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Abstract. We study polyconvex envelopes of a class of functions related to the function
of Kohn and Strang introduced in [4]. We present an example of a function of this class
for which the polyconvex envelope may be computed explicitly and we also point out some
general features of the problem.
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I. Introduction

Consider the extremal problem

(P) I(u) =
∫

Ω

f(∇u(x)) dx → min, u ∈ W 1,∞
0 (Ω),

where Ω ⊂ �
n is a bounded open set, u : Ω → �

N (i.e., ∇u ∈ �
N×n ) and f :

�
N×n → �.

In connection with the lower semicontinuity of the functional I overW 1,∞(Ω), the
following concepts play an important role:

Definition 1. i) The function f is said to be quasiconvex if
∫

Ω

f(A+∇ϕ(x)) dx � f(A)measΩ

Supported by Fond National Suisse de la Recherche.
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for every A ∈ �N×n and every ϕ ∈ W 1,∞
0 (Ω).

ii) f is said to be rank one convex if the function

� � t �−→ f(A+ tB)

is convex for every A ∈ �N×n and B ∈ �N×n with rank B � 1.
iii) f is said to be polyconvex if there exists g : �τ(n,N) → � convex, such that

f(A) = g(T (A)),

where T : �N×n → �
τ , τ = τ(n, N) :=

min(n,N)∑
j=1

(
n
j

)(
N
j

)
,

T (A) = (A, adj2A, . . . , adjmA), m := min(n, N),

adjkA, k = 2, . . . , m, being the matrix of all k × k minors of A.

The concept of quasiconvexity (note that in the convex analysis the concept of a

quasiconvex function has a different meaning, it denotes a function whose level sets
are convex) was introduced by Morrey [5] and it was proved that the functional I(u)

is lower semicontinuous over W 1,∞(Ω) if and only if the function f is quasiconvex.
However, in particular examples it is difficult to verify whether or not a given function

is quasiconvex. For this reason, the concepts of polyconvexity and rank one convexity
were introduced in [1]. Polyconvexity yields a sufficient and rank one convexity a

necessary condition for a function to be quasiconvex. More precisely, we have the
diagram

(1.1) convex =⇒ polyconvex =⇒ quasiconvex =⇒ rank one convex.

When a function f in (P) fails to be quasiconvex, a useful information about this
problem may be inferred from the so-called relaxation problem

I(u) =
∫

Ω

Qf(∇u(x)) dx → min, u ∈ W 1,∞
0 (Ω),

where

Qf = sup{g � f, g − quasiconvex}

is the so-called quasiconvex envelope of f .
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Similar to the problem of quasiconvexity, to find the quasiconvex envelope of a

given function represents a difficult problem and for this reason the concepts of
polyconvex and rank one convex envelopes have been introduced:

Pf = sup{g � f, g − polyconvex}
Rf = sup{g � f, g − rank one convex}.

Recall also the usual definition of the convex envelope

Cf = sup{g � f, g − convex}.

According to (1.1) the following inequalities hold:

(1.2) Cf � Pf � Qf � Rf,

particularly, if Pf = Rf , then Pf = Qf = Rf .

Even if to compute polyconvex and rank one envelopes of a given function is gen-
erally easier than to find the quasiconvex envelope, the computation of Pf and Rf is

not easy even in such a simple case as f(A) = g(‖A‖), where ‖A‖ =
( N∑

i=1

n∑
j=1

a2ij

)1/2

is the usual Euclidean matrix norm and g : � → �. The most frequently cited exam-

ple of a radially symmetric function for which Rf = Qf = Pf 	= Cf is the example
of Kohn and Strang [4], where n = 2 and f(A) = g(‖A‖) with

(1.3) g(r) =

{
1 + r2 if r > 0,

0 if r = 0.

In this case

(1.41) Cf(A) =

{
f(A) if ‖A‖ � 1,
2‖A‖ if ‖A‖ � 1,

(1.42)

Rf(A) = Pf(A) =

{
f(A) if ‖A‖2 + 2|adj2A| � 1,
2
√
‖A‖2 + 2|adj2A| − 2| adj2A| if ‖A‖2 + 2|adj2A| � 1.

In this paper we deal with another function whose polyconvex envelope may be

computed explicitly, namely with the function

(1.5) f∞(A) =





0 if A = 0,

1 if 0 < ‖A‖ � 1,
∞ if ‖A‖ > 1.
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This function and (1.3) are special cases of a general class of functions

(1.6) f(A) =

{
1 + g(‖A‖) if A 	= 0,
0 if A = 0,

where g(0) = 0 and lim
r→∞

g(r)
r2 > 0. The case (1.5) we treat here separately since it

provides a good insight into the problem and is sufficiently representative for the un-
derstanding of problems which one meets when investigating polyconvex envelopes of

radially symmetric functions. All our computations are performed for 2×2 matrices.
Unfortunately, in contrast to the quadratic example of Kohn and Strang, we have

not been able till now to compute explicitly the rank one convex envelope Rf∞ of
(1.5) (for more detail see the last section). So we have done only a half of the step

leading to the computation of Qf∞ and the problem whether Pf∞ = Rf∞ remains
open.

