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Abstract. The evolution Boussinesq equations describe the evolution of the temperature
and velocity fields of viscous incompressible Newtonian fluids. Very often, they are a rea-
sonable model to render relevant phenomena of flows in which the thermal effects play an
essential role. In the paper we prescribe non-Dirichlet boundary conditions on a part of the
boundary and prove the existence and uniqueness of solutions to the Boussinesq equations
on a (short) time interval. The length of the time interval depends only on certain norms
of the given data. In the proof we use a fixed point theorem method in Sobolev spaces with
non-integer order derivatives. The proof is performed for Lipschitz domains and a wide
class of data.
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Introduction

Let Ω be a bounded domain in �3 with a Lipschitz boundary ∂Ω and let Γ1, Γ2,

Γ3, Γ4 and Γ5 be open disjoint subsets of ∂Ω such that ∂Ω = Γ1∪Γ2 = Γ3∪Γ4∪Γ5,
Γ1 �= ∅, Γ3 �= ∅ and the 2-dimensional measure of ∂Ω\(Γ1∪Γ2) and ∂Ω\(Γ3∪Γ4∪Γ5)
equals zero. Let T > 0 and let n = (n1, n2, n3) denote the unit outward normal vector
defined a.e. on ∂Ω. Let Tij(u, p) = −pδij + ν∂ui/∂xj for 1 � i, j � 3 and ν > 0.
The evolution Boussinesq equations for the velocity ũ, the pressure p and the

temperature ϑ̃ of the fluid are
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∂ũ

∂t
− ν∆ũ+ (ũ · ∇)ũ + 1

�ref
∇p = βg(ϑ̃ − ϑref),(1)

div ũ = 0,(2)

∂ϑ̃

∂t
− κ∆ϑ̃+ (ũ · ∇)ϑ̃ = Q.(3)

We have introduced the thermal diffusion coefficient κ, the kinematic viscosity ν, the

acceleration due to gravity g, the termal expansion coefficient β, the reference density
and temperature �ref and ϑref and the source term Q. Without loss of generality we

set β and �ref to be equal to unity. The system (1)–(3) is considered in the time
cylinder Ω × (0, T ).
The evolution Boussinesq equations (1)–(3) describe the velocity and temperature

fields of viscous incompressible Newtonian fluids where the thermal effects play an

essential role. The density is constant everywhere except in the body force term of
the momentum equation (1), where it is temperature dependent according to the
law � = �ref [1 − β(ϑ̃ − ϑref)]. The viscous dissipation in the energy equation (3) is

neglected. For more details concerning the Boussinesq equations see [1], [2], [15],
[19].

The equations (1)–(3) are combined with the set of boundary conditions:

ũ = ϕ on Γ1 × (0, T ),(4)

Tij(ũ, p)nj = σi on Γ2 × (0, T ),(5)

ϑ̃ = � on Γ3 × (0, T ),(6)

∂ϑ̃

∂n
= ω on Γ4 × (0, T ),(7)

∂ϑ̃

∂n
+ γ(ϑ̃− ϑδ) = 0 on Γ5 × (0, T ),(8)

where γ is the heat transfer coefficient and ϑδ is a given temperature. The initial
conditions are

ũ(x, 0) = ũ0(x) in Ω,(9)

ϑ̃(x, 0) = ϑ̃0(x) in Ω.(10)

The Dirichlet boundary conditions are used on the part Γ1 of the boundary. On

Γ2 we prescribe the non-Dirichlet conditions (5). These conditions can be derived
directly from the momentum equation (1) as natural boundary conditions and are
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sometimes referred to as “do nothing” boundary conditions (for σ = 0). They are
probably the best possible general-purpose boundary conditions to be used along
the outflow boundaries, which seems to be supported from the mathematical point
of view by their simplicity (see [7]). They have been applied in many numerical

calculations especially at the outlets of tubes and channels (see e.g. [16], [17], [18]).
For the temperature we use the Dirichlet boundary conditions on Γ3, the Neumann

boundary conditions on Γ4 and the Newton boundary conditions on Γ5 (see [4], [14]).
In the paper we prove an existence theorem for the system (1)–(10). In the proof

of the existence theorem, the boundary conditions (5) are the main problem (see
e.g. [8], [9], [10]) since backward flows cannot be excluded on Γ2. The backward

flows can bring more kinetic energy into the domain than is the amount of the energy
carried outwards. Therefore, the amount of kinetic energy in the domain cannot be

controlled and the method which is usually used for the case of the Dirichlet boundary
conditions (see [20]) cannot be applied.

In the paper, Theorem 3.1 is the main result. We use a fixed point theorem method
in the Sobolev spaces with non-integer order derivatives and prove the existence and

uniqueness of solutions to the system (1)–(10) on a (short) time interval. The proof
is performed for Lipschitz domains and a wide class of initial data. The length of

the time interval on which the solution exists depends only on certain norms of the
data and therefore the existence of unique solutions can be extended to a maximal

time interval.

������ 0.1. Let us note that the same or similar proof also works if some other

non-Dirichlet boundary conditions are applied on Γ2. As an example, let us mention
the pressure drop problem with the boundary conditions (ũn, ũτ are the normal

and tangential components of ũ, P is a prescribed value)

(∗) p− ν
∂ũn

∂n
= P,

∂ũτ

∂n
= 0

applied on Γ2. These boundary conditions are convenient as outflow boundary condi-

tions in some special types of geometries. For the thorough discussion of the pressure
drop problem and the conditions (∗) see [8].

1. Preliminaries

Let ν > 0, κ > 0 and α ∈ (0, 1). Let E(Ω) = {ϕ ∈ [C∞(Ω)]3 ; divϕ =
0 in Ω, suppϕ ∩ Γ1 = ∅} and let V and H be defined as the closure of E(Ω)

in the norm of the space [W 1,2(Ω)]3 and [L2(Ω)]3, respectively. Let Eθ(Ω) = {ϕ ∈
C∞(Ω) ; suppϕ∩Γ3 = ∅} and let V θ be defined as the closure of Eθ(Ω) in the norm
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of the space W 1,2(Ω). Similarly, Ẽ(Ω) = {ϕ ∈ [C∞(Ω)]3 ; divϕ = 0 in Ω} and Ṽ

and H̃ are defined as the closure of Ẽ(Ω) in the norm of the space [W 1,2(Ω)]3 and
[L2(Ω)]3, respectively.

