
Applications of Mathematics

Štěpán Klapka; Petr Mayer
Aggregation/disaggregation method for safety models

Applications of Mathematics, Vol. 47 (2002), No. 2, 127–137

Persistent URL: http://dml.cz/dmlcz/134490

Terms of use:
© Institute of Mathematics AS CR, 2002

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/134490
http://dml.cz


47 (2002) APPLICATIONS OF MATHEMATICS No. 2, 127–137

AGGREGATION/DISAGGREGATION METHOD FOR

SAFETY MODELS*

Štěpán Klapka, Petr Mayer, Praha

Abstract. The paper concerns the possibilities for mathematical modelling of safety
related systems (equipment oriented on safety). Some mathematical models have been re-
quired by the present European Standards for the railway transport. We are interested
in the possibility of using Markov’s models to meet these Standards. In the text an ex-
ample of using that method in the interlocking equipment life cycle is given. An efficient
aggregation/disaggregation method for computing some characteristics of Markov chains is
presented.

Keywords: Markov chain, stochastic matrix, stationary probability vector, aggrega-
tion/disaggregation algorithms
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1. Introduction

The life cycle of software (SW) is usually divided into several phases. Such phases
are specification, implementation, integration, verification and testing, and mainte-
nance. The costs of the specification error correction are positively related to the
time of detection. To decrease the development costs it is essential to verify the
specification or the SW design before or at the beginning of the implementation
phase. Sometimes this verification changes the requirements needed by the system,
on hardware architecture (HW). Generally, formal methods, which use mathematical
theories to analyse the specification process, are applied to solve problems related to
the changes made in the requirements. Following this, analysis and research are car-
ried out, the results of which are used in the subsequent phases of SW development.
PSM (Probabilistic Structured Modelling) is used to test certain new conceptions

in AZD Praha Company Ltd. This model originates from a finite state machine,
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Figure 1. The GSPN model of PRV for ABE-1.

which is determined by logical connections and by probability models of faults. For
the construction of the final model, the Stochastic Automata Network (SAN) or the
Stochastic Petri Nets (SPN), see Fig. 1, are used. The tendency for application
of quantitative risk analysis suggested by the European Standards is EN 50 159-1,
EN 50 126, EN 50 129, EN 50 128. The notion of “safety” is defined as the probability
that faults are either non-existent or exist but are detected. A detailed explanation
regarding this probability may be found in [3] together with the Markov simple
absorption model for safety. The analytical solution of simple absorption models for
several configurations of critical application are mentioned in [10]. Approaching the
Markov models in real life increases the number of states. This procedure is known
as the state space explosion. It is very difficult to obtain an analytical or numerical
solution for such a huge model. If it is modelled by ergodic DTMC (Discrete Time
Markov Chain), it is possible to use some of the steady state solution technology.

2. Markov Models

Before passing on to the Markov model, it is important to note that most of
the analytical utilities such as several kinds of Stochastic Petri Nets (SRN, GSPN,
QPN) use some form of Markov modelling. These are explained in greater detail in
references [1], [2], [8]. The basic terminology and methodology for modelling by a
Markov chain is also available in [11], [12]. A stochastic process is a set of random
variables {X(t) ; t ∈ T } which are defined on a probability space, indexed by a
parameter t, where t is a variable from the parameter space T . The variable X(t) is
an observation at time t. If T is discrete, it is referred to as a discrete time stochastic
process. Conversely, if T is continuous the process is known as a continuous time
stochastic process. A stochastic process is stationary if it is invariant with respect
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to time delay. The value that the variable X(t) reaches is known as the state. The
set of states, that is the state space, can be discrete or continuous.
The Markov process is a stochastic process which satisfies the memoryless condi-

tion known as the Markov property, as shown below:

Prob{X(t) � x | X(t0) = x0, . . . , X(tn) = xn}(1)

= Prob{X(t) � x | X(tn) = xn}.