The paper is organized as follows. In the next section we present some preparatory
statements concerning the general theory of convex and polyconvex envelopes of

radially symmetric functions. In Section III the properties of a certain important
function are established and Section IV deals with the explicit computation of the

polyconvex envelope of the function given by (1.5). The last section is devoted to
some remarks and comments concerning possible extensions and modifications of the

results of the paper.

II. Auxiliary results

First of all observe that a function f : �2×2 → � of the form

f(A) = g(‖A‖),

where g : � → �, is radially symmetric, i.e.

(2.1) f(A) = f(UAV )

for any orthogonal matrices U , V . Hence, in view of [3], it is sufficient in computing
Pf and Cf to restrict ourselves to diagonal matrices. More precisely, it suffices to

perform all computations for matrices of the form A =

(
x 0

0 y

)
and in the results

obtained, in order to get the formula for general 2× 2 matrices A, to replace x2+ y2

by ‖A‖2 =
2∑

i,j=1
a2ij and xy by | detA|. Here x and y satisfying 0 � y � x should be
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regarded as the singular values of the matrix A, i.e.,

(2.2)
x =

1
2

[√
‖A‖2 + 2| detA|+

√
‖A‖2 − 2| detA|

]
,

y =
1
2

[√
‖A‖2 + 2| detA| −

√
‖A‖2 − 2| detA|

]
.

In the sequel, for the convenience of notation, we write, for a diagonal matrix A =(
x 0
0 y

)
, f(x, y) instead of f

((x 0
0 y

))
. The basic tool for computation of the

convex and polyconvex envelopes is provided by the following theorem.

Theorem 2.1. [2] Denote

(2.3)

fP (α, β, γ) = sup
x,y∈�2

{αx+ βy + γxy − f(x, y)},

f∗(α, β) = sup
x,y∈�2

{αx+ βy − f(x, y)}

and

(2.4)

fPP (x, y) = sup
α,β,γ∈�3

{αx+ βy + γxy − fP (α, β, γ)},

f∗∗(x, y) = sup
α,β∈�2

{αx+ βy − f∗(α, β)}.

Then

(2.5) Pf(x, y) = fPP (x, y), Cf(x, y) = f∗∗(x, y).

Moreover, if f is convex then

(2.6) Cf(x, y) = Pf(x, y) = f(x, y).

Now let us turn our attention to some general features of computation of Pf and
Cf for functions of the form (1.6), where g : � → � is a convex function for which

0 = g(0) = inf
r>0

g(r). According to (2.3)

fP (α, β, γ) = max

{
0, sup

x,y
{αx+ βy + γxy − g(r)} − 1

}

= max{0, f̃P (α, β, γ)− 1},

where f̃(x, y) = g(r) = g(
√

x2 + y2) and

(2.7)
Pf(x, y) = max

{
sup{αx+ βy + γxy | f̃P (α, β, γ) � 1},

sup{αx,+βy + γxy − f̃P (α, β, γ) + 1 |, f̃P (α, β, γ) > 1}
}

.
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Since the function αx + βy + γxy is linear in α, β, γ, the first supremum in (2.7) is

attained at the boundary, hence the first extremal problem in (2.7) is equivalent to

(2.8) αx+ βy + γxy → max, f̃P (α, β, γ) = 1.

Concerning the second supremum, if x, y are such that supremum is attained at a

point [α, β, γ] for which f̃P (α, β, γ) > 1, i.e., the constrain in this extremal problem
does not come into power, according to (2.6), this supremum is f(x, y).

Consequently, the solution of (2.8) is the only possibility which may cause the
inequality Pf(x, y) > Cf(x, y) for some x, y. Observe also that concerning the

computation of the convex envelope, a similar role is played by the problem

(2.9) αx+ βy → max, f̃∗(α, β) = f̃P (α, β, 0) = 1.

If the function g grows near ∞ less then quadratically, then f̃P (α, β, γ) = +∞
for γ 	= 0, hence in this case (2.8), (2.9) are equivalent and we have the equality
Pf = Cf .

In the example of Kohn and Strang [4] the set of [α, β, γ] ∈ �3 for which

(2.10) f̃P (α, β, γ) = 1

consists of a “smooth” part

M =

{
[α, β, γ] | α2 + β2 + αβγ

4− γ2
= 1, |γ| < 2

}

and four “vertex” points [2, 2,−2], [2,−2,−2], [−2,−2,−2], [−2, 2, 2] and for the
value of Pf for small x, y just these four points are important, see [4].

For our function f given by (1.5) we have

(2.11) f̃P (α, β, γ) = sup
x2+y2=1

{αx+ βy + γxy}.

