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C O N V E R G E N C E O F NUMERICAL METHODS FOR SYSTEMS 

OF NEUTRAL FUNCTIONAL-DIFFERENTIAL-ALGEBRAIC 

EQUATIONS 

TADEUSZ JANKOWSKI, MARIAN KWAPISZ, Gdansk 

(Received June 15, 1994) 

Summary. A general class of numerical methods for solving initial value problems for 
neutral functional-differential-algebraic systems is considered. Necessary and sufficient con­
ditions under which these methods are consistent with the problem are established. The 
order of consistency is discussed. A convergence theorem for a general class of methods is 
proved. 
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1. INTRODUCTION 

Let I be a fixed interval of real line. By Cl(I, IRP) we denote the space of function 

with continuous derivatives up to the order i on I into 1RP; C(1,1RP) = C°(I, IRP). 

Let J = [a, 6], s/ = C(J, LRP), SB = C(J, (Rm), <3/ = srf x s/ x SB. Later, we will use 

also the following spaces: s/ = C(J, (Rp), SB = C(J, (Rm), <?/ = stf x sJ x SB, where 

C(J, (Rm) or C(J, (Rp) denotes the class of piecewise continuous functions from J 

into lRm or W, respectively. These spaces are considered with the standard uniform 

topology. 

For given / G C(W,sz/), g G C(W,3B) and y0 G IRP, we consider the system of 

functional-differential-algebraic equations (FDAEs) of the form 

{y'(t) = f(y,y',z)(t), y(a)=y0, 

{ z(t)=g(y,y\z)(t), G ' 
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with unknown functions y G Cl(J,Up) and z G « .̂ We assume that / and g are 
Volterra mappings, i.e. for any t G J the conditions 

t/(5) = y(s), Y(s) = Y(s), 2(5) = z(s) for a ^ 5 ^ t 

imply 
/(y,y,z)W = /(y, f ,z)( t ) and g(y,Y,z)(t) = g(y,Y,z)(t). 

Special cases of system (1) arise in many applications, among other in the mod­
elling of engineering problems, for example in the simulation of electrical networks, 
mechanical systems, physical chemistry and in control applications (see [1-3]). 

The aim of this paper is a numerical solution of problem (1). First, let us make 
some general comments about problem (1). Let g(D) denote the spectral radius of 
a square matrix D and let 

W * = max M*)ll 

with || • || being a norm in IRn. It can be proved (see [11]) that there is a unique 
solution of (1) if the Lipschitz conditions 

\\f(x,y,z)(t) - f(x,y,z)(t)\\ ^ cx\\x - x\\t + c2\\y - y\\t + c3\\z - z\\u 

\\g(x,y,z)(t) - g(x,y,z)(t)\\ ^ ci | |x - x\\t + c2 | |y - y||e + cz\\z - z\\t 

hold for some c», c» ^ 0, i = 1,2,3, and g(D) < 1 for 

£> = 
C2 C3 

02 Č3 

It is known that the difficulty in solving the problem of differential-algebraic equa­
tions (DAEs) depends on their index. We observe that the conditions assumed in the 
present paper imply the index of (1) to be at most one. For instance, let g appearing 
in (1) not depend on y', i.e. 

g(y,y',z)(t) = g(y,z)(t), teJ. 

Now, if we assume that the derivatives gy and gz exist, then differentiating the second 
equation in (1) we have 

z'(t) = (gy(y,z)y')(t) + (gz(y,z)z')(t) 

= (ay(y, *)f(y,y',*)) W + (9z(y,z)z') (t), t e J. 

If (/. — gz)~ exists and is bounded, then 

z'(t) = [(I-9,(y,z))-1(gy(y,z)f(y,y',z))}(t), t € J. 
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This means that (1) takes the form 

(v'(t) = f(y,y\z)(th y(a)=y0, ^ ^ 
\ z'(t) = g(y, y', z)(t), z(a) = z0. 

In this way we get a system of FDAEs without the algebraic part, i.e. a system of 
the index 0. This means, according to [1], [8], that the index of the original problem 
equals one (in [1], [8], the index of DAE is defined as the number of times the algebraic 
part of the system has to be differentiated to obtain an ordinary differential equation). 

