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PROPERLY RECORDED ESTIMATE AND CONFIDENCE REGIONS 

OBTAINED BY AN APPROXIMATE COVARIANCE OPERATOR 

IN A SPECIAL NONLINEAR MODEL 

GEJZA WlMMER, Bratislava 

(Received March 22, 1994) 

Summary. The properly recorded standard deviation of the estimator and the properly 
recorded estimate are introduced. Bounds for the locally best linear unbiased estimator and 
estimate and also confidence regions for a linearly unbiasedly estimable linear functional 
of unknown parameters of the mean value are obtained in a special structure of nonlinear 
regression model. A sufficient condition for obtaining the properly recorded estimate in this 
model is also given. 
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1. INTRODUCTION 

Many situations in measurement can be represented by a model, where the result 
of observations yn,i is a realization of a normally distributed random vector Yn>i 
with mean value <^(Y) = X/3, where X is a known n x k design matrix and (3 G Uk 

is an unknown vector of parameters. A large class of measurement devices has its 
dispersion characteristic of the form a2 (a + &|s|)2, where s is the actual value of the 
measured quantity; cr2, a and b are known positive constants (see e.g. [5], [2]). If we 
assume independent measurements, we obtain 

(1) (Y,X/3,S(/3)) 
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as a model of measurement, where E(/3) is the covariance matrix of the measurement 
which is of the form 

Җß) = o2 

f(a + b\e[X/3\)2 0 . . . 0 \ 

0 (a + b\e'2X/3\)2 . . . 0 

V 0 ... (a + b\e'nX/3\)2J 

e' beeing the transpose of the i-th unity vector. 

Let /3° G Uk be the actual value of the parameter /3. 

Now we outline a typical situation occuring in practice: 

We have an apriori information about the parameter /3° of the following form: 

We know /3Q and D; ̂  0, i = 1, 2 . . . , n, such that 

(2) P°e3?o = hEMk: (eJX7 - e^X/30)
2 ^ D2, i = 1,2,.. . , n} 

(or we have e G (0,1), /3Q and D;, i = 1, 2 , . . . , n such that (2) is valid with probability 

at least 1 - e, i.e. P{/3° G @0} ^ 1 - e). 

The problem considered is to get a properly recorded (see below) /3°-LBLUe (/3°-

locally best linear unbiased estimate, see [3], [4]) in model (1) with information of 

the form (2) of the linear functional f'/3 of the unknown parameter. 

In Section 2 of the paper the properly recorded /3°-LBLUe is defined. 

In Section 4 bounds for this estimate are given. 

In Section 5 bounds for the standard deviation of the /3°-LBLUE (/3°-locally best 

linear unbiased estimator) are given. 

Sufficient conditions for obtaining the properly recorded standard deviation of the 

/3°-LBLUE and /3°-LBLUe are given in Section 6. 

Even if we can not obtain a properly recorded standard deviation of the required 

estimator and a properly recorded estimate (realization of this estimator), we can 

obtain suitable bounds for the estimator and also confidence regions for the unknown 

parameters, which enable us to make very complete inferences about the the unknown 

values of the parameters. 

In Section 7 we obtain bounds for the /3°-LBLUE (/3°-locally best linear unbiased 

estimator). 

(1 — a) confidence regions for a linearly unbiasedly estimable linear functional f'/3 

of unknown parameter are given in Section 8 and Section 9 using two approaches. 

These two results are compared in Section 10. 

If we do not have an apriori information of the form (2), we can use Appendix to 

obtain a suitable one from measurement. 
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2. SOME NECESSARY DEFINITIONS AND EXAMPLES 

Definition 2.1. The standard deviation of the estimator is of order m if the 

first nonzero digit from the left in its decadic notation is of magnitude 10m. 

Definition 2.2. Let the standard deviation of the estimator be of order m. We 

say that this standard deviation is properly recorded if it is rounded to magnitude 

1 0 m _ 1 . 

Definition 2.3. Let the standard deviation of the estimator be of order m. The 

realization of this estimator (the estimate) is properly recorded if it is rounded to 

magnitude 1 0 m _ 1 . 

Remark 2.4. According to Definition 2.2 and Definition 2.3 the task of obtaining 

the properly recorded standard deviation and also the properly recorded estimate 

is only a matter of rounding. Nonetheless, the conceptions of properly recorded 

standard deviation and properly recorded estimate seem to be very important in 

the field of experimental data (statistical) analysis. Practically it has no sense (in 

measurement) to consider a more precise standard deviation of the estimator than 

the properly recorded standard deviation and also a more precise estimate than the 

properly recorded one. (We hope to return to the conceptions of properly recorded 

standard deviation of an estimator and properly recorded estimate and investigate 

their probabilistic and statistical properties from the point of view of experimental 

data (statistical) evaluation methods in another paper). 