In contrast to the quadratic example (1.3), the set of [α, β, γ] ∈ �3 satisfying (2.10)
cannot be described explicitly in the case (2.11). Nevertheless, a closer examination

of the extremal problem (2.8) reveals the fact that the explicit description of this set
of [α, β, γ] is not necessary since only the values [α, β, γ] with α = ±β are important

and just for these values we have the explicit formula for a solution of (2.11).
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III. Properties of the function H(α, β, γ, r)

The function H in the title of the section is defined by

(H) H(α, β, γ, r) = max
x2+y2�r2

{αx+ βy + γxy}.

Even if we need the function H only for r = 1 in this paper, we investigate also its

dependence on r since it makes no difficulties and the results are useful when dealing
with the polyconvex envelope of the function given by (1.6).

The explicit evaluation of the value of H leads to an algebraic equation of the
fourth order and the application of formulae for the roots of this equation does not
give satisfactory results1. For this reason, in this section we present some qualitative

properties of this function.

We start with results which are trivial.

Lemma 3.1. Concerning the function H(α, β, γ, r), the following hold:

i) The maximum in (H) is always attained on the boundary x2 + y2 = r2, i.e.,

H(α, β, γ, r) = max
x2+y2=r2

{αx+ βy + γxy}.

ii) For every [α, β, γ] ∈ �3

(3.1) H(α, β, γ, r) = H(β, α, γ, r),

H(α, β,−γ, r) = H(−α, β, γ, r) = H(α,−β, γ, r).

iii) In the polar coordinates x = r cosϕ, y = r sinϕ, α = � cosϑ, β = � sinϑ

(3.2) H(�, ϑ, γ, r) = r� cos(ϕ̃− ϑ) +
1
2
γr sin 2ϕ̃,

where ϕ̃ = ϕ̃(�, ϑ, γ, r) is a solution of

(3.3) −� sin(ϕ− ϑ) + γr cos 2ϕ = 0

1 Even in the simple case β = 0, which may be treated explicitly, we have obtained a rather
complex expression (for α > 0)

H(α, 0, γ, r) =
1

8
√
2|γ|

(
α+

√
α2 + 3γ2r2

)√
4γ2r2 − α2 + α

√
α2 + 3γ2r2
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which realizes the maximum of H .

iv)

(3.4)
H(α, β, 0, r) = r

√
α2 + β2,

H(0, 0, γ, r) =
1
2
|γ|r2.

v) H is convex in (α, β) for every γ ∈ � since H is the conjugate function of

fγ := −γxy.

An explicit formula for H may be obtained in the case α = ±β. We formulate the
result only for α = β, the formula for α = −β we get from (3.1).

Lemma 3.2. Let γ 	= 0. Then

(3.5) H(α, α, γ, r) =




−α2

2γ −
γr2

2 if r � 1√
2

∣∣∣αγ
∣∣∣ and γ < 0,

√
2|α|r + γr2

2 if r � 1√
2

∣∣∣αγ
∣∣∣ or γ > 0,

whereby in the first case the maximum is attained at

(3.6) x = − α

2γ
± 1
2|γ|

√
2γ2r2 − α2, y = − α

2γ
∓ 1
2|γ|

√
2γ2r2 − α2,

and in the second case at

(3.7) x = y = ± r√
2
.

�����. Consider the extremal problem

α(x+ y) + γxy → max, x2 + y2 = r2.

The extremal point [x, y] is a solution of the system

(3.8)

α+ γy = λx,

α+ γx = λy,

x2 + y2 − r2 = 0,

where λ is a Lagrange multiplier. The first two equations give (y − x)(γ + λ) = 0.
If x = y then x = y = ± r√

2
. If λ = −γ then x + y = −α

γ and substitution into the

third equation in (3.8) gives

x = − α

2γ
± 1
2|γ|

√
2γ2r2 − α2, y = − α

2γ
∓ 1
2|γ|

√
2γ2r2 − α2,

i.e., this is possible only for r � 1√
2
|αγ |. Comparing the values of α(x+y)+γxy for x,

y given by (3.6) and (3.7) we get (3.5) whereby for γ < 0, r � 1√
2

∣∣α
γ

∣∣ the maximum
is attained at (3.6) and for γ > 0 or r � 1√

2

∣∣α
γ

∣∣ at (3.7). �
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Lemma 3.3. At all points [�, ϑ, γ] ∈ �3 where H is differentiable we have

(3.9)

H ′
�(�, ϑ, γ, r) = r cos(ϕ̃− ϑ),

H ′
γ(�, ϑ, γ, r) =

1
2
r2 sin 2ϕ̃,

H ′
ϑ(�, ϑ, γ, r) = �r sin(ϕ̃− ϑ),

H ′
r(�, ϑ, γ, r) = � cos(ϕ̃− ϑ) + γr sin 2ϕ̃,

where ϕ̃ is a solution of (3.3) which realizes the maximum in the definition of H .