On the other hand, under the assumption g(D) < 1, system (1) can be resolved 
with respect to y' and z. It means that there exist operators / £ C(srf,srf) and 
g £ C(srf,srf) such that (1) is equivalent to the explicit system 

(3) \y'(t) = f(y)(t), y(a) = y0, t e J 

\z(t)=g(y)(t), 

This proves that system (1) can be considered as a system of the index 1 because it 
is reduced to the simple system (3) which again can be solved by first solving the 
differential equation and then calculating z from the second equation of this system. 

However, in practice, it is impossible to follow the way described above because 
the operators / and g are not known. Due to this fact, to solve (1) numerically we 
have to use the original form of system (1) employing the known operators / and g. 

Before describing a class of numerical methods for solving problem (1), we ob­
serve that, at the present time, it is well recognized that the numerical methods for 
differential-delay equations have to be constructed in such a way that they make it 
possible to compute the values of approximate solutions at any point of the interval 
where they are defined. This is also the case for differential-delay-algebraic systems 
of equations. This is in contrast with the case of ordinary differential equations and 
DAEs for which it is quite enough to compute approximations only at the mesh 
points. 

Assume that (y*,z*) is a unique solution of problem (1). Let Y* denote the 
derivative of y*. Take h = (b - a)/N and tn = a + nh, n = 0 ,1 , . . . , N. By yh, Yh 

and zh we will denote approximations of y*, Y* and z*, respectively. 

Put y = y0, z = z*(a) and Y = y*'(a), so Y and z from a solution of the system 
of equations 

Y = f(y,Y,z)(a), 

z = g(y,Y,z)(a). 
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(4) 

The values Y and z have to be found first, then we construct yh, Yh and zh by the 
procedure 

(yh(a) = y, 

yh(tn + rh) = yh(tn) + hF(yh, Yh, zh', ft, r)(tn), 

Yh(a) = Y, 

Yh(tn + rh)=G(yh,Yh,zh',h,r)(tn), 

zh(a) = z, 

{zh(tn + rh)=Q(yh,Yh,zh;h,r)(tn) 

for r € (0,1] and n = 0,1, . . . , N - 1; F(yh, Yh, zh; ft, 0)(t) = Gp, where 0 P denotes 
the zero vector in Up. The operators F,G: ?/ x JT -> J, Q: 9/ x J? -> <# are 
given, where <ffl = H x [0,1] with H = [0, ft0] for some ft0 > 0. We assume that F, 
G and Q are Volterra mappings with respect to yh, Yh, zh for any ft and r. 

The aim of this paper is to give conditions under which method (4) will converge 
to the solution (y*,z*) of (1). The order of convergence will be discussed, too. 

This paper extends the results of [5] and [9] formulated for ordinary differential-
algebraic problems to the general form of the neutral functional-differential-algebraic 
systems. 

2 . CONSISTENCY 

Now we are going to discuss the problem of consistency of method (4) with prob­
lem (1). Let us introduce 

Definition 1. Method (4) is consistent with (1) on the solution (y*,z*) € 
Cl(J, Up) xS8\i there exist functions e{: H -> R+ = [0,oo), i = 1,2,3, Si(h) -> 0, 
i = 2,3, ft-1£i(ft) -> 0 as ft -> 0, such that for (t,h,r) e J/, xHx[0,1] , Jh = [a,b-h], 
we have 

1° \\hF(y*,Y*,z*;h,r)(t) + y*(t) - y*(t + rh)\\ ^ e^h), 
2° \\G(y*,Y*,z*;h,r)(t)-Y*(t + rh)\\^e2(h), 
3° \\Q(y*,Y*,z*;h,r)(t)-z*(t + rh)\\^e3(h). 
The order of consistency is q if, in addition, 

Sl(h) = 0(hq+l) and Si(h)=0(hq), i = 2,3 as ft-> 0. 