Example 2.5. The measured vector Yin,i is normally distributed with the mean 

value x/3 and covariance matrix 53(/3) (i.e. Y ~ Ni0(x/3, 53(/?)), where 

вд = 

x' = ( l ,2, . . . ,10), 

/(0.5 + 6|/3|)2 0 

0 (O.5 + b\20\)2 

V 0 (0.5 + b\l0f3\)2 / 

0.05 ^ /3° ^ 0.15. (We independently measure points on the linear function passing 

through the origin with the slope (5° knowing that 0.05 ^ /3° ^ 0.15. The measuring 

device has dispersion (0.5 + b\x(5\)2.) 

The 7-LBLUE (7-locally best line r unbiased estimator) of j3 (see e.g. [3], [4]) is 

(3) ßy = ( У E - Ҷ ^ W - V E ^ Ы Y = 
10 

£ 
10 

£ ІYІ 

Lí=í (0.5-Hfryr J frí (0.5+ ibj) 
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and its standard deviation at 7 is 

(4) a7(A) = ^(x'SHlîx)-1 = 

Let b = 10 - 6 and let 

" 10 -2 

T—— 
Láí(0.5 + i67YJ 

y' = (0.750719,0.285096,1.002530,0.118773,0.370847, 

0.706980, 0.111058, 0.990869,0.361825,1.530856) 

be a realization of the random variable Y. 
If we take into account that 0.05 ^ 0° ^ 0.15, we obtain from (3) that 7-LBLUe-s 

(for 7 = 0.05,0.06,..., 0.15) are from the interval 

(0.099140392785,0.099140393941). 

The standard deviations of these 7-LBLUe-s are (according to (4)) in the interval 

(0.025482379594, 0.025482419637). 

We see that the standard deviation of the /3°-LBLUE is of order - 2 , the properly 
recorded standard deviation of the /3°-LBLUE at 0° is 

a = 0.025 

and the properly recorded /3°-LBLUe is 

/T = 0.099 

(even if we do not know the true value of 0°). It means we have obtained the properly 

recorded standard deviation of the /3°-LBLUE (localized in the true but unknown 

parameter) and the properly recorded /3°-LBLUe (where 0° is again the true but 

unknown parameter). 

Example 2.6. The measured vector Yio,i is normally distributed with the mean 
value x/3 and covarianc^ matrix £(/?) (i.e. Y ~ IV10(x/3, .£(/?)), where 

x' = ( l ,2 , . . . ,10) , 
/ (0 .5 + b|/3|)2 0 . . . 0 

0 (0.5 + b|2/3|)2 

Җß) = 

\ 0 (0.5 + ò|10/3|)2 / 

To generate the measured data let the true value of 0 be /3° = 1.000. 
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The measured values y(6) (for b = 10~6 ,10"3 ,10"2 ,10_ 1 ,1 and 10) are 

y
/
(10_G) = (1.472332,2.354972,2.608851,4.230250,4.244317, 

5.902735,6.870571,8.488452,8.043104,9.654645) 

y '(10_3) = (-0.175442,1.763118,2.613595,5.073383,4.566302, 

6.921577, 7.827280,7.483188,8.557624,10.154784) 

y '(10_2) = (1.750598,1.238338,3.105686,4.839270,5.043211, 

5.349931,6.937543, 7.459618,9.243031,10.458655) 

y^o-ij = (3.021137,2.842871,4.685383,4.590931,4.677528, 

6.791524,7.633321,9.763429,7.469816,10.352657) 

y '(1) = (-0.974661,-0.144880,-0.792570,8.125993,4.103920, 

11.975135, 5.002477,12.715016,10.402275,11.468850) 

y '(10) = (0.237966,-9.910959,-43.953966,6.956683,-87.212464, 

- 23.509272, -142.373531,26.479785, -79.344916, -35.998113). 

We háve an apriori information 0.95 -̂  (3° ̂  1.15. This information is of the form (2) 

because it is equivalent to the statement 

p° e@0 = {~re R1: ( i 7- i .05i) 2^ (-^)2, i = i,2,...,io} 

(here (30 = 1.05). According to (3) and (4) the values of /3°-LBLUe-s and the 

corresponding standard deviations are in the following intervals: 

b (3° - LBLUe G^ 

10"6 (0.967542488,0.967542508) (0.025482739,0.025482820) 

10"3 (1.010674,1.010695) (0.025862,0.025942) 

10"2 (1.002538,1.002617) (0.029235,0.030014) 

10"1 (1.107546,1.115002) (0.060597,0.067606) 

1 (0.933055,0.949706) (0.340921,0.404891) 

10 (-6.896528, -6.887816) (3.049,3.682) 
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We see that for b - 10~6,10~3,10~2 and 10 we have a properly recorded /3°-LBLUe 

b 0°_ 

10~6 0.968 

10~3 1.011 

10~2 1.003 

10 -6.9 

but we have none for the others. For b — 10~6 and 10~3 we have also a properly 
recorded standard deviation of the /3°-LBLUE 

b g_ 

10~6 0.025 

10~3 0.026 

but we have none for the others. (Even if we do not know the true value of /3°.) 