If the departure of the state X(t) is dependent on the parameter t, the Markov
process is referred to as nonhomogeneous. If not, it is referred to as homogeneous.
If the state space of the Markov process is discrete, it is called a Markov chain. In
this case a subset of natural numbers is chosen.
Two types of Markov chains may be identified. These are discrete time DTMC and

continuous time CTMC. When the time is continuous (CTMC) the Markov property
causes an exponential distribution of the time which is spent in a fixed state. When
the time is discrete the Markov property causes a geometrical distribution. As an
example of CTMC, one may see a simple model for the life cycle of a safe critical
system (see Fig. 2). This system can be described in the following four different
stages and transition rates. These are:
1. Faultless state.
2. State when a detectable fault exists.
3. State when a second fault has occurred, which makes it impossible for the first
to be detected. This is considered as a highly dangerous state.

4. The repairing stage. It is risky if you are not equipped with resources which
need to be replaced.

4 1 2 3
ω λ1 λ2

δ

γ

�
Figure 2. Life cycle example.

In Fig. 2, λ1 is the rate of simple detectable faults, λ2 is the rate of the second
fault, δ is the rate of the fault detection, γ is the rate of how often the system is
replaced, ω is the rate of repair. The following infinitesimal generator Q describes
Homogenous Continuous Time Markov Chain:

(2) Q =




−λ1 λ1 0 0

0 −δ − λ2 λ2 δ

γ 0 −γ 0

ω 0 0 −ω



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When the replacement of a system is not essential, then γ and ω are equal to zero
and the states 3 and 4 are Absorption States. It is impossible to get away from an
Absorption State. The system persists in a fixed state so the probability is one. The
following system of ordinary differential equations with constant coefficients describes
the changes of the equipment at a time t, where u is the vector of probability that
the equipment is in a given state at time t:

(3)
duT

dt
= QuT , u(t) =

(
u1(t), . . . , un(t)

)
.

For electronical equipment which works in time steps, it is natural to use the DTMC
model. The purpose of this model is to verify whether the algorithm solves fault
situations. The usual situations are an I/O subsystem, bus system, communication
subsystem, and protocols.
DTMC are established by a transient matrix P (k) = (p(k)ij) ∈ �

N×N which
describes one step transition probabilities in step k. The elements of the matrix are
the probabilities of transition from one state to another in the k-th time step:

(4) p(k)ij = Prob{Xk+1 = j | Xk = i},

while the probability that the process in the n-th step goes from the state i to the
state j is defined by the matrix

P (m)(n) = (p(m)(n)ij ),

p(m)(n)ij = Prob{Xm+n = j | Xm = i}.

For P (m)(n) we can write

P (m)(n) = P (m)P (m+ 1) . . . P (m+ n− 1).

For any l the Chapman-Kolmogorov equation holds:

P (m)(n) = P (m)(l)P (m+ l)(n−l).

In the case of homogenous DTMC, this means that when one step transition matrices
do not depend on the step number, i.e. P (k) = P (l) for any k, l, we can simplify the
above formulas. We can write

P (n) = Pn.

For the description of the process we can use a nonnegative vector u with the sum of
all elements equal to one. Each element u

(k)
i of the vector describes the probability
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for the Markov chain to be in the state i in the step k. The formula below shows us
how we can calculate the probability vector un+m at the time n+m from the known
vector un at the time n:

u(n+m)T = u(n)
T

Pm.

One very important information is the solution of the equation

(5) uT = uT P, uT e = 1,

where e is the vector of all ones. The solution of (5) can be interpreted as the long
term behaviour of the Markov chain, usually it is called the stationary probability
vector.

������. If for solving problem (3) we use the explicit Euler method with a
small enough time step τ we get

u(t+ τ) = u(t) + τQu(t) = (I + τQ)u(t)

where the matrix I + τQ is stochastic. With a fixed time step we can analyse
problem (3) as a DTMC instead of CTMC.

3. Aggregation/disaggregation algorithm

Now we address some effective methods for computing stationary probability vec-
tors. We will analyze aggregation/disaggregation methods which show very good
behaviour especially in the case of large Markov chains. It is well known from litera-
ture ([6], [11]) that such type of methods is extremely good in the case of irreducible,
but nearly completely decomposable matrices. Nonetheless, even if the matrix is
only irreducible, the method is very useful.
Now we shall define a mapping g = 1, . . . , N �−→ 1, . . . , n which maps the indices

to aggregation groups. Using g we define communication operators, the restrictionR,
and for x > 0 the prolongation operator S(x)

(Rx)i =
∑

g(j)=i

xj , x ∈ �N ,

(S(x)z)i = zg(i)
xi

(Rx)g(i)
.