Theorem 1. Assume that f E C(^/,s^), g e C(c&\&) and the mappings F,G: 
°?/ x j/f —> srf, Q: 9/ x Jf -^ 38 are continuous with respect to the fourth argument 
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uniformly with respect to the ones. Then, for t £ J and r £ [0,1], the relations 

(5) 

' F(y*,Y*,z*;0,r)(t) = rf(y*,Y*,z*)(t), 

G(y*, Y*, z*; 0, r)(ř) = f(y*, Y*, z*)(t), 

. Q(y*,Y*, z*; 0, r)(t) = g(y*,Y*, z*)(t) 

are necessary and sufficient conditions for the consistency of method (4) with sys­
tem (1). 

P r o o f . To prove the theorem use the Taylor formula and Definition 1 to get 
the assertion. D 

R e m a r k 1. If in Theorem 1 one assumes a bit more, namely that Y* satisfies 
the Holder condition with an exponent 7 € (0,1], then the order of consistency of 
(4) equals at least 7 . 

To get the consistency of higher order of method (4) one needs to assume higher 

regularity of the solution (y*,z*). To discuss this question we extend the approach 

of [14] to our case. We introduce 

Assumption A. Assume the following conditions are satisfied: 
1° fh e C(<%,J) and gh £ C(f/,<#) are approximations of / G C(<&,&?) and 

g e C(&,@) such that, for any (y,Y,z) € Cl(J, W>) x C(J, W) x C(J, Rm), the 
relations 

\\fh(y,Y,z)(t)-f(y,Y,z)(t)\\^81(h), 

\\gh(y,Y,z)(t)-g(y,Y,z)(t)\\^S2(h) 

hold for some Si: H -» R+, i = 1,2; and fh, gh are Volterra mappings; 
2° there exist nonnegative constants Mi, Pi, i = 1,2,3, such that 

\\fh(xi,x2,x3)(ť) - fh(yi,yi,y3)(t)\\ ^ YLMi\\Xi~Vi\\t' 
i=l 

3 

\\9h(xi,x2,x3)(ť) -gh(yi,y2,2/3XOII ^ YlPiWXi " y^u 

3° Q(A) < 1 for A = 

i=l 

' M2 M3~ 
.P2 P3 . 

Assumption B. Assume that 
1° $ : W x Jf? -» £/, x: ?/ x 3tf -» «# are Volterra mappings, §(y, Y, z\ h, -)(t) is 

of class C1 and we denote its derivative by $5; 
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2° there exist S{: H -> R+, i = 1,2,3, such that the inequalities 

||y*(j) + Ar*(y*, Y*, z*; h, r)(t) - y*(t + rh)\\ < £ (A), r e [0,1], 

my*,Y*,z*;h,r)(t)+r^(y*,Y*,z*;h,r)(t)-Y*(t + rh)\\^62(h), 

rG [0,1], 

||x(y*, y*, ^*; A, r)(«) - z*(t + rh)\\ ^ 63(h), r e [0,1] 

hold for t € Jh; 
3° a, e C^lO.lJ.R), oj(0) = 0, a, e C([0,1],R), 6j € [0,1], &,- € [0,1], b{ -S fy, 

6i ^ 6j for i 7̂  j and i, j = 1,2,..., k. 

Under Assumptions A and B, we define 

k 

(6a) F(y,У,-;A,r)tø = £aД r ) Л (ÿ ,У , í ) ( í + &iЛ), 
j = i 

(6b) G(y,У,~;A,r)(ť)H 
S°í( г)Л(Ӯ'У ' г)(ť + Ь í Л ) f o r 0 < r < l , 
J'=I 

lЛ(ӯ,Ӯ,ž)(ť + rA) for r = 0, r = l, 

, k 

(6c) Q(y,Y,z;h,r)(t) = { Xľðj( r)í"v(Ӯ'У ' f)( í + ^ / г ) f o r o < r < i , 
J'=I 

LflЛ(ӯ,Ӯ,ž)(ť + rЛ) for r = 0, r = l, 

where 

(6d) ӯ(s) = 
У(s) for a <. s <. ť, 

(t) + (s-t)ф(y,Y,z;h,S—)(t) for ť < s <. ť + Л, 

(бe) 

Ӯ(s) = { 

' Y(s) for a <. s <. t, 

*(y,Y,z;h,S^)(t) + S-^$5(y,Y,z;h,S-^-)(t) îor t<s<t + h, 

Jh(y,Y,z)(t + h) fors = t + A, 

(бf) 

z(s) for a ^ s ^ t, 

ž(s) = ^X(y,Y,z'Jh^)(t) ^ í < 5 < t -f- /i, 

^ (g , F, ž)(t + /i) for 5 = t + /i. 
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The following theorem deals with the order of consistency of method (4) with 
system (1) for the increment functions F, G and Q described above. 

