Sever Silvestru Dragomir
A sequence of mappings associated with the Hermite-Hadamard inequalities and applications

Persistent URL: http://dml.cz/dmlcz/134563

Terms of use:

© Institute of Mathematics AS CR, 2004

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use.*

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://project.dml.cz
A SEQUENCE OF MAPPINGS ASSOCIATED WITH THE HERMITE-HADAMARD INEQUALITIES AND APPLICATIONS

SEVER S. DRAGOMIR, Melbourne City

(Received January 1, 2002, in revised version May 16, 2003)

Abstract. New properties for some sequences of functions defined by multiple integrals associated with the Hermite-Hadamard integral inequality for convex functions and some applications are given.

Keywords: Hermite-Hadamard inequality

MSC 2000: 26D15, 26D10, 26D99

1. INTRODUCTION

The integral inequality

\[f \left(\frac{a + b}{2} \right) \leq \frac{1}{b - a} \int_a^b f(t) \, dt \leq \frac{f(a) + f(b)}{2}, \]

which holds for any convex function \(f : [a, b] \to \mathbb{R} \), is well known in literature as the Hermite-Hadamard inequality.

There is an extensive amount of literature devoted to this simple and nice result which has many applications in the theory of special means and in information theory for divergence measures, from which we would like to refer the reader to [1]–[54].

The main aim of this paper is to consider some natural sequences of functions defined by multiple integrals and study their properties in relation to the Hermite-Hadamard inequality.
2. Properties of the sequence of mappings H_n

Let $I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be an interval of real numbers and $a, b \in I$ with $a < b$, and let $f : I \rightarrow \mathbb{R}$ be a mapping which is integrable on $[a, b]$. Then we can define a sequence of mappings $H_n : [0, 1] \rightarrow \mathbb{R}$ by

$$H_n(t) := \frac{1}{(b-a)^n} \int_a^b \cdots \int_a^b f \left(t \frac{x_1 + \cdots + x_n}{n} + (1-t) \frac{a+b}{2} \right) \, dx_1 \cdots dx_n$$

for $n \geq 1$ and $t \in [0, 1]$.

Some properties of this sequence of mappings are embodied in the following theorem.

Theorem 1. Let $f : I \subseteq \mathbb{R}$ be a convex mapping on I and let $a, b \in I$ with $a < b$. Then

(i) H_n are convex on $[0, 1]$ for all $n \geq 1$;

(ii) the following inequalities hold:

\begin{align*}
(2.1) \quad f \left(\frac{a+b}{2} \right) & \leq H_n(t) \leq \frac{1}{(b-a)^{n+1}} \\
& \times \int_a^b \cdots \int_a^b f \left(t \frac{x_1 + \cdots + x_n}{n} + (1-t)x_{n+1} \right) \, dx_1 \cdots dx_{n+1}
\end{align*}

and

\begin{align*}
(2.2) \quad H_n(t) & \leq t \frac{1}{(b-a)^n} \int_a^b \cdots \int_a^b f \left(\frac{x_1 + \cdots + x_n}{n} \right) \, dx_1 \cdots dx_n + (1-t)f \left(\frac{a+b}{2} \right) \\
& \leq \frac{1}{(b-a)^n} \int_a^b \cdots \int_a^b f \left(\frac{x_1 + \cdots + x_n}{n} \right) \, dx_1 \cdots dx_n
\end{align*}

for all $t \in [0, 1]$;

(iii) the mapping H_n is monotonic nondecreasing on $[0, 1]$ for all $n \geq 1$ and one has the bounds

\begin{align*}
(2.3) \quad \min_{t \in [0,1]} H_n(t) = f \left(\frac{a+b}{2} \right) = H_n(0) \quad & \text{for all } n \geq 1 \\
\text{and} \\
(2.4) \quad \max_{t \in [0,1]} H_n(t) = \frac{1}{(b-a)^n} \int_a^b \cdots \int_a^b f \left(\frac{x_1 + \cdots + x_n}{n} \right) \, dx_1 \cdots dx_n \\
& = H_n(1) \quad & \text{for } n \geq 1.
\end{align*}
Proof. (i) Follows by the convexity of f.

(ii) Applying Jensen's integral inequality, we obtain

$$
\frac{1}{b-a} \int_a^b f\left(t \frac{x_1 + \ldots + x_n}{n} + (1 - t)x_{n+1} \right) dx_{n+1} \\
\geq f\left(\frac{1}{b-a} \int_a^b \left(t \frac{x_1 + \ldots + x_n}{n} + (1 - t)x_{n+1} \right) dx_{n+1} \right) \\
= f\left(t \frac{x_1 + \ldots + x_n}{n} + (1 - t) \frac{a + b}{2} \right)
$$

for all $x_1, \ldots, x_n \in [a, b]$ and $t \in [0, 1]$.