�����. We prove only the first formula, the proof of the other ones is analogous.

H ′
�(�, ϑ, γ, r) =

∂

∂�
[r� cos(ϕ̃− ϑ) +

1
2
γr2 sin 2ϕ̃]

= r cos(ϕ̃− ϑ) + ϕ̃′�(−r� sin(ϕ̃− ϑ) +
1
2
r2γ sin 2ϕ̃) = r� cos(ϕ̃− ϑ).

Here we have used the fact that ϕ̃ is a solution of (3.3). �

In the next section we shall need some information about the set

M = {[α, β, γ] ∈ �3 | H(α, β, γ, 1) = 1}.

For simplicity we write H(α, β, γ) instead of H(α, β, γ, 1). According to the symme-

try relations (3.1) it is sufficient to take into account γ � 0, 0 � β � α. If α = β,
then (3.5) yields

H(α, α, γ) = 1⇐⇒ α2 + γ2 + 2γ = 0⇐⇒ �2

2
+ γ2 + 2γ = 0,

if γ � − |α|√
2
= −�

2
,

⇐⇒
√
2|α|+ γ

2
= 1⇐⇒ �+

γ

2
= 1

if γ � − |α|√
2
= −�

2
.(3.10)

Observe also that the straight line
√
2|α| + γ

2 = 1 forms the tangent to the circle
α2 + γ2 + 2γ = 0 at the points [± 2

√
2
3 ,− 23 ], i.e., the curve H(α, α, γ) = 1 is of the

class C1 (for γ < 2).

Finally, look for the points where the tangent to the curve H(�, ϑ, γ) = 1, ϑ =
ϑ0 = const is vertical. According to (3.9) this occurs for such triples [�, ϑ, γ] that
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sin 2ϕ̃ = 0, i.e. ϕ̃ = 0 (since we consider ϑ ∈ [0, �4 ]). Then (3.3) and the equation
H(α, β, γ) = 1 read

−� sinϑ = γ,

� cosϑ = 1

or, equivalently,

(3.11) β = −γ, α = 1.

Consequently, the set of [α, β, γ] ∈ M , γ � 0, 0 � α � β for which the tangent

is vertical is the intersection of the planes (3.11). By virtue of the symmetry of H
relative to α, β, the set of these points in the octant α, β � 0, γ � 0, when looking
from the negative direction of the γ-axis, looks like the square α = 1, β ∈ [0, 1],
β = 1, α ∈ [0, 1]. Computing H ′′

�� at these points, we may see that � is here

maximal, i.e., also the set M looks from the γ-direction like a square (particularly,
H is not differentiable at the point [1, 1,−1]).
In the sequel, the part of M in the octants α, β � 0 above the broken line α = 1,

β = −γ, β = 1, α = −γ will be called the northern part of M and the part below
this line the southern part of M .

Now, let us investigate in more detail the properties of the northern part of M .
Note that in the first quadrant the southern part is immaterial for the extremal

problem (2.8). Indeed, if P1 = [α, β, γ1] is on the southern part and P2 = [α, β, γ2]
on the northern part (i.e., γ2 > γ1), then for x, y � 0

αx+ βy + γ2xy > αx+ βy + γ1xy.

Lemma 3.4. For a given ϑ ∈ (0, �4 ), denote by �(ϑ), γ(ϑ) that �, γ for which

H(�, ϑ, γ) = 1. Then we have

(3.12)
d
dϑ

�(ϑ) = −�(ϑ) tan(ϕ̃− ϑ),
d
dϑ

γ(ϑ) =
2�(ϑ) sin(ϕ̃− ϑ)

sin 2ϕ̃
,

where ϕ̃ is a solution of (3.3) realizing the maximum of H .

�����. Since H(�, ϑ, γ) = � cos(ϕ̃ − ϑ) − 1
2γ sin 2ϕ̃ = 1, differentiating this

equality and taking into account (3.3) we get the required statement. �

The lemmas given in this section give a rough picture of the set M in [α, β, γ]
space. Consider the cylindric surface H(α, β, 0) =

√
α2 + β2 = 1 and the prism

max{|α|, |β|} = 1. Let us describe the shape of M for α, β � 0 (the remaining part
may be reconstructed using the symmetry relations (3.1)).
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Let C1 and C2 be the line segments on the faces of the prism α = 1, β = 1,

respectively, which arise as intersections of these faces with the planes β = −γ and
α = γ, respectively. Suppose that the cylinder α2 + β2 = 1 is elastic and may be
homeomorphically deformed in such a way that it is smoothly (this means that the

vertical lines on the faces of the prism form tangents to the curvesM∩{[�, ϑ, γ] | γ =
γ0 = const}) glued to the prism at C1 and C2. Below C1, C2 the cylindric surface is

“closed” in such a way that the point [0, 0,−2] (see (3.4)) form the “southern pole”
of the surfaceM . For γ > 0 (and still α, β � 0),M is inside the cylinder and is again

attached to the γ-axis at the point [0, 0, 2] which plays the role of the north pole.