Theorem 2. Let (y*,z*) e Cfc+1(J,IRP) x Ck(J,Um) be a solution of (1). Let 
Assumptions A and B be satisfied, and 

(7a) V a ^ r ) ! ) } - ^ - , i = h2,...,k, 

k 

(7b) E a i ( r ) ( 6 i ) i _ 1 = r < _ 1 ' - = -»2 fc-
j=i 

Then there exist constants CltC2,C3 > 0 such that 

( \\hF(y*,Y*,z*;h,r)(t) +y*(t) -y*(t + rh)\\ ^ C^A(h) + o ^ 1 ) , 

(8) i \\G(y*,Y*,z*;h,r)(t)-Y*(t + rh)\\^C2A(h)+0(hk), 

I \\Q(y*,Y*,z*;h,r)(t) - z*(t + r/i)|| < C3A(/i) + 0(hk) 

as h —• 0, where 
3 2 

A(/i) =£*<(/.)+ 5>(A). 
t = l t = l 

If A(/i) = 0(hk) as h —> 0, then the order of consistency of (4) is equai to k. 

P r o o f . First of all we note that method (4) with F , G and Q of the form (6) 
is well defined. Moreover, the conditions (5) are satisfied. 

Let t E A , c € [0,1] and g*, Y* and 5* be defined by formulas (6d)-(6f) with 
y, Y and z replaced by y*, Y* and z*, respectively. According to condition 2° of 
Assumption B, we have 

sup | | JV*(S)- I /*(S) | | 
[a,t+ch] 

(9) = sup \\y*(s)-y*(s)\\ 
[t,t+ch] 

= sup \\y*(t) + hs$(y*, y*,z*; h, s)(t) - y*(t + sh)|| 
[0,c] 

Similarly, for e G [0,1) we have 

(io) sup | | y * ( s ) - y * ( s ) | | 
[a,t+eh] 

= sup \\$(y*,Y*,z*;h,s)(t) + s<l>5(y*,Y*,z*;h,s)(t)-Y*(t + sh)\\ 
[0,e] 
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(11) 

Put 

sup Џ*{s)-z*{s)\\^6з(h). 
[aЛ+eh] 

u = \\Y*{t + h)- Y*{t + h)\\, v = \\z*{t + h)- z*{t + h)\\. 

By conditions 1° and 2° of Assumption A, we get 

u = \\h(y*, Y*,z*){t + h) - fh(y*,Y*, z*){t + h) 

+ fh{y*, Y*, z*){t + h)- f{y*, Y*,z*){t + h)\\ 

< Mi\\y* - y*\\t+h + M2\\Y* - Y*\\t+h + M3\\z* - z*\\t+h + 6i{h) 

^ Mi6~i{h) + M252{h) + M363{h) + 5i{h) + M2u + M3v 

and _ 

v = \\9k(y*, Y*, z*){t + h) - gh(y*,Y*, z*){t + h) 

+ gh{y*, Y*, z*){t + h)- g{y*, Y*, z*){t + h)\\ 

^ Pi6i{h) + P252{h) + P363(h) + 62{h) + P2u + P3v. 

The last two inequalities for u and v can be combined into 

(12) 

where 

U <,AU + B{Һ), 

U = B{h) = 
MiO-^/i) + M262(h) + M383(h) + 5x(h) 

[ PMh) + P2S2(h) + P3S3(h) + S2(h) J 

Here the inequality [rFija^]7" ^ [xi->%2]T means that X{ ^ •£;, i = 1,2. It is known 
that g(A) < 1 implies that the matrix I — A is nonsingular and its inverse has 
nonnegative elements, so (12) yields U ^ (I — A)~lB(h). Combining this with (10) 
and (11), we find 

(13) sup | | Y * ( s ) - y * ( 5 ) | K M 1 A ( / l ) , 
[a,t+ch] 

(14) sup p * ( S ) - ^ * ( S ) | | < Л A ( h ) , 
[aЛ+ch] 

where M i and P_ are constants independent on h. 

