in Corollary 1. Then the set
Sg, defined by

Sg = {x € E: limsups" P 2Lp(u,z,5) = oo}

s—0

if 0 < f <n—2, and by

Sp = {x € E: limsup (log %)71LD(U,$,S) = oo}

s—0

if B =n — 2, has mg-measure zero. Furthermore, the set T3 given by

Ts = {:17 € E: limsups" ?2Lp(u,z,s) > 0}

s—0

if0 < 8 <n—2, and by

1y -1
Ts = {x € E: limsup (log —) Lp(u,x,s) > 0}
s—0 S
if f =n — 2, is o-finite with respect to mg.
Proof. If we take h(s) = 5%, 0 < 8 < n —2, in Corollary 1, then fz(O,a) = o0

so that the corollary is applicable. Furthermore,

hoa) = | Fopma T M) f0<Bn -2
pn log(a/s) if 6=n-2.
The result follows. 0
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The case of Corollary 2 in which D = R™, u is superharmonic, and 0 < 8 < n — 2,
was proved by Armitage in [2] Theorem 3. The case D = R™ was subsequently proved
by Watson in [13] Theorem 16 (in the statement of which |u| should be replaced by ).

In Theorem 5 Corollary 1, the condition on h ensures that Lp(u,x,8) — oo as
s — 0, for every x in either of the sets in question. Therefore the sets are polar. In
the theorem itself, polarity is not so readily determined, and in fact depends on h.
We demonstrate this in the context of the next corollary.

Corollary 3. Let n > 3, and let E, D and u be as in Theorem 5.
(i) If 0 < 8 < n — 2, then the set

LD(U,fE,T) —LD(U,LL',S) _ OO}

{x € E: limsup —(n—2-0) _ g-(n—2-p)

0<r<s—0 T

has mg-measure zero, and

LD(U,ZU,T) - LD(uvaS) > O}

{:17 € E: limsup —(1—2-8) _ g—(n—2-5)

0<r<s—0 T

is o-finite with respect to mg.
(ii) The set

L — L
{IGEI lim sup p(u, ,7) D(u, 7, 5) :oo}
0<r<s—0 1Og(S/T)

has m,,_o-measure zero, and

L L
{!E ck: hmsup D(U,.T,T) D(U,IE,S) S O}
0<r<s—0 10g(5/7’)

is o-finite with respect to m.,,_o.
(iii) If n — 2 < B < n, then the set

Lp(u,z,r) — Lp(u,x,5) oo}

{SEGEZ lim sup TS —— e —

0<r<s—0

has mg-measure zero, and

LD(U,ZU,T) - LD(uvaS) > O}

{;17 € E: limsup sB+t2—n _ pBi2—n

0<r<s—0

is o-finite with respect to mg.

Proof. Take h(s) =350 < 3 < n, in Theorem 5. O
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Sets of finite m,,_o-measure are polar ([4] p. 78, or [6] p. 228). Therefore the sets in
Corollary 3 (i) and (ii) are all polar. The sets in (iii), however, need not be. Given 3
such that n—2 < 3 < n, choose v such that n —2 < vy < . If §'is an m.-measurable
set for which 0 < m,(S) < oo, and p is the restriction to S of m., then by [4] p.25

we have B
t
limsup “BED) S
t—0 ty
p-a.e.on S. Therefore
B(z,t
imsup ABED) _
t—0 tﬁ

for all x € Sp, say, where p(S\ Sp) = 0. It follows from Theorem 4 that

lim su L(u,:z:,r)fL(u,g:,s) = 50
0<r<s—I:»)0 sht2—n _ pft2—mn

for all = € Sp. Since m(Sp) > 0 and v > n — 2, the set Sy is not polar ([4] p. 78, or
[6] p.225), and so the sets in Corollary 3 (iii) are not polar.

5. THE RIESZ MEASURES OF SUPERHARMONIC FUNCTIONS ON
DIRICHLET REGULAR GREENIAN SETS

In this section we generalize [6] Theorem 3.20 from the case where D = R" for
some n > 3, to that where D is an arbitrary Dirichlet regular Greenian domain in
R™ for any n > 2.