The curve which is the intersection ofM with a plane γ = γ0 has maximal distance
from the point [0, 0, γ0] in the direction α = β (i.e., ϑ = �

4 ) and minimal (in the first

(α, β)-quadrant) on axes α = 0, β = 0 (since ϕ̃ < ϑ in (3.12)—to skech the graphs
of functions y1 = γ cos 2ϕ, y2 = � sin(ϕ− ϑ) whose intersection gives ϕ̃—see (3.3)—

helps to visualize the situation). If γ0 ∈ (−1, 0], ϑ ∈ [0, �4 ], this distance, denote it
by d(ϑ, γ0), satisfies d(ϑ, γ0) > d(ϑ, 0) = 1 and for γ ∈ (0, 2), ϑ ∈ [0, �4 ] we have
d(ϑ, γ) < 1.

To study the shape of the set M in more detail, the following lemmas play a

fundamental role.

Lemma 3.5. Let M̃ = {[�, ϑ, γ] ∈ M : γ ∈ [−1, 0], ϑ ∈ [− arctanγ, �4} and let
ϕ̃ = ϕ̃(�, ϑ, γ) be the argument which realizes the maximum in the definition of H ,

i.e.

H(�, ϑ, γ) = � cos(ϕ̃− ϑ) +
1
2
γ sin 2ϕ̃.

Then ϕ̃ is differentiable in the interior of M̃ and

(3.13)

ϕ̃′� =
− sin(ϕ̃− ϑ)

1 + 32γ sin 2ϕ̃
,

ϕ̃′ϑ =
� cos(ϕ̃− ϑ)

1 + 32γ sin 2ϕ̃
,

ϕ̃′γ =
cos 2ϕ̃

1 + 32γ sin 2ϕ̃
.

�����. Observe that M̃ is just the northern part ofM in the region α � β � 0,
γ � 0. Since ϕ̃ realizes the maximum of H and (�, ϑ, γ) ∈ M , we have

(3.14)
� cos(ϕ̃− ϑ) +

1
2
γ sin 2ϕ̃ = 1,

−� sin(ϕ̃− ϑ) + γ cos 2ϕ̃ = 0.
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We will prove only the relation for ϕ̃′�, the proof of the remaining equalities is the

same. Differentiating the second equation in (3.14) with respect to � and taking into
account the former one, we have

0 = sin(ϕ̃− ϑ)− �ϕ̃′� cos(ϕ̃− ϑ)− 2γϕ̃′� sin 2ϕ̃

= −ϕ̃�[� cos(ϕ̃− ϑ) +
1
2
sin 2ϕ̃+

3
2
γ sin 2ϕ̃]− sin(ϕ̃ − ϑ)

= −ϕ̃′�(1 +
3
2
γ sin 2ϕ̃)− sin(ϕ̃− ϑ).

To prove (3.13) we need to show that 1 + 3
2γ sin 2ϕ̃ 	= 0 for [�, ϑ, γ] in the interior

of M̃ . For γ ∈ (− 23 , 0] this is obvious. For γ ∈ [−1,− 23 ] we proceed as follows. If
ϑ = − arctanγ and [�, ϑ, γ] ∈ M̃ then ϕ̃(�, ϑ, γ) = 0 and for ϑ = �

4 , according to
(3.6),

tan ϕ̃
(
�,

�

4
, γ
)
=

�−
√
4γ2 − �2

�+
√
4γ2 − �2

and since �2

2 + (γ + 1)
2 = 1 for [�, �4 , γ] ∈ M̃ , after some computation we get

(3.15) sin 2ϕ̃ =
2 tan ϕ̃

1 + tan2 ϕ̃
= −2γ + 2

γ
.

Hence, for ϑ = − arctanγ the denominator in (3.13) is positive and by the second
relation in (3.13) ϕ̃ is increasing with respect to ϑ at all points where the denominator

remains positive. At ϑ = �

4 , by (3.15) 1 +
3
2γ sin 2ϕ̃ = 1 − 3(γ + 1) > 0 except for

γ = − 23 but for this γ we have ϕ(�, ϑ,− 23 ) < �

4 if ϑ̃ < �

4 . Consequently, for a fixed

γ ∈ [−1, 0], ϑ ∈ (− arctan γ, �4 ) and � such that [�, ϑ, γ] ∈ M , the denominator in
(3.15) is positive. This means that ϕ̃ = ϕ̃(�, ϑ̃, γ) is an increasing function of ϑ which

increases from ϕ̃ = 0 to ϕ̃ = �

4 if γ ∈ [− 23 , 0] and from ϕ̃ = 0 to ϕ̃ = − 12 arcsin
2(γ+1)