The Taylor formula for y* € Ck+1(J, Up) yields 

m(Һ) = fc__>i(r) [y*{t + bjh)]' + y*(t) - y*{t + rh) 
j=l 

k 

E и ^ ' 1 E « І W ( Ѓ W - ^ 
І=I lj=i v }' 

+ 0(hk+ì) as łi->0. 
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According to condition (7a), we find rj3(h) = 0(hk+l) as h -* 0. 

Basing on the conditions l°-2° of Assumption A and (9)> (l3)-(14), we obtain 

m(Һ) = hY,aj(r){fh(y* ,Y* ,ž*)(t + báh) - }h(y* ,Y* ,z*)(t + bjh)] 
j = l 
k 

< * 5 > j ( r ) | lMÛV* - tflt+*i* + M2 | |y* - Y*\\t^jh + M3||z* - z*\\t+bjh] 
3 = 1 

^ /iM2A(/i), M 2 is a nonnegative constant, 

m(h)= hY,aj(r)[fh(y\Y\zn(t + bjh)-f(y\Y\z-)(t + bjh)} 
3 = 1 

k 

Hence 

\\hF(y\Y\ z*; h,r)(t) + y*(t) - y*(t + rh)\\ < 771 (lt) + %(li) + m(h), 

so we have found the first estimate of (8). 
By differentiating (7a) with respect to r we have 

k 

^ ( r ) ^ - 1 ^ - 1 , i = l ,2, . . . , fc . 
3 = 1 

Using this, the Taylor formula, (9), (13)-(14) and (7b), we obtain 

5i(/i) for r = 0, 

\\G(y*,Y*,z*;h,r)(t)-Y*(t + rh)\\^ { P3A(h) + 0(hk) for 0 < r < 1, 

M3A(b) for r = l, 

\\Q(y\Y\z*'ђh,r)(t) - z*(t + rh)\\ ^ { 

S2(h) for r = 0, 

P4Д(/г) + 0(/гfc) for 0 < r < 1, 

L M4A(Һ) for r = 1 

as h —> 0, where M 3 , M 4 , F3, P4 are nonnegative constants. From this we get the 
rest of the assertion of (8). Finally, we find that if A(/i) = 0(hk) as h -» 0, then (8) 
implies that the order of consistency of (4) is equal to k. 

The proof is complete. • 
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R e m a r k 2. By the property of the Vandermonde determinant, system (7a) has 
a unique solution aj for any choice of distinct values of bj (see [14]). It means that 
method (4) has sense for F, G and Q defined by (6). 

R e m a r k 3. It follows from the proof of Theorem 2 that the assertion of this 
theorem remains valid if the condition 1° of Assumption A is true only for y = y*, 
Y = Y*,z = z*. 

R e m a r k 4. Let (y*,z*) e Ck+l(J,Up)xCk(J,U7n). If the derivatives (y*)(k+x) 

and (z*)W satisfy the Holder condition with the exponent 7 € (0,1], and A(h) = 
0(hu) as 1i —r 0, then the order of consistency equals min(.v,7 + k). 

E x a m p l e s . Now we are going to give some examples of method (4) of the 
corresponding order with F,G and Q defined by (6). 

(a). Put k = 1 and bi = bi = 0. Then, according to (7), we have a\(r) = r, 
a~\(r) = 1. Let 

$(y,Y,z',h,r)(t) = fh(y,Y,z)(t), 

X(y,Y,z;h,r)(t) = gh(y,Y,z)(t). 

If 5i(/i) = 0(h) and S2(h) = 0(h), then ^(h) = 0(h2), 62(h) = O(h), 63(h) = O(h) 
as h —r 0, and we have the method of order one. 