Theorem 6. Let D be a Dirichlet regular Greenian domain, and let i be a
positive measure on D. Put R=1ifn =2, and R =00 ifn > 3.
(i) If p is the Riesz measure of a superharmonic function that has a harmonic

minorant on D, then

R
(12) /l " w(Bp(x,t))dt < oo

for all x € D.
(ii) Conversely, if there is a point € D such that (12) holds, then Gpu is
superharmonic on D. If, in addition, p({zx}) = 0 and

|t B )t < .
0

then Gpu(x) < oo.

13



Proof. (i) Let w be a superharmonic function which has a harmonic minorant
w on D, and whose Riesz measure is ;. Then p is also the Riesz measure for w — u.
Therefore, if z € D and r, s are regular values such that » < s, Theorem 1 shows
that

LD(w - u,x,r) = LD(w - U, S) +pn/ tl_nﬂ<§D($vt)) de
> [ 0 n(Bole ) dt.

Since Lp(w — u,x,r) < co by [11] Theorem 1, if we fix r and make s — R we obtain
(12).
(ii) Now suppose that (12) holds for some x = z¢9 € D. Let {k;} be an increasing
sequence of regular values such that k; — R as j — oo, and put
Ap(zo; k1, R) = D\ Bp(wg, k1),
Ap(zo; k1,kj) = Bp(zo, ki) \ Bp(wo, k1) for all j > 1.

If u = Gpu, then for all z € D we put

u(z) = / Gp(z,y) duy) + / Gp(z,y) du(y) = v1(2) + v2(a),
Bp(zo,k1) Ap(xo;k1,R)

say, and
uj(z) = / Gp(z,y)duly)
AD (CD();k‘l,k‘j)

for all j > 1. Since p is locally finite, v; and every u; is superharmonic on D. Since
{u;} is increasing to the limit vy, if v2(xo) < oo then v, will be superharmonic on D.
Writing A\(t) = u(Bp(zo,t)) for all t > 0, we have

k; k;
wy(a0) = /k (£ dA(H) = [F(OAB]Y /k (DA dt.

Since (12) holds when x = x(, we have

as s — R. Therefore

R
wal0) = Tim wi(wo) = —7(k)A (k) —/k F(OA() dt < oo,

so that vo, and hence w, is superharmonic on D.
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For the last part, let {r;} be a decreasing null sequence of regular values (relative
to o). Then, if p({zo}) =0,

R

R
u(zg) = ]li)nolo | () dA(t) = ]1320 (—T(rj))\(rj) - / 7' (£)A(t) dt)

R
< /O 7 ()A(t) dt < co.

6. DIFFERENCES OF POSITIVE SUPERHARMONIC FUNCTIONS

Let D be a Dirichlet regular, Greenian open set, and let v be d-subharmonic on D.
If it is the Riesz measure for u, then p can be written minimally as a difference p™—p~
of two positive measures on D. For all r € |0, R[ (where R=1ifn =2, R = o0 if
n > 3), we put

Ns(e,r) = i (Bp(z,r),  Nj(a,r) = pa / A (2, 1) dt,
0

and similarly for ;1~. We say that u(z¢) is finite if N} (2o,-) and N, (zo,-) are both
finite-valued, in which case it follows from (2) that u is the difference of two superhar-
monic functions which are finite at xg. If u(x) is finite, we define the characteristic

Tp of u at xg by
TD(U7I07T) = LD(U’+7I07T) + Ng(:rO?T) - U(xo)

for each regular value of r.

We use Tp to characterize those d-subharmonic functions on D that can be writ-
ten as a difference of two positive superharmonic functions, and thus generalize [5]
Theorem 7.42, which deals with the case where D is a ball.

Theorem 7. Let D be a Dirichlet regular Greenian domain, and let u be §-
subharmonic on D.

(i) If w = uy — ug is the difference of two positive superharmonic functions on
D, and u(zg) is finite, then Tp(u,xo,-) is an increasing function such that 0 <
Tp(u,x0,7) < uz(xo) for all regular values of r, and there is a convex function ¢
such that Tp(u,xg,-) =@oT.