Taking an integral mean over $[a, b]^n$ we deduce the second inequality in (2.1).

By Jensen's integral inequality for multiple integrals we have

$$
\frac{1}{(b-a)^n} \int_a^b \cdots \int_a^b f\left(t \frac{x_1 + \ldots + x_n}{n} + (1 - t) \frac{a + b}{2} \right) dx_1 \ldots dx_n \\
\geq f\left(\frac{1}{(b-a)^n} \int_a^b \cdots \int_a^b \left(t \frac{x_1 + \ldots + x_n}{n} + (1 - t) \frac{a + b}{2} \right) dx_1 \ldots dx_n \right) \\
= f\left(\frac{a + b}{2} \right),
$$

and the inequality (2.1) is completely proved.

By the convexity of f on $[a, b]$, we can write

$$
f\left(t \frac{x_1 + \ldots + x_n}{n} + (1 - t) \frac{a + b}{2} \right) \leq tf\left(\frac{x_1 + \ldots + x_n}{n} \right) + (1 - t)f\left(\frac{a + b}{2} \right)
$$

for all $x_1, \ldots, x_n \in [a, b]$ and $t \in [0, 1]$. Taking an integral mean over $[a, b]^n$, we deduce

$$
H_n(t) \leq t \frac{1}{(b-a)^n} \int_a^b \cdots \int_a^b f\left(\frac{x_1 + \ldots + x_n}{n} \right) dx_1 \ldots dx_n + (1 - t)f\left(\frac{a + b}{2} \right),
$$

and the first inequality in (2.2) is proved.

As we know (see for example [26]) that

$$
f\left(\frac{a + b}{2} \right) \leq \frac{1}{(b-a)^n} \int_a^b \cdots \int_a^b f\left(\frac{x_1 + \ldots + x_n}{n} \right) dx_1 \ldots dx_n,
$$

we obtain the last part of (2.2).

(iii) Let $0 < t_1 < t_2 \leq 1$. By the convexity of H_n, which follows by (i) now proved, we have that

$$
\frac{H_n(t_2) - H_n(t_1)}{t_2 - t_1} \geq \frac{H_n(t_1) - H_n(0)}{t_1},
$$

125
but $H_n(t_1) \geq H_n(0)$ (see the first inequality in (2.1)) and hence we get that $H_n(t_2) - H_n(t_1) \geq 0$ for all $0 \leq t_1 < t_2 \leq 1$, which shows that the mapping $H_n(\cdot)$ is monotonic nondecreasing on $[0, 1]$. The bounds (2.3) and (2.4) follow by the inequalities (2.1) and (2.2). We omit the details.

We now give another result on monotonicity which, in a sense, completes the above theorem.

Theorem 2. Let $f: I \subseteq \mathbb{R} \to \mathbb{R}$ be a convex mapping on I and let $a, b \in I$ with $a < b$. Then

$$f\left(\frac{a + b}{2}\right) \leq H_{n+1}(t) \leq H_n(t) \leq \ldots \leq H_1(t) = H(t),$$

where

$$H(t) := \frac{1}{b - a} \int_a^b f\left(tx + (1 - t)\frac{a + b}{2}\right) dx$$

for all $n \geq 1$ and $t \in [0, 1]$. That is, the sequence of mappings $(H_n)_{n \geq 1}$ is monotonically nonincreasing.

Proof. Let us define real numbers belonging to $[a, b]$:

$$y_1 := t\frac{x_1 + \ldots + x_n}{n} + (1 - t)\frac{a + b}{2};$$
$$y_2 := t\frac{x_2 + x_3 + \ldots + x_{n+1}}{n} + (1 - t)\frac{a + b}{2};$$
$$\vdots$$
$$y_{n+1} := t\frac{x_{n+1} + x_1 + \ldots + x_{n-1}}{n} + (1 - t)\frac{a + b}{2},$$

where $x_1, \ldots, x_{n+1} \in [a, b]$.