For nonzero elements of R and S(x) we can write

Rg(j)j = 1,(6)

S(x)ig(i) =
xi

(Rx)g(i)
.(7)
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Algorithm 1. SPV (P, T, Y, s, t)

Let P be an irreducible stochastic matrix, let g define the aggregation, let x̃1 > 0
be the initial vector.

Let P̂ = (I + PT )/2, A = I − P̂ = M −K. Define T = (M−1K)t and Y = (P̂ )s

for t � 1 and s � 1, x1 = T x̃1. Let ε > 0 be the final tolerance.

Step 1. Set k = 1

Step 2. Construct

(8) B(xk) = RY S(xk)

Step 3. Solve B(xk)zk = zk, eT zk = 1

Step 4. Set vk+1 = S(xk)zk

Step 5. Compute xk+1 = Tvk+1

Step 6. If ‖xk − xk+1‖ � ε then k = k + 1, go to Step 2

Step 7. Stop
One can think about the SPV Algorithm 1 as a kind of a two grid method. The

steps 2, 3, 4 are equivalent to the coarse grid correction, step 5 is a smoothing, with
the operator T as the smoother.

The theorem below, which is proved in [6], states the local convergence of the
algorithm SPV.

Theorem 1. Let P be an irreducible stochastic matrix, let g be a mapping which
defines the aggregation, let M , K be splittings defining the smoother T and the
matrix Y , respectively. Then Algorithm 1 is locally convergent.

We will be interested mainly in three types of smoothers:

1. Simple power method M = I, K = P̂ .

2. Block Jacobi method—known as Vantilborg method with Mij = Aij when
g(i) = g(j).

3. Block Gauss-Seidel mehod—known as Koury-McAllister-Stewart method with
Mij = Aij when g(i) � g(j).

The first of them is, of course, the slowest. But in many situations one may be
unable to get the matrix P elementwise. For example, when we analyze Stochastic
Automata Networks, P is formed as a sum of tensor products. In such situations,
the first smoother can be the only one which is computable.
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4. Special situation for the choice of aggregation groups

In many situations the transition matrix P has a special form. Now we study the
convergence behaviour of the SPV algorithm.

Lemma 1. Let P ∈ �
N×N be a stochastic matrix, let g be a mapping which

defines the aggregation. For vectors x, y ∈ �
N let there exist nonzero values αk,

k = 1, . . . , n, such that yi = αg(i)xi. Then S(x) = S(y) and B(x) = B(y).

�����. Due to (8) we need only to show that S(x) = S(y). Because the nonzero
structure of both matrices is the same, we need to check only the nonzero elements.
From (6) and (7) we get

S(y)ig(i) =
yi

(Ry)g(i)
=

αg(i)xi∑
j,g(j)=g(i) yj

=
αg(i)xi∑

j,g(j)=g(i) αg(i)xj

=
αg(i)xi

αg(i)
∑

j,g(j)=g(i) xj
=

xi

(Rx)g(i)
= S(x)ig(i).

�

From Lemma 1 we have

Corollary 1. Let P be an irreducible stochastic matrix. Let g be the mapping
defining the aggregation. Let u∗ be a solution of the problem (5), for the vector u

let there exist nonzero values αk such that ui = αg(i)u
∗
i . Then the coarse correction

(i.e. steps 2, 3, 4 in Algorithm 1) computes the exact solution starting with x1 = u.

�����. From Lemma 1 we know that S(u) = S(u∗) and B(u) = B(u∗). Then
z computed in Step 3 is the same for u and u∗. For the same reason we have
S(u)z = S(u∗)z = u∗. �

Now we can show some special types of matrices for which we get very fast con-
vergence, or which even converge in one step. A different proof of the next theorem
can be found in [7].