R e m a r k 2.7. From the previous examples it is seen that under the apriori infor
mation (2) it is possible in some cases to obtain in model (1) the properly recorded 
/3°-LBLUe and the properly recorded standard deviation of the /3°-LBLUE in the true 
(but unknown) value of (5. Sufficient conditions for obtaining the properly recorded 
standard deviation of the /3°-LBLUE and /3°-LBLUe are given in Section 6. 

3. AUXILIARY RESULTS 

Our investigations are based on a result of Cleveland in [1]. If /3° is the true value 

of the parameter /3, then the true covariance matrix of Y is S(/3°). The /3°-LBLUE 

of X/3 is 
X/3(Y) = X(X ,E~1(/3°)X)"X ,5]-1(/30)Y. 

(A~ denotes a g-inverse of the matrix A.) 
For an arbitrary but fixed positive definite (p.d.) matrix S * let us denote 

a i = i n f { a : det(S*S~1(/3°) - a l) = 0} 

a2 = sup{a: det(S*S~1(/3°) - al) = 0}. 

According to [1] for every realization y of Y and /3°-LBLUe X/3(y) the inequalities 

(5) | |X£(y) - x3(y) | |__ l ( j a o ) < ^ " " ^ \\Y " 5__3 (y) II |_ - - C/3<> y 

€(£______^!| |y_x73(y) | |2-_1 ( / 3 0 ) 
4aia-2 
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hold, where 

(6) X/§(y) = X ( X ' S * ~ 1 X ) _ X ' S * " 1 y 

and| |z | | 2
3_ 1 ( 0 . ) - -z ' -_- 1 ( i3

o )z . 

Making use of (2) let us now construct the upper bound for 4^ a m model (1). 

For (3 G 880 we have 

-Qi + eJX/3G ^ e^X/3 ^ Qi + e^X/3c, i = V 2 , . . . , n. 

Thus for i = 1,2,... ,n 

(i) it efrfio > 0, e'tXPo 2 Qi, 

then 

max |e^X/3| = e^X/3D + D; 
/3€__#0 

mm \e[X/3\ = e^X/30 - D; 

and 

(o + . ( e p . / 3 0 - f t ) ) 2
 < (a + b]ep_/3|)2

 < (a + ,(ep_/3, + ft))2 

(a + 6(eJX/-.0 + ft))
2 " (« + &KX/3°|)2 " (a + 6(e;.X/30 - Qi)f 

is valid for all (3 £ 380. 

(ii) If ep_/30 > 0, ep_/3. < ft, 

then 

max K-X/31 = e^X/30 + Qi 

min |e'-X/3| = 0 

and 

(8) " 2 < (a + &|ep_/3|)2
 < (a + b(ep_/30 + ft))2 

(o + .(e^X/So + ft))2 " (a + b|ep_/3°|)2 " a2 

is valid for all /3 e _#_. 

(iii) I feJX/3 o <0, -ep_/3 0 <.f t , 
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then 

max |e^X/3| = -e'{X/3G + Qi 
pe&o 

min |e^X/3| = 0 
pe&o 

and 

( 9 ) a2 < (a + 6NX/3])2
 < (a + 6(-epC/3o + g i ) ) 2 

(a + 6(-e^X/30 + ft))
2 " (a + 6|e^X/3°|)2 " a2 

is valid for all f3 € &0. 

(iv) If e'£X/30 < 0, -eJXjSo > Qi, 

then 

max |e^X/3| = -e^X/30 + ft 

min |e-X/3| = -e';X/30 - Qi 
Pe&o 

and 

( 1 0 ) (g + 6 ( - e ' X / 3 0 - f t ) ) 2
 < (g + 6KX/3|)2

 < (a + 6(-e^X/3Q + ft))2 

(a + 6(-e^X/30 + ft))2 " (a + 6|e^X/3°|)2 " (a + 6(-e^X/30 - ft))2 

is true for all /3 € ^ 0 • 
Thus for an arbitrary /3 € 3d0 we have 

(„ + %;xffl' ,_,,,,...,„ 
- (a + % ; X ^ | ) ! 

(we obtain the bounds ji a n d 77, 2 = 1,2,... ,n from (7), (8), (9) or (10) using the 

values eJX/30 and £;). 