(b). Put k = 2, 61 = 0, b2 = 1. Then ax(r) = r - \r2, a2(r) = \r2. If bx = 0, 
62 = 1, then a~i(r) = a'{(r), i = 1,2, while if 61 = \, b2 = 1, then a~\(r) = 2(1 — r), 
a2(r) = - l + 2r. Let 

$(y, Y, z; h, r)(t) = fh(y, Y, z)(t) + l-r [fh($, Y,E)(t + h) - fh(y, Y, z)(t)] , 

x(y,Y,z;h,r)(t)=gh(y,Y,z)(t) + r[gh§,Y,m + h)^ 

with 
J y(s) for a ^ s ^ t, 

V S ~\y(t) + (s-t)fh(y,Y,z)(t) for t < s ^ t + h, 

( 

Y(s) = 

Y(s) for o ^ s ^ t, 

fh(y,Y,z){t) for t < s < t + h, 

{fh(j/,Y,2){t + h) for s = t + h, 

( z(s) for a < s ^ t, 

gh{y,Y,z){t) for t < s < t + h, 

gh(g,Y,2)(t + h) for s = t + h. 

If 61(h) = 0(h2) and 82(h) = 0(h2) as h -> 0, then we have the method of order 
two. 
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3 . CONVERGENCE 

In this section, the convergence of the method (4) will be proved. The order of 
convergence will be discussed, too. 

T h e o r e m 3. Assume that: 
1° f e C(W,srf), g G C(&,&), f,G: <% x 3tf -> J, Q: <% x J T -> J aii are 

Volterra mappings, F, G, Q are continuous with respect to the fifth argument, 
2° there exists a unique solution (y*, z*) of (1), 
3° method (4) is consistent with problem (1) on the solution (y*,z*), 
4° there exist constants Li, K{ ^ 0, i = 1,2,3, such that 

\\F(ui, u2,u3; h, r)(t) - F(ux ,u2,u3;h, r)(ť)\\ ^ ] P LÍ\\UÍ - Ui\\t+h, 
ѓ = l 

3 

\\G(ui,u2,u3; h, r)(t) - G(ui,u2,u3; h, r)(t)\\ ^ ] P Ki\\u{ - Ui\\t+h 

hold for all u\, u\ G srf', u2, u2 G srf, u3, u3 G 38, 

5°\\Yh(a)-Y*(a)\\^e2(h), 

6° there exist constants d{ ^ 0, i = 1,2,3, such that 

\\Q(ui,u2,u3; h,r)(t) - Q(ux,u2,u3;h,r)(t)\\ 

^ di||wi -UxWi+h + d2\\u2 - u2\\t+h + d3\\u3 -u3\\t+h 

holds for ui G &/, u2 G srf', u3 G 88, 
\K2 K3 7° Q(A) < 1 for A= 2 3 . Then the method (4) is convergent to (y*, z*) 

d2 d3 

and thereexist constants71,72,73 ^ 0 such that, fore(h) = h~lei(h)+e2(h)+e3(h), 

the estimates 

(15) 

( sup \\yh(t)-y*(í)ll < 7ie(/»), 
.teJ 
su P | |y ' i ( í ) -y*(f : ) l l<72^) , 
tej 

sup\\zh(t)-z*(t)\\šl3e(h) 
teJ 

hold for h sufficiently small. 

• P r o o f . Put 

vh(t) = \\yh(t)-y*(t)\\, 

wh(t) = \\Yh(t)-Y*(t)\\, 

xh(t) = \\zh(t)-z*(t)\\, 

Vh = sup vh(т), 
[ а , t 7 l ] 

Wh = sup wh(т), 
[а\tn] 

Xh = sup xh(т). 
[а,U,] 
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Using the conditions 2°-4°, we have 

wh(tn + rh) = \\G(yh,Yh, zh; h, r)(tn) - G(y*, Y*, z*; h, r)(tn) 

+ G(y*,Y*,z*;h,r)(tn)-Y*(tn + rh)\\ 

^ K,Vh
+1 + K2W

h
+1 + K3X

h
+1 + e2(h) = Cn+1, 

so 

SUp ^ ( T ) ^ C n + l -
[*»,*» + i] 

This and condition 5° yield 

(16) Wh^K!Vh + K2W
h + K3X

h+e2(h), n = 0,l,...,N. 