γ

if γ ∈ [−1,− 23 ]. �

Using the same argument as in the previous proof one may show that for a fixed

γ ∈ [−1, 0], ϑ ∈ (�4 , �2 + arctanγ) and � such that [�, ϑ, γ] ∈ M the function ϕ̃ is
increasing with respect to ϑ. This function increases from ϕ̃ = �

2 +
1
2 arcsin

2(γ+1)
γ

to ϕ̃ = �

2 if γ ∈ [−1,− 23 ] and from ϕ̃ = �

4 to ϕ̃ = �

2 if γ ∈ [− 23 , 0]. Particularly, for
γ ∈ [−1,− 23 ] this function is discontinuous (and hence not differentiable) at ϑ = �

4 .
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Lemma 3.6. Let γ ∈ [−1, 0] be fixed. Then for r ∈ (0, 1) and ϕ ∈ [0, �4 ] we have
(3.16)

sup
H(�,ϑ,γ)=1

[
r� cos(ϕ− ϑ) +

1
2
γr2 sin 2ϕ

]

=





√
2r
√
−γ2 − 2γ cos

(
ϕ− �

4

)
+ 12γr2 sin 2ϕ, if γ ∈ [−1,− 23 ]

and ϕ < − 12 arcsin
2γ+2

γ ,

r − γ r(1−r)
2 sin 2ϕ, if γ ∈ [− 23 , 0]

or ϕ � − 12 arcsin
2γ+2

γ .

�����. Recall that in the extremal problem (3.16) it suffices to consider
[�, ϑ, γ] ∈ M̃ (the northern part of M), i. e., we take ϑ ∈ [− arctanγ, �2 + arctanγ].

Since the term 1
2γr2 sin 2ϕ is independent of �, ϑ, we look for maximum of the term

r� cos(ϕ−ϑ). Again, similar to the previous lemma, we may consider ϑ ∈ [0, �4 ] only.
Let γ ∈ [−1, 0] be fixed and [�, ϑ, γ] ∈ M , i.e., H(�, ϑ, γ) = 1. This equation

determines implicitly the function � = �(ϑ) and in view of Lemma 3.4

(3.17)

d
dϑ

�(ϑ) cos(ϕ− ϑ) = −� tan(ϕ̃− ϑ) cos(ϕ− ϑ) + � sin(ϕ− ϑ)

= − �

cos(ϕ̃ − ϑ)
[sin(ϕ̃− ϑ) cos(ϕ− ϑ)− cos(ϕ̃− ϑ) sin(ϕ − ϑ)]

=
�

cos(ϕ̃− ϑ)
sin(ϕ− ϕ̃).

By the previous lemma, for a fixed γ ∈ [−1, 0] and [�, ϑ, γ] ∈ M , ϕ̃(�, ϑ, γ) is an
increasing function of ϑ for ϑ ∈ [− arctanγ, �4 ], ϕ̃(�,− arctanγ, γ) = 0 and accord-

ing to the note below Lemma 3.5, ϕ̃(�, �4 , γ) =
�

4 if γ ∈ [− 23 , 0] and ϕ̃(�, �4 , γ) =
− 12 arctan

2(γ+1)
γ if γ ∈ [−1,− 23 ]. Now, if γ ∈ [− 23 , 0], there exist �, ϑ such that

[�, ϑ, γ] ∈ M̃ and ϕ̃(�, ϑ, γ) = ϕ. For these �, ϑ and ϕ̃ we have

r

[
� cos(ϕ− ϑ) +

1
2
rγ sin 2ϕ

]

= r

[
� cos(ϕ̃− ϑ) +

1
2
γ sin 2ϕ̃+

1
2
γ(r − 1) sin 2ϕ

]
= r

[
1− 1
2
γ(1− r) sin 2ϕ

]
.

If γ ∈ [−1,− 23 ), let us distinguish the cases ϕ < − 12 arcsin
2(γ+1)

γ = ϕ̃(�, �4 , γ) and

ϕ � − 12 arcsin
2(γ+1)

γ . In the first case again there exist �, ϑ such that [�, ϑ, γ] ∈ M

and ϕ̃(�, ϑ, γ) = ϕ. By the same computation as above

sup
H(�,ϑ,γ)=1

[
r� cos(ϕ− ϑ) +

1
2
γr2 sin 2ϕ

]
= r

[
1− 1
2
γ(1− r) sin 2ϕ

]
.
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Finally, if ϕ ∈ [− 12 arcsin
2(γ+1)

γ , �4 ] then � cos(ϕ − ϑ) attains its maximum over

[�, ϑ, γ] satisfying H(�, ϑ, γ) = 1 at ϑ = �

4 and � =
√
−2γ2 − 4γ (see (3.10)). Hence

sup
(�,ϑ,γ)∈M

[
r cos(ϕ − ϑ) +

1
2
γr2 sin 2ϕ

]

= r
√
−2γ2 − 4γ cos

(
ϕ− �

4

)
+
1
2
γr2 sin 2ϕ.