Also for every {3 e &Q we have 

7 = min{7£: i = l , 2 , . . . , n } 

^ ai(/3) = inf{a: d e ^ E ^ I T 1 ^ 0 ) - a l ) = 0} 

min^ ' 9 : г = l,2,...,n} 
Ҷa+ 6|e'.X/3°|)2 i 

аnd 

7 = mаx{7i: i = 1, 2, . . . , n} 

>- a2(/3) = sup{a: det(S(/3)S-Ҷ/3°) - a l ) = 0} 

= m а x { ( a + Ь ' Є ^ C i = l , 2 , . . . , n ) . 
Ҷ a + 6KX/3°|)2 J 
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So for every (3 G 

( i i ) 

- \ 2 
(ai(ß)-a2(ß)f .____Г 

£ —- _ = 7-4ai(/3)a2(/3) 477 

Examp le 3.1. What are the bounds 7, 7 and 7 in Example 2.6? 

As 

e;.X/30 = 1.05i ^ 0 

and 

efrpo = 1.05i >Qi = 
10 

for i = 1,2, . . . , 10, we have 

_ (0.5 + 6(1.05. - _Q)2 _ (0.5 + 0.956.)2 

- ~ (0.5 + 6(1.05. + _•))* ~ (0.5 + 1.156Í)2' 

_ (0.5 + 1.156.)2 

7i = 

So 

(0.5 + 0.956.)2' 

. (0.5 + 0.956.)2 _ / 0.5 + 9.56 \ 2 

1 ~ "V" (0.5 + 1.156Í)2 ~ U-5 + 1156j ' 

(0.5 
T-l--)-

+ 1.156Í)2 _ /0 .5 +11 .56V 
+ 0.956Í)2 " V 0.5 + 9.56 / 

and 

7 = 4 
/ 0.5 + 9.56 \ 2 _ /0.5 + 11.56V 
V0.5 +11 .56/ V 0.5 + 9.56 ) 

For 6 = 10~ 6 , 10 - 3 , 10 - 2 , 10 - 1 , 1 and 10 we obtain the corresponding 7 values: 

6 

Ю"
6 

Ю"
3 

Ю"
2 

10"
1 

1 

10 

7 

6.4 x Ю"
1 1 

0.000061396 

0.004378458 

0.068282629 

0.138963272 

0.15172681 

419 



Let us return to model (1). Because of (3 e &Q we consider all possible covariance 

matrices {S(/3): /3 E <_#0} and the corresponding set of estimators 

& = {X/3(Y) = X(X , S- 1 ( l3)X)~X , S- 1 ( /3)Y: (3 e @0}. 

According to (5) and (11) we obtain that for every realization y of Y and every 

xirnsr 

(12) ||X/3(y) - X/3(y)||2E_1(/30) sC 7 | |y - X/3(y)||s_1( /30) 

<7| |y-Xí3(y) | | 2
= - 1 ( / 3o ) . 

For f e A-(X') = {X'u: u . f } (i.e. f = X'u f) and X/3(Y) € & we denote 

u f X£(Y) = fp(Y) 

and 

^ f = K X ^ ( Y ) : X ^ ( Y ) G ^ } . 

4. BOUNDS FOR THE / 3 ° - L B L U E 

Let X/3(Y) € «f7. According to (12) for every realization y of Y we have 

(13) 

If we denote 

S(min) = <г2 

(Xß(y) - X£(y)) 'S-Ҷ/3 0 )(X/3(y |- Xß(y)) 

< 7 ( y - X/3(y))'S-Ҷ/3°)(y - X/3(y)). 

/ m i n (a + 6|eiX/3|)2 0 

0 min (a-fb |e^X/3|)2.. 
/3(__2?o 

/ m a x ( a + ò|eiX/3|)2 

ßЄ&a 

S(max) = G - / r 2 
0 max (a + o|eí>X/3|V . 

/3E-^o 

o 

o 

min(a + òKX/J | ) 2 y 

0 

0 

. . . m a x ( a + ò|e'X/3|)2 У 
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and 

(y - XjЗ(y))/.S-1(min)(y - Xß(y)) = U(y), 

then (13) implies 

(14) (X3(y) - x3(y))'[7U(y)S(max)]-1(5.^(y) - X0(y)) ^ 1. 

Further, let us denote 

D = [7U(y)S(max)] - i 

From (14) we obtain that for every f G /i(X'), every f'/3(Y) € $? and every realiza

tion y of Y 

(fp{y) - fp(y))2 = (u'X'DXfty) - u'X'DX^(y))2 

^ u'X'DXu = f'(X'DX)~f. 

It means that for every linearly unbiasedly estimable linear functional f/3, every 
f'/3(Y) € /5f and every realization y of Y the following inequalities hold: 

(15) f'/3(y) - V/f'(X'DX)~f ^ f'/3(y) ^ f'/3(y) + ^/f'(X'DX)"f. 