V is a Hilbert space endowed with the scalar product ((u,v)) =
∫
Ω
∂ui

∂xj

∂vi

∂xj
dx. H

and H̃ are Hilbert spaces with respect to the scalar product (u,v) =
∫
Ω
uivi dx, Ṽ

is a Hilbert space with the scalar product ((u,v))1,2 = (u,v)[W 1,2(Ω)]3 and V θ is a
Hilbert space with the scalar product ((ψ, ϑ))θ =

∫
Ω

∂ψ
∂xj

∂ϑ
∂xj
dx. The scalar product

both in L2(Ω) and L2(Ω) is denoted by (·, ·). In the paper, A∗ denotes the dual
space of a Hilbert space A. The norms of V , V θ are denoted by ‖ · ‖, ‖ · ‖θ.
By the Riesz representation theorem, we can identify H and H∗, L2(Ω) and

L2(Ω)∗, and have the inclusions

V ⊂ H ≡ H∗ ⊂ V ∗,

V θ ⊂ L2(Ω) ≡ L2(Ω)∗ ⊂ (V θ)∗,
Ṽ ⊂ H̃ ≡ H̃∗ ⊂ Ṽ ∗,

W 1,2(Ω) ⊂ L2(Ω) ≡ L2(Ω)∗ ⊂W 1,2(Ω)∗,

where each space is dense in the next one and the imbeddings are continuous.

We define Banach spaces X, X0, Xθ, Xθ
0 , X̃, X̃θ, Y , Y θ, Xα and Xθ

α. Let
D(0, T ) be the space of C∞([0, T ]) functions with a compact support contained in

(0, T ). Then X = {u ∈ L2(0, T,V ) ; u′ ∈ L2(0, T,V ), u′′ ∈ L2(0, T,V ∗)} and
‖u‖X = ‖u′‖L2(0,T,V ) + ‖u′′‖L2(0,T,V ∗) + ‖u(0)‖, where u′ is the derivative of u in
the sense of distribution and u′′ is the Schwartz derivative of u′ in the sense of the

imbedding V ⊂ H ≡ H∗ ⊂ V ∗. This means precisely that
∫ T

0

(
(v,u(t))

)
Φ′(t) dt = −

∫ T

0

(
(v,u′(t))

)
Φ(t) dt ∀v ∈ V , ∀Φ ∈ D(0, T )

and
∫ T

0
(u′(t),v)Φ′(t) dt = −

∫ T

0
〈u′′(t),v〉Φ(t) dt ∀v ∈ V , ∀Φ ∈ D(0, T ),

where 〈u′′(t),v〉 = 〈u′′(t),v〉〈V ∗,V 〉 and 〈V ∗,V 〉 is the duality between V ∗ and

V . For more details see [20]. Let X0 = {u ∈ X ; u(0) = 0}, Xθ = {ϑ ∈
L2(0, T, V θ) ; ϑ′ ∈ L2(0, T, V θ), ϑ′′ ∈ L2(0, T, (V θ)∗)} and ‖ϑ‖Xθ = ‖ϑ′‖L2(0,T,V θ)+

‖ϑ′′‖L2(0,T,(V θ)∗) + ‖ϑ(0)‖θ, where ϑ′ is the derivative of ϑ in the sense of dis-
tribution and ϑ′′ is the Schwartz derivative of ϑ′ in the sense of the imbedding

V θ ⊂ L2(Ω) ≡ L2(Ω)∗ ⊂ (V θ)∗. Let Xθ
0 = {ϑ ∈ X ; ϑ(0) = 0}.

Similarly we define X̃ = {u ∈ L2(0, T, Ṽ ) ; u′ ∈ L2(0, T, Ṽ ), u′′ ∈ L2(0, T, Ṽ ∗)}
and ‖u‖X̃ = ‖u′‖L2(0,T,Ṽ ) + ‖u′′‖L2(0,T,Ṽ ∗) + ‖u(0)‖Ṽ . Again, u

′ means the deriv-
ative of u in the sense of distribution and u′′ is the Schwartz derivative of u′ in
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the sense of the imbedding Ṽ ⊂ H̃ ≡ H̃∗ ⊂ Ṽ ∗. X̃θ = {ϑ ∈ L2(0, T,W 1,2(Ω)) ;

ϑ′ ∈ L2(0, T,W 1,2(Ω)) ; ϑ′′ ∈ L2(0, T,W 1,2(Ω)∗)}, ‖ϑ‖X̃θ = ‖ϑ′‖L2(0,T,W 1,2(Ω)) +
‖ϑ′′‖L2(0,T,W 1,2(Ω)∗) + ‖ϑ(0)‖W 1,2(Ω) and ϑ′ means the derivative of ϑ in the sense
of distribution and ϑ′′ is the Schwartz derivative of ϑ′ in the sense of the imbedding

W 1,2(Ω) ⊂ L2(Ω) ≡ L2(Ω)∗ ⊂W 1,2(Ω)∗.

We define Y = {[[f ,w]] ; f ∈ C([0, T ],V ∗), f ′ ∈ L2(0, T,V ∗), w ∈ V , f(0) −
ν((w, ·)) ∈ H}, ‖[[f ,w]]‖Y = ‖f ′‖L2(0,T,V ∗) + ‖w‖ + ‖f(0) − ν((w, ·))‖H , where
f ′ is the derivative of f in the sense of distribution. Similarly, Y θ = {[[f, w]] ;
f ∈ C([0, T ], (V θ)∗), f ′ ∈ L2(0, T, (V θ)∗), w ∈ V θ, f(0) − κ((w, ·))θ ∈ L2(Ω)},
‖[[f, w]]‖Y θ = ‖f ′‖L2(0,T,(V θ)∗) + ‖w‖θ + ‖f(0) − κ((w, ·))θ‖L2(Ω), where f ′ is the
derivative of f in the sense of distribution.