(ii) Conversely, if u(xo) is finite and Tp(u,xg, ) is bounded above, then u is the
difference of two positive superharmonic functions on D.
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Proof. (i) Fori € {1,2}, let u; be the Riesz measure for u;, and put
AiD(ImT) :Mi(ED(I()?T))a NiD(x()?T) :pn/ tlinAiD(xovt)dt
0

for all » € ]0, R[. Since u; > 0, it follows from (2) that
0= Lp(u1,20,7) + Np(o,7) — ur(wo).

Since p; and o are positive and pu = py — p2, we have put < pp and p= < p2, so
that
N (w0, 7) < Np(z0,7) = u1(x0) — Lp(us, o, 7).

Furthermore u; > u™, so that Lp(u™,zo,7) < Lp(u1,xo,r). Hence
Tp(u,zo,7) < Lp(ur,zo,7) + (ui(zo) — Lp(u1, x0,7)) — u(xo) = ua(z0),

which establishes the upper bound for T (u, xo, 7).
Now put v = Gpu~ and v; = u + ve. Then both v; and v, are superharmonic,
so that we can apply (2) to both of them and subtract. Thus we obtain

u(zo) = Lp(u, xo,7) + Ng(xo,r) — Np(zo,7).
It follows that
Tp(u,z0,7) = Lp(u®, 0, 7) + Np (20, 7) — Lp(u,0,7) = Lp(u™,20,7) + Np (z0,7)
= Lp(u™,x0,7) + v2(xo) — Lp(ve, 2o, 7) = v2(x0) — Lp(va —u™, 2o, 7).

Let © € D. If u(z) > 0, then vy (z) > va(z) and ve(z) —u™ (z) = va(x) = (v1 Ave) ().
On the other hand, if u(z) < 0 then vy (z) < ve(x) and vo(z) — u™ (x) = vy (x) =
(v1 A vg)(z). Hence

Tp(u,wo,7) = v2(w0) — Lp(v1 Av2,20,7).

Since v1 A ve is superharmonic, the characteristic Tp(u, xo,-) is increasing on the
set of all regular values (by [11] Theorem 1), there is a convex function ¢ such that
Tp(u,xo,) = @ot (by [11] Theorem 2), and Tp(u, zo,7) = va(xg) — (v1 Ave)(20) = 0
(by [11] Theorem 1).

(ii) Let wy, wa be superharmonic functions such that © = wy — w2 on D. Applying
(2) to each w; and subtracting, we obtain

(13) Tp(u,z0,7) = Lp(u™,z0,7) + Np (0, 7)
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for all regular values of r. Therefore N (zo,-) < Tp(u,xo,-), and so Np(zo,-) is
bounded. Hence

R
/ A (20, 1) dt < o0,
0

so that the function vo = Gpu~ is superharmonic on D, by Theorem 6. Furthermore,
N} (zo,7) = Tp(u,20,7) — Lp(u™, 20,7) + u(xo) < Tp(u,z0,7) + u(z0)

for all regular values of r, so that N;)(zo,:) is bounded, and hence the function
v1 = Gpu™ is superharmonic on D. It follows that the function h, defined q.e. on D
by h = u + v, — vy, can be extended to a harmonic function A on D. Furthermore,
because v1; and vy are positive,

LD(h_a:EOv ) < LD(U/_,IEO, ')+LD(’U17:E07 ) - TD(U,IO, ) _NB(:'EO’ ')+LD(’U17:E07 )

by (13), so that
Lp(h™,z0,-) < Tp(u,zo,-) + vi(zo)

by [11] Theorem 1. Therefore Lp(h™,xo,-) is bounded, so that A~ has a harmonic
majorant v on D, by [11] Theorem 1. Hence h = (h + v) — v is a difference of two
positive harmonic functions on D, so that

u=h+vi—va=(h+v+uv)—(v+v9)

is a difference of two positive superharmonic functions on D.

Remark. A representation formula for the difference of two positive superhar-
monic functions on D, follows from the Riesz decomposition theorem and the Martin
representation theorem for differences of positive harmonic functions on Greenian do-

mains given in [3] p. 204.
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