Remark 4 .1 . U(y) and D depend on the choice of /3, but we can choose an 

arbitrary (3 e 88o, i-e. an arbitrary X/3(Y) € ^ . For every realization y of Y and 

the corresponding U(y), D relation (15) gives bounds for the /3°-LBLUe of f/3 (even 

if we do not know the true value /3°). 

Example 4 .2. Using results of Example 3.1 we obtain for model (1) given in 

Example 2.6 

S(min) = 

S(max) = 

/ (0.5 + 0.95ÒГ 

0 

0 

(0.5 + 1.90Ò)2 . 

0 \ 

0 

V o 
0 

.. (0.5 + 9.5Ò)2/ 

/(0.5 + 1.156)2 

0 
0 

(0.5 + 2.30Ь)2 . 
0 \ 

0 

V o 
0 

.. (0.5 + П.56) 2 / 
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and the values U(y) (for various b) 

b Щy) 

10~
6 

8.080997 

1 0
- 3 

19.299078 

1 0
- 2 

9.816710 

ю-
1 

19.190809 

1 6.254972 

10 6.571786 

(we have chosen (3 = (30 = 1.05). According to (15) we obtain the following bounds 

for the /3°-LBLUe (for various b) 

b /3° - LBLUe 

10~6 (0.9675419; 0.9675430) 

10" 3 (1.00979; 1.01157) 

lO" 2 (0.99635; 1.00879) 

10 _ 1 (1.03396; 1.18874) 

1 (0.56334; 1.31831) 

10 (-10.5687;-3.2148) 

5. BOUNDS FOR THE STANDARD DEVIATION OF THE 0°-LBLUE 

For f <E /i(X') the /3°-LBLUE of f /3 we have 

fj3(Y) = f (X'S- 1 (/3 0 )X)"X'S- 1 (/3°)Y, 

and its dispersion at /3° is 

^o(f73(Y)) = f (X'lS-109o)X)~f. 

So the standard deviation of the /3°-LBLUE of f '/3 at /3° is 

<Tp = y/f'{X'V-HP>)X)-f. 

Since .E-^min) - S_ 1(/3°) and S " 1 ^ 0 ) - S - 1 ( m a x ) are p.s.d. matrices, opo is 

in the interval 

(16) ^ f ' (X , E- 1 (min)X)~f ^ op sj ^Í'{X'S-1(max)X)~i. 
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Example 5.1. Using the results of Example 4.2 we obtain from (16) intervals 
for the standard deviation 073° of the /3°-LBLUE of (3 (for various 6) in the model 
given in Example 2.6: 

b o$o 

10~6 (0.0254827; 0.0254828) 

10"3 (0.02586; 0.02594) 

10"2 (0.0292; 0.0300) 

10"1 (0.0605; 0.0676) 

1 (0.340; 0.404) 

10 (3.04; 3.68) 

6. PROPERLY RECORDED STANDARD DEVIATION 

AND PROPERLY RECORDED /3 0-LBLUE 

Now we write a sufficient condition for obtaining the properly recorded standard 
deviation of the /3°-LBLUE of f'/3 (for f G MX')> - e - f° r a linearly estimable linear 
functional of /3) and also for obtaining the properly recorded /3°-LBLUe of such an 
f/3. 

According to (16) we have the properly recorded standard deviation g_p0 of the 
/3°-LBLUE of f'/3 for f € //(X') if the properly recorded numbers 

^ ' ( X ' E - ^ m a x J X r f and ^ ' ( X ' S - H m i ^ X J ' f (as standard deviations) are 

the same. This number is also q_^0 we are looking for. 

Prom (15) and (16) we obtain also the properly recorded /3°-LBLUe of f/3 (for 

f G MX')) if 

(17) ^ f ' ( X ' D X ) - f ^ 0.005y'f ' tX'E-1 (min)X)-f. 

It is easy to see that 

D = [7(y - X(X 'S- 1 ( / 9)X)-X 'S- 1 ( /3 )y) 'S - 1 (min) 

x (y -X(X 'S - 1 ( / 3 )X) -X 'S - 1 ( / 3 )y ) ] - 1 E- 1 (max) , 

and so (17) is satisfied for /3 € 3B0 if 

(18) (7(y - X(X'E- 1 ( /9)X)-X'S- 1 ( /3)y) 'S- 1 (min) 

x (y - X(X 'S- 1 ( /3 )X)-X 'S- 1 ( /3 )y) ) 1 / 2 

Vf'(X'S-1(max)X)-f 
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The wanted sufficient condition for the properly recorded f'/3(y) to be the properly 

recorded /3°-LBLUe of f'/3 is (18). Of course the constant 0.005 could be in many 

cases much greater. 