Let Xα = {u ∈ L2(0, T,W α,2(Ω)) ; u′ ∈ L2(0, T,W α,2(Ω)) ∩ L4(0, T,L2(Ω)),
u(0) = 0} and ‖u‖Xα = ‖u′‖L2(0,T,W α,2(Ω)) + ‖u′‖L4(0,T,L2(Ω)), where u′ is the
derivative of u in the sense of distribution, W α,2(Ω) = [Wα,2(Ω)]3 and Wα,2(Ω)

are Sobolev spaces with non-integer order derivatives (for their definition and prop-
erties see [12] or [13]). Xθ

α = {ϑ ∈ L2(0, T,Wα,2(Ω)) ; ϑ′ ∈ L2(0, T,Wα,2(Ω)) ∩
L4(0, T, L2(Ω)), ϑ(0) = 0} and ‖ϑ‖Xθ

α
= ‖ϑ′‖L2(0,T,Wα,2(Ω)) + ‖ϑ′‖L4(0,T,L2(Ω)),

where ϑ′ is the derivative of ϑ in the sense of distribution.

In the paper we will use the following imbedding theorems:

W 1,2(Ω) ↪→ L6(Ω), ‖u‖L6(Ω) � c1‖u‖W 1,2(Ω), ∀u ∈ W 1,2(Ω),(11)

W 1,2(Ω) ↪→ L4(∂Ω), ‖u‖L4(∂Ω) � c2‖u‖W 1,2(Ω), ∀u ∈ W 1,2(Ω),(12)

‖u‖H̃ � c3‖u‖Ṽ , ∀u ∈ Ṽ ,(13)

W 7/8,2(Ω) ↪→ L4(Ω), ‖u‖L4(Ω) � c4‖u‖W 7/8,2(Ω), ∀u ∈ W 7/8,2(Ω),(14)

W 7/8,2(Ω) ↪→ L3(Γ2), ‖u‖L3(Γ2) � c5‖u‖W 7/8,2(Ω), ∀u ∈ W 7/8,2(Ω),(15)

W 5/6,2(Ω) ↪→ L4(Ω), ‖u‖L4(Ω) � c6‖u‖W 5/6,2(Ω), ∀u ∈ W 5/6,2(Ω),(16)

‖u‖W 5/6,2(Ω) � c7‖u‖20/21W 7/8,2(Ω)
‖u‖1/21L2(Ω), ∀u ∈ W 7/8,2(Ω),(17)

W 5/6,2(Ω) ↪→ L12/5(Γ2), ‖u‖L12/5(Γ2) � c8‖u‖W 5/6,2(Ω), ∀u ∈ W 5/6,2(Ω).(18)

������ 1.1. Let us comment upon the items (11)–(18). It follows immediately
from Theorem 8.3.3.(i) in [12] that for k > 3/4, W k,2(Ω) ↪→ L4(Ω). Consequently,

(14) and (16) hold. (11)–(13) are classical results, see [12]. The interpolation in-
equality (17) follows from the definition of the spaces W α,2(Ω) in [13]. The items
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(15) and (18) follow from Theorem 8.3.3.(i) in [12] and Theorem 1.5.1.2 in [6]:

W 7/8.2(Ω) ↪→ W 3/8.3(Ω) ↪→ W 1/24.3(Γ2) ↪→ L3(Γ2)

and

W 5/6.2(Ω) ↪→ W 7/12,12/5(Ω) ↪→ W 1/6,12/5(Γ2) ↪→ L12/5(Γ2).

To simplify the paper we use the constant c instead of the constants c1–c8 from
(11)–(18). In the paper, the constant c grows with the time interval T . We now

define

b(u,v,w) =
∫

Ω

uj
∂vi
∂xj

wi dx,

C(u, ϑ, ϕ) =
∫

Ω

uj
∂ϑ

∂xj
ϕdx

for every u,v,w ∈ W 1,2(Ω) and every ϑ, ϕ ∈ W 1,2(Ω) and

br(u,v,w) =
∫

Γ2

ujnjviwi dS −
∫

Ω

ujvi
∂wi
∂xj
dx,

Cr(u, ϑ, ϕ) =
∫

Γ4∪Γ5
ujnjϑϕdS −

∫

Ω

ujϑ
∂ϕ

∂xj
dx

for every u,v ∈ W 7/8,2(Ω), w ∈ W 1,2(Ω) and every ϑ ∈ W 7/8,2(Ω), ϕ ∈ W 1,2(Ω).
Clearly,

br(u,v,w) = b(u,v,w), ∀u,v ∈ W 1,2(Ω),w ∈ V ,(19)

Cr(u, ϑ, ϕ) = C(u, ϑ, ϕ), ∀u ∈ W 1,2(Ω), ϑ ∈W 1,2(Ω), ϕ ∈ V θ.(20)

2. Weak formulation

Let us suppose that ũ, p and ϑ̃ are smooth solutions to the system (1)–(10). It is
a standard procedure to show that

(ũ′,v) + ν((ũ,v)) + b(ũ, ũ,v)

=
∫

Γ2

σivi dS + ((ϑ̃− ϑref)g,v) ∀v ∈ V ,

(ϑ̃′, ϕ) + κ((ϑ̃, ϕ))θ + C(ũ, ϑ̃, ϕ)

= (Q,ϕ) +
∫

Γ4

κωϕdS −
∫

Γ5

κγ(ϑ̃− ϑδ)ϕdS ∀ϕ ∈ V θ.
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Let us denote

〈f ,v〉 =
∫

Γ2

σivi dS ∀v ∈ V ,

〈
fθ, ϕ

〉
= (Q,ϕ) +

∫

Γ4

κωϕdS ∀ϕ ∈ V θ.

It is clear that if the data are sufficiently smooth then f ∈ C([0, T ],V ∗), f ′ ∈
L2(0, T,V ∗), fθ ∈ C([0, T ], (V θ)∗) and (fθ)′ ∈ L2(0, T, (V θ)∗). This suggests the

following weak formulation of the system (1)–(10):

����	�� 2.1 (weak formulation). Let ν, κ and γ be positive constants and let

f ∈ C([0, T ],V ∗), f ′ ∈ L2(0, T,V ∗),(21)

fθ ∈ C([0, T ], (V θ)∗), (fθ)′ ∈ L2(0, T, (V θ)∗),(22)

ũ0 ∈ Ṽ , ϑ̃0 ∈W 1,2(Ω),(23)

ϕ ∈ X̃, � ∈ X̃θ,(24)

ϕ(0) = ũ0 on Γ1,(25)

�(0) = ϑ̃0 on Γ3,(26)

f(0)− ν((ũ0, ·))− b(ũ0, ũ0, ·) ∈ H ,(27)

g ∈ L∞(Ω),(28)

ϑref , ϑ
′
ref ∈ L2(0, T, L2(Ω)),(29)

ϑδ, ϑ
′
δ ∈ L2(0, T, L2(Γ5)),(30)

fθ(0)− κ((ϑ̃0, ·))θ − C(ũ0, ϑ̃0, ·)(31)

−
∫

Γ5

κγ(ϑ̃0 − ϑδ(0)) · dS ∈ L2(Ω).