Using Jensen’s discrete inequality, we may state that

$$\frac{1}{n+1}\left[f\left(t\frac{x_1 + \ldots + x_n}{n} + (1 - t)\frac{a + b}{2}\right) + f\left(t\frac{x_2 + \ldots + x_{n+1}}{n} + (1 - t)\frac{a + b}{2}\right) + \ldots
ight]$$

$$\geq f\left(t\frac{x_1 + \ldots + x_{n+1}}{n+1} + (1 - t)\frac{a + b}{2}\right)$$

for all $t \in [0, 1]$ and $x_1, \ldots, x_{n+1} \in [a, b]$.

126
Taking an integral mean over \([a, b]^{n+1}\), we deduce
\[
\frac{1}{n+1} \left[\frac{1}{(b-a)^{n+1}} \int_a^b \cdots \int_a^b \left(\frac{t \frac{x_1 + \cdots + x_n}{n} + (1-t) \frac{a+b}{2}}{1-f} \right) dx_1 \cdots dx_{n+1} \\
+ \cdots + \frac{1}{(b-a)^{n+1}} \int_a^b \cdots \int_a^b \left(\frac{t \frac{x_{n+1} + x_1 + \cdots + x_{n-1}}{n}}{1-f} \right) dx_1 \cdots dx_{n+1} \right]
\]
\[
\geq \frac{1}{(b-a)^{n+1}} \int_a^b \cdots \int_a^b \left(\frac{t \frac{x_1 + \cdots + x_{n+1}}{n+1} + (1-t) \frac{a+b}{2}}{1-f} \right) dx_1 \cdots dx_{n+1}.
\]
However, it is easy to see that
\[
\frac{1}{(b-a)^{n+1}} \int_a^b \cdots \int_a^b \left(\frac{t \frac{x_1 + \cdots + x_n}{n} + (1-t) \frac{a+b}{2}}{1-f} \right) dx_1 \cdots dx_{n+1}
\]
\[
= \cdots = \frac{1}{(b-a)^n} \int_a^b \cdots \int_a^b \left(\frac{t \frac{x_1 + \cdots + x_n}{n} + (1-t) \frac{a+b}{2}}{1-f} \right) dx_1 \cdots dx_n
\]
and thus, by the above inequality, we conclude
\[
H_n(t) \geq H_{n+1}(t) \quad \text{for all } t \in [0,1] \text{ and } n \geq 1.
\]
The proof is thus completed. □

It is natural to ask what happens with the difference \(H_n(t) - f\left(\frac{1}{2}(a+b)\right)\) which is clearly non-negative for all \(t \in [0,1]\).

The following theorem contains an upper bound for this difference.

Theorem 3. Let \(f: I \subseteq \mathbb{R} \to \mathbb{R}\) be a convex mapping and \(f'_+\) its right derivative which exists on \(I\) and is monotonic nondecreasing on \(I\). If \(a, b \in I\) with \(a < b\), then the inequalities
\[
0 \leq H_n(t) - f\left(\frac{a+b}{2}\right)
\]
\[
\leq \frac{t}{(b-a)^n} \int_a^b \cdots \int_a^b f'_+ \left(\frac{t \frac{x_1 + \cdots + x_n}{n} + (1-t) \frac{a+b}{2}}{1-f} \right)
\]
\[
\times \left(x_1 - \frac{a+b}{2} \right) dx_1 \cdots dx_n
\]
\[
\leq \frac{t}{\sqrt{n}} \frac{b-a}{2\sqrt{3}} \left[\frac{1}{(b-a)^n} \int_a^b \cdots \int_a^b \left[f'_+ \left(\frac{t \frac{x_1 + \cdots + x_n}{n}}{1-f} \right) + (1-t) \frac{a+b}{2} \right]^2 \right]^{\frac{1}{2}}
\]
hold for all \(n \geq 1\) and \(t \in [0,1]\).
Proof. As \(f \) is convex on \(I \), we can write
\[
f(x) - f(y) \geq f'_+(y)(x - y)
\]
for all \(x, y \in I \).

Choosing in this inequality
\[
x = \frac{a + b}{2} \quad \text{and} \quad y = t \frac{x_1 + \ldots + x_n}{n} + (1 - t) \frac{a + b}{2},
\]
we deduce the inequality
\[
f\left(\frac{a + b}{2}\right) - f\left(\frac{x_1 + \ldots + x_n}{n} + (1 - t) \frac{a + b}{2}\right) \\
\geq tf'_+\left(t \frac{x_1 + \ldots + x_n}{n} + (1 - t) \frac{a + b}{2}\right) \left(\frac{a + b}{2} - \frac{x_1 + \ldots + x_n}{n}\right).
\]