R e m a r k 6 .1 . Of course the left hand sides of (17) and (18) depend on /3. But if 
for a /3 G _^0 (17) or (18) is satisfied, we can obtain the properly recorded /3°-LBLUe 
of f/3 (even if we do not know the true value /3°) from (15), i.e. using f'/3(y) and 
rounding. 

7. BOUNDS FOR THE /3°-LBLUE 

If we consider X/3(Y) (the /3°-LBLUE of X/3) as a random variable and X/3(Y) e 

<f7, another unbiased estimator of X/3, then (12) yields 

(19) P / 3 . { y _ R n : | |X0(y) - X^(y)||2-_1(/30) < 7 | | y - X & y ) ^ - . ^ . ) } = 1. 

As Y ~ iVn(X/3°,S(/30)), | | Y - x 3 ( Y ) | | i - i q 3 - ) has x„_/. (X) distribution. Let 
Xn-R<x)(a) ^ e t n e (•*• ~ a ) quantile of \ 2 distribution with n — R(X) degrees of 
freedom (R(X) is the rank of the matrix X). We can write 

Pß- {y € R" : ^\\Xß(y) - X/3(y)||2__1(/,0) ^ X „ - Ä ( x) (« )} 

and also 

Pp.{y e Mn : (X/3(y) - X/3(y))'[7X2
n_R(x)(a)S(max)] 

x(Xp(y)-Xp(y))^l}>l-a. 

Denoting 

we obtain in the same way as in Section 4 that for every linear functional f/3 with 

f G /i(X') the following relation holds: 

i > { y € Rn: (f>(y) - r/3(y))2 ^ . ' ( X ' C X Y f } > 1 - a, 

I.Є. 

(20) Pfso ( y G T : f'/3(y) - ^/f'(X'CX)"f ^ f'/3(y) 

^ f ^ ( y ) + ^/f '(X'CX)-f} ^ 1 - a. 

The last relation gives us bounds for the /3°-LBLUE of f/3 using another (available) 

estimator P/3(Y) G _ f̂. 
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Example 7 .1 . According to (20) we obtain in model (1) given in Example 2.6 
for various b the following bounds for the /3°-LBLUE of (3: 

b (3° - LBLUE 

10"6 (0.9675416; 0.9675433) 

10~3 (1.00984; 1.01152) 

10~2 (0.99440; 1.01074) 

10"1 (1.03868; 1.18401) 

1 (0.31998; 1.56168) 

10 (-12.791;-0.991) 

8. CONFIDENCE REGION FOR f/3 

The random variable (Y - X/3°) ,S-1(/3°)(Y - X/3°) has xl distribution. It is 
easy to see that 

I>{y € Rn : (y - X/3°)'S-1(max)(y - X/3°) < Xn(«)} >\-OL 

or, equivalently, 

P/3»{y e R " : ( y - Xp0)'[xl(a)^(max)f1(y - X/3°) < 1} £ 1 - a. 

Let f € fj.(X') (i.e. f = X 'u f ) . We have 

(21) Pp { y e f : (u f X(X'S- 1 ( /3)X) _ X'S- 1 ( /3) (y - X/3°))2 

< u ' fX(X'S- 1( /3)X)-X'S- 1( /J)x 2
l(a) 

x S(max)S- 1 ( /3 )X(X'S- 1 ( /3 )X) - X'u f } > 1 - a. 

We denote the matrix 

(X'S- 1 ( /3)X)-X'S- 1 ( l3)Xn(a)S(max)S- 1 ( /3)X(X'S- 1 ( /3)X)-

as r m a x . So we rewrite (21) as 

(22) Ppo {y G Rn: P/3(y) - >/fTm a x f ^ f'/3° ^ f 73(y) + x / f T m a x f } > 1 - a, 

which is the (1 — a) confidence region we have been looking for. 
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R e m a r k 8.1. As in the previous sections, using an arbitrary /3 G 3S0 we obtain 

the estimator f/3 € 5f and r m a x (depending on /3 chosen) and from (22) the (1 - a ) 

confidence region for f'(3°. 

Example 8.2. According to (22) we obtain in model (1) given in Example 2.6 

for various b the following (1 — a) confidence regions for (3: 

b f3 

10"6 (0.85850; 1.07658) 

10"3 (0.89967; 1.12169) 

10~2 (0.87414; 1.13101) 

HT 1 (0.82201; 1.40069) 

1 (-0.791; 2.673) 

10 (-22.64; 8.86) 

9. CONFIDENCE REGION FOR f'(3 USING CLEVELAND'S RESULT 

Let us obtain the confidence region using Cleveland's result (12). As 

P/3°{y € Rn : (y - X / 3 ° ) ' S - 1 ( r ) ( y - X(3°) $ xl(*)} = 1 - " , 

we have 

I>{y € RB: (y - X/n ' txiUaW 0)]"^ - X/J°) < 1} = 1 - a. 