Let us denote u0 = ũ0 − ϕ(0) and ϑ0 = ϑ̃0 − �(0). Clearly, u0 ∈ V and ϑ0 ∈ V θ.

Find u ∈ X0 and ϑ ∈ Xθ
0 satisfying, for every v ∈ V and ϕ ∈ V θ,

(u′ +ϕ′,v) + ν
(
(u+ϕ+ u0,v)

)
+ b(u+ϕ+ u0,u+ϕ+ u0,v)(32)

= 〈f ,v〉+
(
(ϑ+ �+ ϑ0 − ϑref)g,v

)
,

(ϑ′ + �′, ϕ) + κ
(
(ϑ+ �+ ϑ0, ϕ)

)
θ
+ C(u+ϕ+ u0, ϑ+ �+ ϑ0, ϕ)(33)

=
〈
fθ, ϕ

〉
−

∫

Γ5

κγ(ϑ+ �+ ϑ0 − ϑδ)ϕdS.

The pair ũ = u+ ϕ+ u0, ϑ̃ = ϑ+ �+ ϑ0 is called the weak solution of the system
(1)–(10).
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������ 2.2. The conditions (25) and (26) are compatibility conditions. The

conditions (27) and (31) follow from the fact that ũ ∈ X̃ and ϑ̃ ∈ X̃θ. The functions
g, ϑref and ϑδ defined in (28), (29) and (30) are supposed to depend on the time and
space variables.

������ 2.3. Since u + u0 + ϕ ∈ X̃ and ϑ + � + ϑ0 ∈ X̃θ, it follows from
(19), (20) and the definitions of X̃ and X̃θ that Problem 2.1 does not change if

b(u+ϕ+u0,u+ϕ+u0,v) in (32) or C(u+ϕ+u0, ϑ+�+ϑ0, ϕ) in (33) is replaced
by br(u + ϕ + u0,u+ ϕ + u0,v) or Cr(u + ϕ + u0, ϑ+ �+ ϑ0, ϕ), respectively. It

will be more convenient, since we are working with Sobolev spaces with non-integer
order derivatives, to use the following form of (32) and (33):

(u′,v) + ν
(
(u,v)

)
= 〈f ,v〉+

(
(ϑ+ �+ ϑ0 − ϑref)g,v

)
− (ϕ′,v)− ν

(
(ϕ+ u0,v)

)

− br(u+ϕ+ u0,u+ϕ+ u0,v),

(ϑ′, ϕ) + κ
(
(ϑ, ϕ)

)
θ
=

〈
fθ, ϕ

〉
−

∫

Γ5

κγ (ϑ+ �+ ϑ0 − ϑδ)ϕdS − (�′, ϕ)

− κ((�+ ϑ0, ϕ))θ − Cr(u +ϕ+ u0, ϑ+ �+ ϑ0, ϕ).

������ 2.4. The function f in (21) is sufficiently general. It is possible to

show that the choice f = 0 leads to the “do nothing” boundary conditions on Γ2,
that is Tij(ũ, p)nj = 0. If we set 〈f ,v〉 =

∫
Γ2
σivi dS for every v ∈ V , then we get

the boundary conditions (5) on Γ2. Similarly, the choice 〈f ,v〉 = −P
∫
Γ2
vini dS for

every v ∈ V leads to the boundary conditions (∗) on Γ2 (see Remark 0.1 and [8]).

3. Existence theorem

Let ν, κ and γ be positive constants and let f , fθ, ũ0, ϑ̃0,ϕ, �, g, ϑref , ϑδ satisfy
(21)–(31).

Theorem 3.1. There exists a positive number T∗ = min(T, T1), T1 = T1(f , fθ,
ũ0, ϑ̃0,ϕ, �, g, ϑref , ϑδ) such that there exists a solution u ∈ X0, ϑ ∈ Xθ

0 of Problem

2.1 on (0, T∗).

Theorem 3.1 is the main result of the paper.

Definition 3.2. The map S fromX to Y is defined by S(u) = [[f ,w]], ∀u ∈ X ,
where 〈f(t), ·〉 = (u′(t), ·) + ν((u(t), ·)) for every t ∈ [0, T ] and w = u(0).

Definition 3.3. The map Sθ from Xθ to Y θ is defined by Sθ(ϑ) = [[fθ, ψ]],
∀ϑ ∈ Xθ,

〈
fθ(t), ·

〉
= (ϑ′(t), ·) + κ((ϑ(t), ·)) for every t ∈ [0, T ] and ψ = ϑ(0).
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Definition 3.4. The mapping P : X7/8 × Xθ
7/8 → Y is defined by P (u, ϑ) =

[[F ,0]] for every u ∈ X7/8 and ϑ ∈ Xθ
7/8, where

〈F ,v〉 = 〈f ,v〉 +
(
(ϑ+ �+ ϑ0 − ϑref)g,v

)
− (ϕ′,v)(34)

− ν
(
(ϕ+ u0,v)

)

− br(u+ϕ+ u0,u+ϕ+ u0,v) ∀v ∈ V .

Definition 3.5. The mapping P θ : X7/8×Xθ
7/8 → Y θ is defined by P θ(u, ϑ) =

[[F θ, 0]] for every u ∈ X7/8 and ϑ ∈ Xθ
7/8, where

〈
F θ, ϕ

〉
=

〈
fθ, ϕ

〉
−

∫

Γ5

κγ(ϑ+ �+ ϑ0 − ϑδ)ϕdS

− (�′, ϕ)− κ
(
(�+ ϑ0, ϕ)

)
θ

− Cr(u+ϕ+ u0, ϑ+ �+ ϑ0, ϕ) ∀ϕ ∈ V θ.

Definition 3.6. Let α ∈ (0, 1). Then Qα denotes the imbedding of X0 into Xα

and Qθα the imbedding of X
θ
0 into X

θ
α.