�

IV. Polyconvex envelope of the function f∞

In this section we deal with the function f∞ : �2×2 given by

f∞(A) =





0 if A = 0,

1 if ‖A‖ � 1,
∞ if ‖A‖ > 1

and we will omit the subscript ∞ if no ambiguity may arise.

Theorem 4.1.

(4.1) Pf∞(A) =

{√
(detA)2 + 2| detA|+ ‖A‖2 − | detA| if ‖A‖ � 1,

∞ if ‖A‖ > 1.

�����. According to the statement at the beginning of Section II, we consider

only the diagonal matrices A =
(
x 0
0 y

)
. Moreover, by the symmetry relations we

prove (4.1) only for those diagonal matrices for which 0 � y � x (since Pf(x, y) =

Pf(y, x)). As mentioned in the previous section, the fundamental role in computing
Pf is played by the extremal problem (2.8) which in the case

f̃(x, y) =

{
0 if x2 + y2 � 1,
∞ if x2 + y2 > 1

reads

(4.2) αx+ βy + γxy → max, [α, β, γ] ∈ M.

Recall that M = {[α, β, γ] ∈ �
3 | H(α, β, γ) = 1}. In this extremal problem, if

x, y � 0, x � y, in view of (3.1) it suffices to consider α, β � 0 and α � β.
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Solving (4.2), we pass to the polar coordinates x = r cosϕ, y = r sinϕ, α = � cosϑ,

β = � sinϑ. Then (4.2) becomes

(4.3) r� cos(ϕ− ϑ) +
1
2
γr2 sin 2ϕ → max, H(�, ϑ, γ) = 1.

Let [x, y] = [r cosϕ, r sinϕ], r ∈ (0, 1), ϕ ∈ [0, �4 ] be fixed and denote by [�̃, ϑ̃, γ̃] ∈ M

the extremal point of (4.3), i.e.,

Pf(x, y) = Pf(r, ϕ) = r�̃ cos(ϕ− ϑ̃) +
1
2
γ̃r2 sin 2ϕ.

We shall show that γ̃ ∈ [−1,− 23 ], ϑ = �

4 and �̃ =
√
−2γ̃2 − 4γ̃.

According to the second relation in (2.4), H(�, ϑ, γ) = 1 implies |γ| � 2 and for
γ ∈ [−2,−1], ϑ ∈ [0, �4 ], the points [�, ϑ, γ] lie on the southern part of M , so we

consider γ ∈ [−1, 2] only.
Now we proceed as follows. We keep γ ∈ [−1, 2] constant and first we optimize

the function with respect to (�, ϑ). If γ ∈ [− 23 , 0], by Lemma 3.6 we have

sup
(�,ϑ,γ)∈M

[
r� cos(ϕ− ϑ) +

1
2
γr2 sin 2ϕ

]
= 1 +

1
2
|γ|(1− r) sin 2ϕ

� 1 + 1
3
(1− r) sin 2ϕ = sup

(�,ϑ,− 23 )∈M

[
r� cos(ϕ̃− ϑ) +

1
2
γr2 sin 2ϕ

]
,

hence surely γ̃ 	∈ (− 23 , 0].
If γ ∈ [0, 2], using (3.3) with r = 1 one may verify that ϕ̃

(√
1 + γ2,− arctanγ, γ

)
=

0 and [
√
1 + γ2,− arctanγ, γ] ∈ M . By (3.10) we have ϕ̃(1 − γ

2 ,
�

4 , γ) =
�

4 and the

same argument as for γ ∈ [− 23 , 0] implies that

sup
(�,ϑ,γ)∈M

[
r� cos(ϕ − ϑ) +

1
2
γr2 sin 2ϕ

]
� 1 + 1

3
(1− r) sin 2ϕ,

i.e., γ̃ 	∈ [0, 2].
If γ ∈ [−1,− 23 ] is such that

(4.4) ϕ < ϕ̃
(
�,

�

4
, γ
)
= −1
2
arcsin

2(γ + 1)
γ

(see (3.16)), then again the second possibility in (3.14) holds. Since the function

− 12 arcsin
2(γ+1)

γ is continuous and increasing, there exists γ1 < γ, γ1 ∈ [−1,− 23 ],
such that ϕ < − 12 arcsin

2(γ1+1)
γ1

still holds, hence

sup
(�,ϑ,γ)∈M

[
r� cos(ϕ− ϑ) +

1
2
γr2 sin 2ϕ

]
< sup
(�,ϑ,γ1)∈M

[
r� cos(ϕ− ϑ) +

1
2
γ1r

2 sin 2ϕ

]
,
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i.e. in this case the maximum of (4.3) is not attained, either. Consequently, maximum

in (4.3) is realized for [�̃, ϑ̃, γ̃] such that ϕ � − 12 arctan
2(γ̃+1)

γ̃ = ϕ̃(�̃, ϑ̃, γ̃). By (3.17)
the function r� cos(ϕ−ϑ) is increasing with respect to ϑ for ϑ ∈ [0, �4 ] and (�, ϑ, γ) ∈
M , hence if ϕ � − 12 arctan

2(γ̃+1)
γ̃ , we have ϑ̃ = �

4 and by (3.10) �̃ =
√
−2γ̃2 − 4γ̃.