Again as in the preceding section we obtain 

Pßo { y Є Г : f'/3(y) - V

/x»(a)f'(X'E--C9«>)X)-f 

^ f'/3° < f'/3(y) + v

/xi»(a)f '(X'S-i(/3»)X)-f} = 1 - a 

and as f' G M ( X ' ) satisfies 

f'(X'S-1(max)X)*"f ^ f '(X'S- 1(j3°)X)"f, 

we see that 

P^o { y e R " : r)9(y) - ^ 2 ( a ) r ( X ' S - i ( m a x ) X ) - f < f/3° 

< f ^ ( y ) + v / ^ ( a ) f ' ( X ' E - i ( m a x ) X ) - f } £ 1 - a. 

426 



According to (15), for every f'/3(y) G 5f we have 

Pßo {y Є Rn: î'ß(y) - ^/f'(X'DX)-f < f'/3(y) 

< f'/3(y) + ^/f'(X'DX)-f} = 

Let us denote 

^ = { y Є Г : ЃØ(y) - v^2(a)f'(X'S-Ҷmax)X)-f ^ fß* 

< fß(y) + V^nHfЧX'S-Ҷmax)X)-f} 

.? = {y Є Rn: ЃØ(y) - yJî'(X'ЪX)-f < f^9(y)} 

and 
9 = {y € Rn: f'/3(y) < f'/3(y) + y/f'(X'DX)-f}. 

Using Bonferroni's inequality we obtain 

(23) P ^ { y E T : f'/3(y) - ^/f'(X'DX)"f - ^(aJf 'CX'S-KmaxJXJ-f 

^ f/3° ^ f^(y) + ^/f'(X'DX)-f + ^ ( « ) f ' ( X ' E - i ( m a x ) X ) - f } 

^ F ( ^ n ^ n ^ " ) ^ l - a . 

So we have obtained another (1 — a) confidence region for f'/3 (using Cleveland's 
result). 

Remark 9.1. Of course, as well as in the previous sections, the (1 —a) confidence 
region (23) depends on the /3 G «^c chosen. 

Example 9.2. According to (23) we obtain in model (1) given in Example 2.6 
for various b the following (1 —a) confidence regions for (3 (using Cleveland's result): 

b (3 

1(T6 (0.85850; 1.07658) 

10~3 (0.89878; 1.12258) 

10"2 (0.86792; 1.13723) 

10"1 (0.74467; 1.47802) 

1 (-1.169; 3.050) 

10 (-26.32; 12.54) 
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10 . COMPARISON OF THE TWO OBTAINED (1 - a)CONFIDENCE REGIONS 

Lemma 10.1. Xrm a xX' - X(X ,[^(a)E(max)]~1X)~X , is a p.s.d. matrix. 

Proof. It is obvious that the matrix 

Z = X K X ' E - ^ X J ' X ' E - H j S ) - (X'E-1(max)X)~X'E-1(max)]E(max) 

x [ (X 'E-^x rX 'E" 1 ^ ) - (X'E-1(max)X)~X'S-1(max)]'X'^(a) 

is a p.s.d. matrix. We have 

z — xrmaxx 
-Xn(a)X(X'S-1(/3)X)-X'E-1(/3)S(max)E-1(max)X(X'S-1(max)X)-X' 

-Xn(a)X(X'S-1(max)X)-X'S-1(max)S(max)E-1(/3)X(X'E-1( /(3)X)-X' 

+ x£(a)X(X'E-1(max)X)~X'E-1(max)E(max) 

x E-1(max)X(X'S-1(max)X)"X' 

= XrmaxX' - X(X'[x2
n(a)S(max)]_1X)"x'. 

The lemma is proved. • 

For f € /x(X') (i.e. f = X'u f) we have 

f'rmaxf = u fxrmaxx'uf 

^ UfX(X'[x^(a)S(max)]"1X)"x'uf 

= f'(X'[x^(a)E(max)]-1X)"f > 0. 

Let us denote 

U = x /TTwf - )/f'(X'[X2(a)E(max)]-1X) f. 

Lemma 10 .2 . Let f G p(X') and X/3(Y) £ &. Then 

(24) P/3o{y e Rn : f ' ( X ' [ 7 ( y - X ^ ( y ) ) ' S - 1 ( m i n ) ( y - X ^ ( y ) ) S ( m a x ) ] " 1 X ) - f 

^ L f} ^ </>, 

where 

<P = P|x„-fl(X) ^ 7f/(x'S-i(max)X)~fY 
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P r o o f . From (12) we obtain for every X(3(Y) € & that 

-> {y € Un: (y - x3(y))'S-1(/3°)(y - X0(y)) 

< (y - x39(y)),E-10°)(y - Xj§(y)) 
< (y - 5c^(y))'S-1(min)(y - X0(y))} = 1. 