To prove Theorem 3.1, we will show that there exists a positive number T∗ =
min(T, T1), T1 = T1(f , fθ, ũ0, ϑ̃0,ϕ, �, g, ϑref , ϑδ), such that there exists a fixed point

of the mapping

Z : (u, ϑ) ∈ X7/8×Xθ
7/8 �−→ (Q7/8S−1P (u, ϑ), Qθ7/8(Sθ)−1P θ(u, ϑ)) ∈ X7/8×Xθ

7/8,

where Z is defined on (0, T∗). In the following lemmas we first show some useful

properties of P , S, Qα, P θ, Sθ and Qθα.

Lemma 3.7. Let T > 0, α ∈ (0, 1), M = {u ∈ L2(0, T,V ) ; u′ ∈ L2(0, T,V ∗)},
where u′ is the Schwartz derivative of u in the sense of the imbedding V ⊂ H ≡
H∗ ⊂ V ∗ and ‖u‖M = ‖u‖L2(0,T,V ) + ‖u′‖L2(0,T,V ∗) for every u ∈ M . Then

M ↪→↪→ L2(0, T,W α,2(Ω)).

����
. Let {um}∞m=1 ∈M and ‖um‖M � c <∞, ∀m ∈ N . Then there exists
a subsequence of {um}∞m=1 (we denote it again by {um}∞m=1) such that um → u in
L2(0, T,H) (see Theorem 2.1, Chapter 3 in [20]) and um → u in the weak topology

of L2(0, T,V ). Since V ↪→↪→ W α,2(Ω) ↪→ L2(Ω), it follows from [20], Chapter 3,
Lemma 2.1 that for every η > 0 there exists a cη > 0 such that ‖u‖W α,2(Ω) �
η‖u‖ + cη‖u‖L2(Ω) for every u ∈ V . Therefore, we have for every m ∈ N and
a.e. t ∈ (0, T ) that u(t),um(t) ∈ V , ‖u(t) − um(t)‖W α,2(Ω) � η‖u(t) − um(t)‖ +

89



cη‖u(t)− um(t)‖L2(Ω) and

(∫ T

0
‖u(t)− um(t)‖2W α,2(Ω) dt

)1/2

�
(∫ T

0
(η‖u(t)− um(t)‖ + cη‖u(t)− um(t)‖H)

2 dt

)1/2

�
(∫ T

0
η2‖u(t)− um(t)‖2 dt

)1/2
+

(∫ T

0
c2η‖u(t)− um(t)‖2H dt

)1/2

= η‖u− um‖L2(0,T,V ) + cη‖u− um‖L2(0,T,H).

Since ‖u − um‖L2(0,T,V ) is a bounded sequence and ‖u − um‖L2(0,T,H) → 0 for
m→∞, it follows that lim sup

m→∞
‖u−um‖L2(0,T,W α,2(Ω)) � cη. Now, η is an arbitrary

positive number and therefore um → u in L2(0, T,W α,2(Ω)). The proof is complete.

�

Lemma 3.8. Let T > 0, α ∈ (0, 1) and letM be defined as in Lemma 3.7. Then
M ↪→↪→ L4(0, T,H).

����
. As in Lemma 3.7 we consider the sequence {um}∞m=1 ∈ M , where

‖um‖M = ‖um‖L2(0,T,V ) + ‖u′m‖L2(0,T,V ∗) � c < ∞, ∀m ∈ N and um → u in
L2(0, T,H). To prove Lemma 3.8, we will show that ‖um − u‖L4(0,T,H) → 0 for

m → ∞. First, it is easy to realize that for every m ∈ N there exists a tm ∈ [0, T ]
such that ‖um(tm)‖H � c1, where c1 does not depend on m. Next, we can also

suppose that ‖um‖L∞(0,T,H) � c1 for all m ∈ N . This follows from the fact that

d
dt
‖um(t)‖2H = 2 〈u′m(t),um(t)〉 ∀m ∈ N, a.e. t ∈ (0, T )

and from the inequalities

‖um(t)‖2H � ‖um(tm)‖2H +
∣∣∣2

∫ t

tm

〈u′m(s),um(s)〉 ds
∣∣∣

� c21 + 2‖u′m‖L2(0,T,V ∗)‖um‖L2(0,T,V ) � c21 + 2c
2, ∀m ∈ N, t ∈ [0, T ].

Therefore, we can write

‖um − u‖L4(0,T,H) =
(∫ T

0
‖um(t)− u(t)‖4H dt

)1/4

�
(
‖um − u‖2L∞(0,T,H)

∫ T

0
‖um(t)− u(t)‖2H dt

)1/4

= ‖um − u‖1/2L∞(0,T,H)‖um − u‖1/2L2(0,T,H)
and the proof follows easily. �
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Lemma 3.9. Let T > 0 and α ∈ (0, 1). Then X0 ↪→↪→ Xα.

����
. The proof is a consequence of Lemmas 3.7 and 3.8: Obviously,

X0 ⊂ Xα. Let now {um}∞m=1 be a bounded sequence inX0, that is ‖u′m‖L2(0,T,V )+
‖u′′m‖L2(0,T,V ∗) � c < ∞, ∀m ∈ N . As a consequence of Lemma 3.7 and Lemma

3.8 we can suppose that there exists U ∈ M (for M see Lemma 3.7) such that
U ∈ L2(0, T,W α,2(Ω)) ∩ L4(0, T,H) and u′m → U both in L2(0, T,W α,2(Ω)) and

L4(0, T,H). Let u(t) =
∫ t
0 U(s) ds, ∀t ∈ [0, T ]. One can see then that u ∈ X0 ⊂ Xα

and ‖u−um‖Xα = ‖u′−u′m‖L2(0,T,W α,2(Ω))+‖u′−u′m‖L4(0,T,L2(Ω)) → 0 form→∞.
The proof is complete. �

Lemma 3.10. Let T > 0 and α ∈ (0, 1). Then Xθ
0 ↪→↪→ Xθ

α.

����
. The same as for Lemmas 3.7, 3.8 and 3.9. �

Lemma 3.11. The operator S from Definition 3.2 is a linear continuous

one-to-one operator from X onto Y . Moreover, ‖u‖X � c‖Su‖Y , where c =
2 + ν1/2 + ν−1/2 + ν−1.