Taking an integral mean over \([a, b]^n\), we derive that
\[
(2.7) \quad f\left(\frac{a + b}{2}\right) - H_n(t) \\
\geq t\left[\frac{1}{(b - a)^n} \int_a^b \ldots \int_a^b \frac{a + b}{2} f'_+\left(t \frac{x_1 + \ldots + x_n}{n} + (1 - t) \frac{a + b}{2}\right) \\
\times \left(\frac{x_1 + \ldots + x_n}{n}\right) \mathrm{d}x_1 \ldots \mathrm{d}x_n \right] - \frac{1}{(b - a)^n} \int_a^b \ldots \int_a^b f'_+\left(t \frac{x_1 + \ldots + x_n}{n} + (1 - t) \frac{a + b}{2}\right) \\
\times \left(\frac{x_1 + \ldots + x_n}{n}\right) \mathrm{d}x_1 \ldots \mathrm{d}x_n,
\]
from where we deduce the second part of (2.6).

Now, let us observe that the right hand side in the inequality (2.7) is the integral
\[
I = -\frac{t}{(b - a)^n} \int_a^b \ldots \int_a^b \left[f'_+\left(t \frac{x_1 + \ldots + x_n}{n} + (1 - t) \frac{a + b}{2}\right) \\
\times \left(\frac{x_1 + \ldots + x_n}{n} - \frac{a + b}{2}\right) \right] \mathrm{d}x_1 \ldots \mathrm{d}x_n.
\]

By the well-known Cauchy-Buniakowsky-Schwartz integral inequality for multiple integrals, we deduce the last part of the inequality (2.6).

The proof of the theorem is thus completed. \(\square \)
Corollary 1. Let $f: I \subseteq \mathbb{R} \to \mathbb{R}$ be a convex mapping and $a, b \in I$ with $a < b$. Put $M := \sup_{x \in [a, b]} |f'(x)| < \infty$. Then we have the inequality

\begin{equation}
0 \leq H_n(t) - f\left(\frac{a + b}{2}\right) \leq \frac{t(b - a)M}{2\sqrt{3}\sqrt{n}}
\end{equation}

for all $t \in [0, 1]$ and $n \geq 1$.

In particular, we have

$$
\lim_{n \to \infty} H_n(t) = f\left(\frac{a + b}{2}\right) \text{ uniformly on } [0, 1].
$$

The following result also holds:

Theorem 4. Under the assumptions as in Theorem 3, we have

\begin{equation}
0 \leq tH_n(1) + (1 - t)H_n(0) - H_n(t)
\end{equation}

\begin{align*}
\leq & \frac{t(1 - t)}{(b - a)^n} \int_a^b \cdots \int_a^b f'\left(\frac{x_1 + \cdots + x_n}{n}\right)\left(x_1 - \frac{a + b}{2}\right) dx_1 \cdots dx_n \\
\leq & \frac{t(1 - t)(b - a)}{2\sqrt{3}\sqrt{n}} \left[\frac{1}{(b - a)^n} \int_a^b \cdots \int_a^b \left[f'\left(\frac{x_1 + \cdots + x_n}{n}\right)\right]^2 dx_1 \cdots dx_n \right]^{\frac{1}{2}}
\end{align*}

for all $n \geq 1$ and $t \in [0, 1]$.

Proof. By the convexity of f we can write

\begin{equation}
f\left(\frac{t}{n}x_1 + \cdots + x_n + (1 - t)\frac{a + b}{2}\right) - f\left(\frac{x_1 + \cdots + x_n}{n}\right)
\geq (1 - t)f'_+\left(\frac{x_1 + \cdots + x_n}{n}\right)\left(\frac{a + b}{2} - \frac{x_1 + \cdots + x_n}{n}\right)
\end{equation}

for all $t \in [0, 1]$ and $x_1, \ldots, x_n \in [a, b]$.

Similarly, we have

\begin{equation}
f\left(\frac{t}{n}x_1 + \cdots + x_n + (1 - t)\frac{a + b}{2}\right) - f\left(\frac{a + b}{2}\right)
\geq -tf'_+\left(\frac{a + b}{2}\right)\left(\frac{a + b}{2} - \frac{x_1 + \cdots + x_n}{n}\right)
\end{equation}

for all $t \in [0, 1]$ and $x_1, \ldots, x_n \in [a, b]$.