Because of the Xn-R(x) distribution of 

(Y - 5^9(Y))'S-1(/3°)(Y - X0(Y)) , 

we obtain that 

I>{y e R" : (y - 5c3(y))'S-1(min)(y - X0(y)) 

7f'(X' _--(max)X)~f J 

which is equivalent to (24). 

Relation (24) gives us the lower bound for the probability 

Pp>{yeT: \ / r r ~ f - V
/f'(X'[xtUa)E(max)r1X) f 

< f'(X'[7(y - X^(y))'S-1(min)(y - X0(y))E(max)f ^ " f } , 

i.e. for the probability that the (1 - a) confidence region given in (22) is smaller than 
the (1 — a) confidence region given in (23) (using Cleveland's result). 

Examp le 10.3. As the value 77 = f/(x's--(max)Xi~f l n moc*e- (-) g-v e n m 

Example 2.6 for various b is 

b 77 

10"6 1.201 x 10"13 

10"3 2.863 x 10"8 

10"2 1.673 x 10"6 

10"1 9.000 x 10"6 

1 7.309 x 10"7 

10 5.124 x 10"10 

we see that for all investigated values b be (1 — a) confidence region (22) is smaller 
than the (1 — a) confidence region (23) (using Cleveland's result) with probability 
(at least) <D = P'{xg ^ 77} — 1. This is in full agreement with the results of Examples 
8.2 and 9.2. 
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11 . APPENDIX 

Let Y - Nn(X/3°, S(/3°)). It is obvious that 

(Y - X/3°) ,.S-1(/3°)(Y - X/3°) 

has xn distribution. For 0 ^ e -$ 1 we have 

I>{y e Un: (y - X/3°)'S-1(/3°)(y - X/3°) ^ xl(e)} = l-e. 

We also have 

Pp.{y € Rn : |f'(y - X/3°)| < Vf'xSl(e)--(/30)f for all f G Rn} = 1 - e 

and therefore 

^ { y e R n : (y- e ; .X/3°) 2 < x
2 ( £ ) a 2 ( a + &|epC/3°|)2 ,i = 1,2,... , „} ^ 1 - -. 

For X/3 G Un let us denote 

5x/3 = {y 6 Un : (y - e^X/3)2 ^ ^ ( ^ ( a + %.X/3|) 2 , i = 1,2,. . . , n} 

and for y € i n let 

Ty = {X/3 € Rn: (y -e^X/3) 2 < x2(e)<r2(a + fc^X^)2, i = 1 ,2 , . . . , «} . 

For every /3 G IRfc we have 

flj{y e r : y e SX{3} = Pp{y eUn:X(3e Ty}. 

The probability that Ty covers X/3° is greater than equal to 1 - e. 
We see that with such a probability 

(y - e;X/3°)2 < xl(e)o2(a + ^ X ^ l ) 2 

for i = 1,2,... ,n i.e. 

(e;X/3°)2[l - xl(£)«--&-] + e;X/3°(-2)[yi ± a&<x2
X

2 (e)] + y? - a V 2 * 2 (e) < 0 

(the sign 4- or - corresponds to the sign of e'^X/30). 
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Let 

(25) 1 - xl(e)*2b2 > 0. 

It is easy to show that with probability at least 1 — eforz = l,2,. . . ,n 

Ofi\ - ' v- ° /- -/ - / — • l"- ^ + Q&<r2Xn(g) ~ \ZXn(g)^lQ + fy.K 
(26) eťX/J 6 M - ( m a x ( 0 , i_Y-,VW2«. j 

_ /n Ifc + Qb(T2Xn(g) + y/xl(є)<r\a + byt\\\ 
m a x ^0, i-xi(ewv ;/ 

, , / „ : „ (VÍ ~ ah°2xl(e) ~ \/xl(e)a\a - M , ^ 
U \ m i H l-xileWV '°> 

• (Vi - ab<r2xl(e) + y/xl(s)<r\a - fy,| \ \ 
m m ( l-xl(eWb2 •°j/-

Prom (26) we obtain 7* and ~T, z = 1,2,..., n, then 7, 7 and 7 for evaluation of 
(11) and also for evaluation of E(min) and E(max). So, using in (6) any matrix 

S* — ^-2 
s -° 

/ ( a + fclJil)2 0 . . . 0 \ 
0 (a + 6|<52|)

2 ••• 0 

V 0 . . . (a + Ь | í n | ) 3 / 

where S{ E ^ , i = 1,2, . . . ,n , we obtain results (15), (16), (18) with probability 
greater than or equal to 1 — e. We only note that in the case when (25) is not 
satisfied, ^ , i = 1,2,..., n are infinitely large. 
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