����
. For the proof see e.g. [11]. �

Lemma 3.12. The operator Sθ from Definition 3.3 is a linear continuous
one-to-one operator from Xθ onto Y θ. Moreover, ‖ϑ‖Xθ � c‖Sθϑ‖Y θ , where c =

2 + κ1/2 + κ−1/2 + κ−1.

����
. The same as for Lemma 3.11. �

Lemma 3.13. The mapping P from Definition 3.4 maps X7/8 × Xθ
7/8 into

Y , ‖P (u, ϑ)‖Y � c(1 + T 1/84‖ϑ‖Xθ
7/8
+ T 1/42‖u‖2X7/8

), where c depends only on

‖g‖L∞(Ω), ‖f ′‖L2(0,T,V ∗), ‖�‖X̃θ , ‖ϑ′ref‖L2(0,T,L2(Ω)), ‖ϕ‖X̃ , ‖f(0) − ν((ũ0, ·)) −
b(ũ0, ũ0, ·)‖H , ‖ϑ̃0 − ϑref(0)‖L2(Ω), ‖u0‖ and the constants c1–c8 from (11)–(18).

����
. Let u ∈ X7/8 and ϑ ∈ Xθ
7/8. It follows from (19), (23) and (27) that

f(0) − ν((ũ0, ·)) − br(ũ0, ũ0, ·) ∈ H . We have from (23), (24), (28) and (29) that
(ϕ′(0), ·) ∈ H and ((ϑ̃0 − ϑref(0))g, ·) ∈ H . Therefore

‖F (0)‖H = ‖f(0)− (ϕ′(0), ·)− ν((ũ0, ·))(35)

− br(ũ0, ũ0, ·) +
(
(ϑ̃0 − ϑref(0))g, ·

)
‖H

� c(‖f(0)− ν((ũ0, ·))− b(ũ0, ũ0, ·)‖H

+ ‖ϕ‖X̃ + ‖ϑ̃0 − ϑref(0)‖L2(Ω)‖g‖L∞(Ω)),
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where F was defined in (34). We will now show that F ∈ L2(0, T,V ∗) by estimating

‖F ‖L2(0,T,V ∗). Clearly,

‖(ϕ′, ·)‖L2(0,T,V ∗) � c‖ϕ′‖L2(0,T,Ṽ ),(36)

‖ν((u0, ·))‖L2(0,T,V ∗) �
(∫ T

0
ν2‖u0‖2 dt

)1/2
= νT 1/2‖u0‖,(37)

‖ν((ϕ, ·))‖L2(0,T,V ∗) � ν‖ϕ‖L2(0,T,Ṽ ),(38)

‖
(
(ϑ+ �+ ϑ0 − ϑref)g, ·

)
‖L2(0,T,V ∗) � cT 1/2‖g‖L∞(Ω)

×
(
‖ϑ‖Xθ

7/8
+ ‖�‖X̃θ + ‖ϑ0‖θ + ‖ϑref‖L2(0,T,L2(Ω))

)
.

(39)

Let us denote for simplicity w = u+ϕ+ u0. Let v ∈ V . Then ∀t ∈ [0, T ]

|br(w(t),w(t),v)| �
∫

Ω

∣∣wj(t)wi(t)
∂vi
∂xj

∣∣dx+
∫

Γ2

|wj(t)njwi(t)vi| dS

� c
(
‖w(t)‖2L4(Ω) + ‖w(t)‖2L3(Γ2)

)
‖v‖

� c
(
‖u(t)‖W 7/8,2(Ω) + ‖ϕ(t)‖Ṽ + ‖u0‖

)2 ‖v‖

� c
(
T 1/2‖u′‖L2(0,T,W 7/8,2(Ω)) + ‖ϕ(t)‖Ṽ + ‖u0‖

)2
‖v‖.

Consequently,

‖br(w,w, ·)‖L2(0,T,V ∗)(40)

�
(∫ T

0
c2(T 1/2‖u′‖L2(0,T,W 7/8,2(Ω)) + ‖ϕ(t)‖Ṽ + ‖u0‖)4 dt

)1/2

� c
(
T 3/2‖u′‖2L2(0,T,W 7/8,2(Ω)) + ‖ϕ‖2L4(0,T,Ṽ ) + T

1/2‖u0‖2
)

� c
(
T 3/2‖u‖2X7/8

+ ‖ϕ‖2
X̃
+ T 1/2‖u0‖2

)
.

The estimate of the norm of F in L2(0, T,V ∗) follows from (36)–(40).

Let us now estimate F ′ in the norm of L2(0, T,V ∗). To do this, we note first that

the derivative of br(u+ϕ+u0,u+ϕ+u0, ·) in L2(0, T,V ∗) is br(u′ +ϕ′,u+ϕ+
u0, ·)+br(u+ϕ+u0,u

′+ϕ′, ·). This follows for example from Theorem (1.7), p. 153,
in [5]. Therefore, we will estimate ‖br(u′+ϕ′,u+ϕ+u0, ·)‖L2(0,T,V ∗). The estimate
of ‖br(u+ϕ+u0,u

′+ϕ′, ·)‖L2(0,T,V ∗) proceeds in the same way. For a.e. t ∈ (0, T )
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and for every v ∈ V we have

|br
(
u′(t) + ϕ′(t),u(t) +ϕ(t) + u0,v

)
|

=

∣∣∣∣
∫

Ω

(
u′i(t) + ϕ

′
i(t)

)(
uj(t) + ϕj(t) + u0j

) ∂vi
∂xj
dx

+
∫

Γ2

(
u′j(t) + ϕ

′
j(t)

)
nj

(
ui(t) + ϕi(t) + u0i

)
vi dS

∣∣∣∣
� ‖v‖‖u′(t) +ϕ′(t)‖L4(Ω)‖u(t) +ϕ(t) + u0‖L4(Ω)

+ ‖v‖L4(∂Ω)‖u′(t) +ϕ′(t)‖L12/5(Γ2)‖u(t) +ϕ(t) + u0‖L3(Γ2)

� c‖v‖
(
‖u′(t)‖W 5/6,2(Ω) + ‖ϕ′(t)‖Ṽ

)

×
(
‖u(t)‖W 7/8,2(Ω) + ‖ϕ(t)‖Ṽ + ‖u0‖

)