This leads us to the extremal problem

(4.5) α(x + y) + γxy → max, H(α, α, γ) = 1, γ ∈
[
− 1,−2

3

]
,

and by (3.10) for γ ∈ [−1,− 23 ]

H(α, α, γ) = α2 + (γ + 1)2.

Note that we obtain the same result if we take the extremal problem

r
√
−2γ2 − 4γ cos

(
ϕ− �

4

)
+
1
2
γr2 sin 2ϕ → max, γ ∈

[
− 1,−2

3

]

which is a “polar coordinate” modification of (4.5). Solving (4.5), we get the system
of equations

x+ y = 2λα,

xy = 2λ(γ + 1),

α2 + (γ + 1)2 − 1 = 0
(λ is a Lagrange multiplier) and the solution of this system is

(4.6) γ = −1± xy√
x2y2 + (x + y)2

, α = ± x+ y√
x2y2 + (x+ y)2

.

Since for the solution of (4.3) only the northern part of M is important, we take +

in (4.6) and the extremal value of (4.5) is

h(x, y) =
(x + y)2√

x2y2 + (x+ y)2
+

(
−1 + xy√

x2y2 + (x+ y)2

)
xy

=
√

x2 + y2 + (x+ y)2 − xy.

Consequently, we have (for x, y � 0, x2 + y2 � 1)

Pf(x, y) =
√

x2y2 + (x + y)2 − xy

and similarly we get the relations for the other three quadrants. Now, replacing
x2 + y2 by ‖A‖ and xy by | detA| as mentioned at the beginning of Section II, we
get (4.1). �
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V. Remarks and open problems

i) Let r ∈ (0, 1) and ϕ ∈ [0, �4 ]. We have

Pf(r, ϕ) = r

√
1
4
r2 sin2 2ϕ+ 1 + sin 2ϕ− 1

2
r2 sin 2ϕ

and one may directly verify that

d
dϕ

P (r, ϕ) = 0 ⇐⇒ ϕ =
�

4
.

Comparing Pf(r, �4 ) with Pf(r, 0) and P (r, �2 ) we have the inequality

(5.1) Pf
(
r,
�

4

)
� Pf(r, ϕ), ϕ ∈

[
0,

�

2

]
.

A similar statement may be formulated for ϕ ∈ [�2 , 2�].
ii) For detA = 0 we have Pf∞(A) = Cf∞(A) = ‖A‖. It may be proved that the

same equality holds also for the function fp : �2×2 → �, p � 2 given by

(5.3) f(A) =

{
1 + ‖A‖p

p , if A 	= 0,
0 if A = 0.

This follows from the fact that for f̃(x, y) = (x2+y2)p/2

p the surface

Mp = {[α, β, γ] | f̃P (α, β, γ) = 1}

has essentially the same shape as M .

iii) It is known that the function (1.42) also equals the rank one envelope of
(1.3), see [4]. This implies the equality Pf = Qf = Rf in this case. Concerning the

function f given by (1.5) we have not been successful in computing Rf . B. Dacorogna
computed that

R2f(A) =

{
y + x

√
1−y
1+y if x2 + y2 = ‖A‖2 � 1,

∞ otherwise,

where 0 � y � x are the singular values of A given by (2.2). Unfortunately, this
function is not rank one convex (since it is not separately convex), hence Rf < R2f

(in computing R3f we have met difficult technical problems which seem to be hard
to overcome). The formula for computing Rnf may be found e.g. in [4] and generally
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Rf(A) = lim
n→∞

Rnf(A). In contrast to our example, Rf = R2f for the function of

Kohn and Strang (1.3).

iv) The previous remarks suggest two immediate lines of extension of our results.
a) To carry out all computations for n× n matrices.

b) To investigate polyconvex envelopes of the general “Kohn-Strang-like” functions
(1.6).

Concerning the first problem, this extension does not seem to be trivial, since

the proofs of the fundamental Lemmas 3.5 and 3.6 are rather technical and depend
substantially on dimension two. As for the second problem, we have made some

preliminary computations for the function (5.3) and the results obtained suggest that
a general statement concerning the polyconvex envelope of (1.6) may be formulated

which naturally generalizes the results of this paper and of [4].
Some of the above problems we hope to investigate in a subsequent paper.
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