Similarly, we have 

vh(tn + rh) = \\yh(tn) + hF(yh,Yh, zh; h,r)(tn) - y*(tn) - hF(y*, Y*,z*; h,r)(tn) 

+ y*(tn) + hF(y*, Y*,z*; h, r)(tn) - y*(tn + rh)\\ 

<Vh + h [LiVh
+1 + L2W

h
+1 + L3X

h
+1] + si(h) 

= & U , n = 0 , l , . . . , 7 V - l , 

so 

SUP W f c ( T K # + 1 , 
[t„,t„ + i] 

and 

(17) V^^Vf+hLiVf+i+hLtW^+hLsXHu+eiih) for n = 0 ,1 , . . . , 7V-1 . 

Now we need an estimate for xh. Condition 6° yields 

xh(tn + rh) = \\Q(yh,Yh, zh; h,r)(tn) - Q(y*, Y*, z*; h,r)(tn) 

+ Q(y*, Y*, z*; h,r)(tn) - z*(tn + rh)\\ 

< diVh
+1 + d2W

h
+1 + d3X

h
+1 + e3(h), n = 0,l,...,N-l; 

hence 

(18) ^ + 1 < d i V r
n V 1 + d 2 W n + 1 + d 3 ^ + 1 + e 3 ( / . ) , n = 0 , l , . . . , 7 V - l . 

Writing (16) and (18) in the vector notation, we obtain 

(19) V n + i < 3 v n + i + t ? n + i . n = 0 , l , . . . , i V - l , 
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where 

<Pn 
w*t 
xì 

<£ = 
K1V

h + e2(h) 
diVh+e3(h)} 

By this and condition 7°, we have 

^+1 ^ (I - A)~ldh
+1, n = 0,l,...,N-l, 

which proves that there exist nonnegative constants 01,02,61,62 such that the rela­
tions 

(20) 
WZ+1 š aiV

h
+1 + a2 [e2(h) + e3(h)}, 

+i *S hVh
+l XbţhVb+hЫty + є^h)} 

hold for n = 0 , l , . . . , N - l . 
Combining the last two inequalities with (17) we see that 

Vn+i ^ Vn + hLxV^ + hL2e{h), n = 0 , 1 , . . . , N - 1, 

where Fi and L2 are nonnegative constants. Hence, for sufficiently small h such that 
hL\ < 1, we have 

V £ < 7 i * W , n = 0,l, . . . ,1V. 

Combining this with (20) we have estimate (15). The proof is complete. D 

R e m a r k 5. If method (4) is consistent of order q, then the convergence is also 
of order g, so 

sup \\yh(t) - y*(t)\\ = 0(h"), sup ||yfc(<) - Y*(t)\\ = 0(h«), 
teJ teJ 

Sup\\zh(t)-Z*(t)\\=0(W) 
teJ 

as h -> 0. 

R e m a r k 6. It is easy to prove that 

K2 + d3<2 and K2 + d3(l - K2) + K3d2 < 1 

imply condition 7°, i.e. Q(A) < 1 holds. 

R e m a r k 7. Notice that the values i/, Y and z appearing in (4) usually are 
found approximately. In this case, the convergence of order q can be reached only if 
these approximations are also of order q. 
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4. COMMENTS 

Up to now we have considered system (1) in which the operators / and g require 
only the values of the unknown functions y, y' and z for arguments t G J. A more 
general type of FDAEs is that in which the values of the unknown functions appear 
in / and g for arguments t on the left hand side of the left endpoint a of the interval 
J. Below, we consider this case, and we show that it can be transformed to a problem 
of type (1). To do this some additional notation will be required. 