� c‖v‖
(
‖u′(t)‖20/21

W 7/8,2(Ω)‖u
′(t)‖1/21L2(Ω) + ‖ϕ′(t)‖Ṽ

)

×
(
T 1/2‖u‖X7/8 + (1 + T

1/2)‖ϕ‖X̃ + ‖u0‖
)

and this implies that

‖br(u′ +ϕ′,u+ϕ+ u0, ·)‖L2(0,T,V ∗)(41)

� c
(
T 1/2‖u‖X7/8 + (1 + T

1/2)‖ϕ‖X̃ + ‖u0‖
)

×
(∫ T

0

(
‖u′(t)‖20/21

W 7/8,2(Ω)‖u
′(t)‖1/21L2(Ω) + ‖ϕ′(t)‖Ṽ

)2
dt

)1/2

� c
(
T 1/2‖u‖X7/8 + (1 + T

1/2)‖ϕ‖X̃ + ‖u0‖
)

×
([∫ T

0
‖u′(t)‖2W 7/8,2(Ω) dt

]10/21[∫ T

0
‖u′(t)‖4L2(Ω) dt

]1/84
T 1/84

+
[∫ T

0
‖ϕ′(t)‖2

Ṽ
dt

]1/2)

� c
(
T 1/2‖u‖X7/8 + (1 + T

1/2)‖ϕ‖X̃ + ‖u0‖
)(

‖u‖X7/8T
1/84 + ‖ϕ‖X̃

)

� c
(
T 1/42‖u‖2X7/8

+ ‖ϕ‖2
X̃
+ ‖u0‖2

)
.

In the second inequality of (41) we have used the fact that u′ ∈ L4(0, T,L2(Ω)). To
complete the estimate of F ′ in the norm of L2(0, T,V ∗), it is sufficient to realize that
ϕ′′ or ν((ϕ′, ·)) is respectively the derivative of (ϕ′, ·) or ν

(
(ϕ+u0, ·)

)
in L2(0, T,V ∗)

and

‖ϕ′′‖L2(0,T,V ∗) � ‖ϕ‖X̃ ,(42)

‖ν((ϕ′, ·))‖L2(0,T,V ∗) � ν‖ϕ‖X̃ .(43)
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Since
(
(ϑ′+ �′−ϑ′ref)g, ·

)
is the derivative of

(
(ϑ+ �+ϑ0−ϑref)g, ·

)
in L2(0, T,V ∗)

and

(∫ T

0
‖ϑ′(t)‖2L2(Ω) dt

)1/2

� c

(∫ T

0
‖ϑ′(t)‖2W 5/6,2(Ω) dt

)1/2

� c

(∫ T

0
‖ϑ′(t)‖40/21

W 7/8,2(Ω)‖ϑ
′(t)‖2/21L2(Ω) dt

)1/2

� c

(∫ T

0
‖ϑ′(t)‖2W 7/8,2(Ω) dt

)10/21(∫ T

0
‖ϑ′(t)‖4L2(Ω) dt

)1/84
T 1/84

= cT 1/84‖ϑ′‖20/21
L2(0,T,W 7/8,2(Ω))‖ϑ

′‖1/21L4(0,T,L2(Ω)) � cT 1/84‖ϑ‖Xθ
7/8
,

we have

‖
(
(ϑ′ + �′ − ϑ′ref)g, ·

)
‖L2(0,T,V ∗) � c‖g‖L∞(Ω)

(
T 1/84‖ϑ‖Xθ

7/8
(44)

+ ‖�‖X̃θ + ‖ϑ′ref‖L2(0,T,L2(Ω))
)
.

It now follows from (35), (41), (42), (43) and (44) that

‖P (u, ϑ)‖Y � c
(
1 + T 1/84‖ϑ‖Xθ

7/8
+ T 1/42‖u‖2X7/8

)
,

where c depends only on ‖f(0)−ν((ũ0, ·))−b(ũ0, ũ0, ·)‖H , ‖f ′‖L2(0,T,V ∗), ‖g‖L∞(Ω),

‖ϑ̃0− ϑref(0)‖L2(Ω), ‖�‖X̃θ , ‖ϑ′ref‖L2(0,T,L2(Ω)), ‖ϕ‖X̃ , ‖u0‖ and the constants c1–c8
from (11)–(18). The proof is complete. �

Lemma 3.14. The mapping P θ from Definition 3.5 maps X7/8 ×Xθ
7/8 into Y

θ

and ‖P θ(u, ϑ)‖Y θ � c
(
1+T 1/42‖ϑ‖2

Xθ
7/8
+T 1/42‖u‖2X7/8

)
, where c depends on ‖�‖X̃θ ,

‖ϕ‖X̃ , ‖ϑ0‖θ, ‖fθ(0)−
∫
Γ5
κγ(ϑ̃0−ϑδ(0))· dS−κ((ϑ̃0, ·))θ−C(ũ0, ϑ̃0, ·)‖L2(Ω), ‖�‖X̃θ ,

‖u0‖, ‖ϑ′δ‖L2(0,T,L2(Γ5)) and the constants c1–c8 from (11)–(18).

����
. The same as for Lemma 3.13. �

Lemma 3.15. Let u ∈ X7/8, ϑ ∈ Xθ
7/8 and let w ∈ X0 solve the equation

(w′,v) + ν((w,v)) = 〈f ,v〉 +
(
(ϑ+ �+ ϑ0 − ϑref)g,v

)
(45)

− (ϕ′,v)− ν
(
(ϕ+ u0,v)

)

− br(u +ϕ+ u0,u+ϕ+ u0,v), ∀v ∈ V .
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Then ‖w‖X7/8 � c(1 + ‖w‖X0).

����
. Clearly,

‖w′‖L∞(0,T,H) � ‖w′(0)‖H + ‖w‖X0 .

Therefore

‖w‖X7/8 = ‖w′‖L2(0,T,W 7/8,2(Ω)) + ‖w′‖L4(0,T,L2(Ω))(46)

� c‖w′‖L2(0,T,V ) + T 1/4‖w′‖L∞(0,T,H)
� c‖w‖X0 + T

1/4 (‖w′(0)‖H + ‖w‖X0) .