Theorem 2. Let g define the aggregation, let there exist vectors v(i), w(i) ∈ �N

and a matrix C such that P =
n∑

i=1
w(i)v(i)

T

+ C is an irreducible stochastic matrix,

C = (cij), cij = 0 when g(i) �= g(j), v(i)j = 0 when g(j) �= i, w(i)j = 0 when g(j) = i.
Let x̃1 be not orthogonal to any vector w(i). Then Algorithm 1 with the Jacobi or
Gauss-Seidel smoother constructs the exact solution after the first iteration.
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�����. All we need to show is that x1 = T x̃1 satisfies the conditions from Corol-
lary 1. We have

A =
1
2
(I − PT ) =

1
2
(I − C)− 1

2

n∑

i=1

v(i)w(i)
T

.

Now we can analyse the Jacobi method as a smoother. In this situation we have

M =
1
2
(I − C), K =

1
2

n∑

i=1

v(i)w(i)
T

,

hence

T = (I − C)−1
n∑

i=1

v(i)w(i)
T

.

By the definition of x1 we have

x1 = T x̃1 = (I − C)−1
n∑

i=1

v(i)w(i)
T

x̃1 =
n∑

i=1

βiṽ
(i)

where βi = w(i)
T

x̃1 �= 0 and ṽ(i) = (I − C)−1v(i). Since the exact solution u∗

satisfies u∗ = Tu∗ we have u∗ =
n∑

i=1
β∗i ṽ(i). Recall that cij could be nonzero only in

the case g(i) = g(j) and the same is true for the matrix (I−C)−1. Similarly, nonzero
elements v

(i)
j are only possible when g(j) = i. Then all nonzero elements ṽj

(i) are in
places where g(j) = i. Hence we can write

(x1)i =
β∗g(i)
βg(i)

u∗i

and use Corollary 1 to complete the proof for the Jacobi smoother. Nearly the same
arguments can be used to prove the Gauss-Seidel case. �

5. Example

In special DTMC cases, the convergence for standard numerical methods is very
slow. The problem is not necessarily so large. For this situation the aggrega-
tion/disaggregation iterative algorithm is useful. This is explained in greater detail
in references [6], [4]. An example of the problematic size of the model can be the
finite state machine for controlling the line block direction ABE-1 (see Fig. 3b). The
most important safety principle for changing the direction of the line block are the
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protected timeouts. During these timeouts it is impossible to change important sig-
nals. During this period the occupation of the track is checked, which is the condition
for making the direction change possible. These states are A, C, D, G, E, F, which
correspond to sequences A1–A19, C1–C5 . . .The transitions which require the stable
state without external changes are linked to states ATB, ATE, GT, DT. For such a
system, a very fast iteration is proved provided the block iteration method together
with the aggregation type is used. Further details can be found in reference [4].
When the right aggregation group of states is chosen, the procedure converges to
one step of iteration. For the matrix for the Markov chain described in Fig. 3 we
have the following number of iterations:

Smoother only Aggregation with smoother
Smoother (spectral radius) (to get residual less than 1e-14)

power method 0.9999999999928 10

Jacobi method 0.9999999927499 1

G.S. method 0.9999999999599 1

Table 1.
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ATB1-5

B
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D1-D19
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(a) Simplified graph of transition matrix
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Figure 3. Description of state automata for line block directional control.

Huge DTMC models produce a net of finite state machines which are synchronised
at special transitions. Without synchronisation, the transition matrix of the model is
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the tensor product of all considered transition matrices in the net. Synchronisation
events determine that the final matrix is the sum of tensor products. This is useful for
the modelling of the overloading CPU interrupt system. This technology describes
how to fight against state space explosion. This is explained in greater detail in
reference [9].

6. Conclusion

We have analysed some of possible iteration solvers for the analysis of large Markov
chains. We have shown that there are special situations when convergence can be
achieved in one iteration. Further analysis of possible methods for reducible Markov
chains is necessary. Another problem, which is not yet solved satisfactorily, is the
situation when only an approximate solution of coarse level correction is available.
Such type of analysis can lead to a real multilevel algorithm for computing the
stationary probability vector, instead of the two level method.

Next, a large set of problems is to compute not only the stationary probability
vector but the mean first passage times and their variations. In this situation the
reducible case is of special interest.
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