Let Jo = [a — ao, a], J\ = [a — a\,a], J = J U Jo, J = J U Ji, ao, a\ ^ 0, and let 
ip G Cx{Jo, (Rp) and t/> G C(Ji, (Rm) be given. By ^ ( J , (Rp), 2 = 0,1, we mean the 
class of all functions x G C(J, 1RP) which are identical with ip^ on J0; ^(J , IRP) = 
^°(J , IRP). Similarly, %(J, U™) denotes the class of all functions x G C(J, IRm) 
which are identical with ip on Jx. Put X = ^(J , (Rp) x ^ ( J , (Rp) x <&2(J, -^m)-

Now we consider the system 

(2i) h'(t) = nv,y'Z)(t), 
\ z(t)=y(y,y',z)(t), 

for some & € C(3C,st) and S? G C(3C,SS). System (21) will be supplied by the 
initial conditions 

f y(t) = <P(<), * e Jo, 

\ *(*) = </>(<), < e J i 

satisfying the consistency conditions of the form 

(V(a ) =.?•(¥>, ¥>',iMa), 
\ </>(a)=S%,<p',</0(a). 

Observe that the mappings & and ^ may be of different form; for example sys­
tems of functional-differential-delay-algebraic equations and also integro-differential-
algebraic equations of Volterra type are special cases of (21). System (1) is also a 
special case of (21), in this case we have Oo = a\ = 0. 

As was mentioned earlier, problem (21) can be reduced to the case for which 
a0 = a\ = 0, which means the case when the initial conditions have the form 

fy(a) = yo, y ' ( a ) = y i i 
(24) < 

[ z(a) = zo 

for given yo,yi € -^p and zo G (Rm such that 

V\ = ^(yo,yi,2o)(a). ô = ^(yo,yi,^o)(a). 
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Indeed, for y € Cl(J, Up) and z E SB satisfying the conditions 

y(a) = <D(a), y'(a) = <D'(a), z(a) = i/>(a) 

we define operators Ti and T2 by the relations 

(p(t), t e Jo, 

(25) 

(Tiy)(ł) , 
U(í), tєJ, 
íiþ(t), Í Є Л , 

(T2z)(t)={ 
{ z(t), t Є Ј. 

Now, problem (21)-(23) can be replaced by an equivalent one of the form 

(26) {v'{t)=*{TlУì(T1y)',T2z)(t), ^ j 

\z(t)=&(TlУ,(TlУУ,T2z)(t), 

( . í У(a) = V(a), y'(a) = <//(a), 

\z(a) =iþ(a). 

Notice that if (y,z) is a solution of (26)-(27), then (Tit/,T2г) is the corresponding 

solution of (21)-(23). In this way we see that problem (21)-(23) is reduced to problem 

In literature we can also find problems of fully implicit type. To conclude the 

paper we briefły consider the case when the algebraic equation of problem (1) is 
repłaced by 

g(t,y(a(t)),z(t)) = ш 

with a Є C(J, J), a(t) ^ t, t Є J and g: J x OF x (Rm -> IRm. To use method (4) 

for finding a numerical solution of such a problem, we define the mapping Q by the 

relation 

Q(u, v, w; h, r)(t) = w(t) - P~lg(t, u(a(t)),w(t)), 

where P is anonsingułar mxm matrix. Assume that the derivativeof g with respect 
to the last variable exists and denote it by gз- If 

(i) ЦF-1 [g(t, u, v) - g(t, ӣ, v)] || ^ di \\u - ӣ\\, 

(ii) \\v-v- P-1 [g(t,u,v) - g(t,u,v)] \\ ^ d3\\v - v\\, 

then it is easy to see that condition 6° of Theorem 3 holds. Indeed, we have 

| |Q(гii,u2,w3;Л,r)(ť) - Q(ӣx. ӣ2,ӣ3; h,r)(t)\\ 

=| |гxз(г)-ö3(г)-P-Ҷg(^ггi(a(ŕ)),г/з(ř))-g(í,ггi(a( í)) , íZзrø) 

+ ^(<,wi(a(0),űзW)-ÍУ(^öi(a(0),űзrø)]ll 

^diЦг/i - ö i Ц t +dз||гx3 -ӣ3\\t, t Є J. 
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Using the mean value theorem one finds that condition (ii) holds if 

sup ||Im - P~lgz{t,u,v)\\ ^ d3; 
t,u,v 

here Im denotes the unit m x m matrix. 
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