It follows from (45) that (w′(0),v) = 〈f(0),v〉 +
(
(ϑ̃0 − ϑref(0))g,v

)
− (ϕ′(0),v) −

ν((ũ0,v)) − b(ũ0, ũ0,v) for every v ∈ V . We get from here and from (35) that
‖w′(0)‖H � ‖f(0)−ν((ũ0, ·))−b(ũ0, ũ0, ·)‖H+‖ϕ‖X̃+‖ϑ̃0−ϑref(0)‖L2(Ω)‖g‖L∞(Ω).

The proof now follows from (46). �

Lemma 3.16. Let u ∈ X7/8, ϑ ∈ Xθ
7/8 and let w ∈ Xθ

0 solve the equation

(w′, ϕ) + κ((w,ϕ))θ =
〈
fθ, ϕ

〉
−

∫

Γ5

κγ(ϑ+ �+ ϑ0 − ϑδ)ϕdS

− (�′, ϕ)− κ((�+ ϑ0, ϕ))θ

− Cr(u+ϕ+ u0, ϑ+ �+ ϑ0, ϕ) ∀ϕ ∈ V θ.

Then ‖w‖X7/8 � c(1 + ‖w‖Xθ
0
).

����
. The same as for Lemma 3.15. �

����
 of Theorem 3.1. It follows from Lemmas 3.11, 3.12, 3.13, 3.14, 3.15 and
3.16 that for every u ∈ X7/8 and ϑ ∈ Xθ

7/8 we have

‖Q7/8S−1P (u, ϑ)‖X7/8 + ‖Qθ7/8(Sθ)−1P θ(u, ϑ))‖Xθ
7/8

(47)

� c
(
1 + T 1/42‖u‖2X7/8

+ T 1/42‖ϑ‖2Xθ
7/8

)
,

where c depends only on ‖ϑ0‖θ, ‖ϑ′δ‖L2(0,T,L2(Γ5)), ‖g‖L∞(Ω), ‖ϑ̃0 − ϑref(0)‖L2(Ω),
‖�‖X̃θ , ‖ϑ′ref‖L2(0,T,L2(Ω)), ‖u0‖, ‖f ′‖L2(0,T,V ∗), ‖ϕ‖X̃ , ‖u0‖, ‖f(0) − ν((ũ0, ·)) −
b(ũ0, ũ0, ·)‖H , ‖fθ(0)−

∫
Γ5
κγ(ϑ̃0−ϑδ) · dS−κ((ϑ̃0, ·))θ−C(ũ0, ϑ̃0, ·)‖L2(Ω) and the

constants c1–c8 from (11) – (18). It follows from Lemmas 3.9 and 3.10 and from (47)

that the mapping Z (for its definition see the text following Definition 3.6) is compact
and maps the convex set H = {(u, ϑ) ∈ X7/8 × Xθ

7/8 ; ‖u‖X7/8 + ‖ϑ‖Xθ
7/8

� 2c}
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into itself if it is defined on the time interval (0, T∗), where T∗ = min(T, T1) and

T1 = (1/2c)84. The mapping Z is continuous on H — this can be proved using the
same method as in the proof of Lemma 3.13. It follows from the Schauder principle
(see e.g. [3], Theorem 7.5.5) that there exists a fixed point of Z in H which is a

solution of Problem 2.1. The proof of Theorem 3.1 is complete. �

4. Uniqueness theorem

Theorem 4.1. The solution u ∈ X0, ϑ ∈ Xθ
0 from Theorem 3.1 is unique.

����
 (briefly). Let us assume that u1 ∈ X0, ϑ1 ∈ Xθ
0 and u2 ∈ X0, ϑ2 ∈ Xθ

0

are two solutions from Theorem 3.1. The difference u = u1 − u2, ϑ = ϑ1 − ϑ2

satisfies, for every v ∈ V and ψ ∈ V θ, the identities

(u′,v) + ν((u,v)) = (ϑg,v)− b(u,u2 +ϕ+ u0,v)− b(u1 +ϕ+ u0,u,v),

(ϑ′, ψ) + κ((ϑ, ψ))θ = −
∫

Γ5

κγϑψ dS − C(u, ϑ2 + �+ ϑ0, ψ)− C(u1 +ϕ+ u0, ϑ, ψ).

Therefore we get

1
2
d
dt
‖u‖2H + ν‖u‖2 � c‖ϑ‖2L2(Ω) + c‖u‖2H + c(‖u1‖L∞(0,T,V )(48)

+ ‖ϕ‖L∞(0,T,Ṽ ) + ‖u0‖
+ ‖u2‖L∞(0,T,V ))‖u‖7/4‖u‖1/4H ,

1
2
d
dt
‖ϑ‖2L2(Ω) + κ‖ϑ‖2 � c‖ϑ‖2L2(Ω) +

κ

3
‖ϑ‖2 + c(‖u1‖L∞(0,T,V )(49)

+ ‖ϕ‖L∞(0,T,Ṽ ) + ‖u0‖)‖ϑ‖7/4‖ϑ‖
1/4
L2(Ω)

+ c(‖ϑ2‖L∞(0,T,V θ) + ‖�‖L∞(0,T,W 1,2(Ω))

+ ‖ϑ0‖V θ )‖u‖3/4‖u‖1/4H ‖ϑ‖3/4‖ϑ‖1/4L2(Ω)
�

(
c‖ϑ‖2L2(Ω) +

κ

3
‖ϑ‖2

)
+

(
c‖ϑ‖2L2(Ω) +

κ

3
‖ϑ‖2

)

+
(ν
6
‖u‖2 + c‖u‖2H +

κ

3
‖ϑ‖2 + c‖ϑ‖2L2(Ω)

)
,

where the constant c depends only on the data and the solutions u1, ϑ1 and u2, ϑ2.

It follows from (48) and (49) that

d
dt
‖u‖2H +

ν

3
‖u‖2 � c‖u‖2H + c‖ϑ‖2L2(Ω),(50)
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d
dt
‖ϑ‖2L2(Ω) � c‖ϑ‖2L2(Ω) +

ν

3
‖u‖2 + c‖u‖2H(51)

and therefore by summing (50) and (51) we conclude that

(52)
d
dt
(‖u‖2H + ‖ϑ‖2L2(Ω)) � c(‖u‖2H + ‖ϑ‖2L2(Ω)).

Since u(0) = 0 and ϑ(0) = 0 the proof follows immediately from (52) and the
Gronwall lemma. �
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