129
If we multiply the inequality (2.10) by t and (2.11) by $(1-t)$ and add the obtained inequalities, we deduce

$$f\left(\frac{x_1 + \ldots + x_n}{n} + (1-t)\frac{a+b}{2}\right) - tf\left(\frac{x_1 + \ldots + x_n}{n}\right) - (1-t)f\left(\frac{a+b}{2}\right) \geq t(1-t)\left[f'_+(\frac{x_1 + \ldots + x_n}{n}) - f'_+(\frac{a+b}{2})\right] \left(\frac{a+b}{2} - \frac{x_1 + \ldots + x_n}{n}\right).$$

That is,

$$tf\left(\frac{x_1 + \ldots + x_n}{n}\right) + (1-t)f\left(\frac{a+b}{2}\right) - f\left(t\frac{x_1 + \ldots + x_n}{n} + (1-t)\frac{a+b}{2}\right) \leq t(1-t)\left[f'_+(\frac{x_1 + \ldots + x_n}{n}) - f'_+(\frac{a+b}{2})\right] \left(\frac{x_1 + \ldots + x_n}{n} - \frac{a+b}{2}\right)$$

for all $t \in [0,1]$ and $x_1, \ldots, x_n \in [a,b]$.

Taking an integral mean over $[a,b]^n$, we have

$$0 \leq tH_n(1) + (1-t)H_n(0) - H_n(t) \leq t(1-t)\left[\frac{1}{(b-a)^n} \int_b^a \ldots \int_b^a f'_+(\frac{x_1 + \ldots + x_n}{n})x_1 \, dx_1 \ldots dx_n - \frac{a+b}{2} \frac{1}{(b-a)^n} \int_b^a \ldots \int_b^a f'_+(\frac{x_1 + \ldots + x_n}{n}) \, dx_1 \ldots dx_n\right],$$

because a simple calculation shows us that

$$\frac{1}{(b-a)^n} \int_b^a \ldots \int_b^a f'_+(\frac{x_1 + \ldots + x_n}{n})\left(\frac{x_1 + \ldots + x_n}{n}\right) \, dx_1 \ldots dx_n = \frac{1}{b-a} \int_b^a \ldots \int_b^a f'_+(\frac{x_1 + \ldots + x_n}{n})x_1 \, dx_1 \ldots dx_n$$

and

$$\frac{1}{(b-a)^n} \int_b^a \ldots \int_b^a \frac{x_1 + \ldots + x_n}{n} \, dx_1 \ldots dx_n = \frac{a+b}{2}. $$

Thus, the second inequality in (2.9) is proved.

Now, applying the Cauchy-Buniakowsky-Schwartz integral inequality, we deduce the last part of the theorem. We omit the details.
Corollary 2. Under the assumptions as in Theorem 3 and provided \(M := \sup_{x \in [a,b]} |f'(x)| < \infty \), we have the inequality

\[
0 \leq tH_n(1) + (1 - t)H_n(0) - H_n(t) \leq \frac{t(1-t)}{2\sqrt{3n}} M
\]

for all \(n \geq 1 \) and \(t \in [0,1] \).

In particular,

\[
\lim_{n \to \infty} [tH_n(1) + (1 - t)H_n(0) - H_n(t)] = 0
\]

uniformly on \([0,1]\).

The following corollary is interesting as well.

Corollary 3. Under the assumptions as in Theorem 3 and provided there exists a constant \(K > 0 \) such that

\[
|f'_+(x) - f'_+(y)| \leq K|x-y| \quad \text{for all } x, y \in [a,b],
\]

we have the inequality

\[
0 \leq tH_n(1) + (1 - t)H_n(0) - H_n(t) \leq \frac{Kt(1-t)}{12n} (b-a)^2
\]

for all \(t \in [0,1] \) and \(n \geq 1 \).

In addition, it is natural to ask for an upper bound for the difference \(H_n(1) - H_n(t) \), \(n \geq 1 \) for all \(t \in [0,1] \).

Theorem 5. Let \(f: I \subseteq \mathbb{R} \to \mathbb{R} \) be a convex mapping on the interval \(I \) and let \(a, b \in I \) with \(a < b \). Then we have the inequalities

\[
\frac{1}{(b-a)^n} \int_a^b \ldots \int_a^b f\left(\frac{x_1 + \ldots + x_n}{n}\right) dx_1 \ldots dx_n - H_n(t)
\leq \frac{(1-t)}{(b-a)^n} \int_a^b \ldots \int_a^b f'_+\left(\frac{x_1 + \ldots + x_n}{n}\right)\left(x_1 - \frac{a+b}{2}\right) dx_1 \ldots dx_n
\leq \frac{(1-t)(b-a)}{2\sqrt{3n}} \left(\frac{1}{(b-a)^n} \int_a^b \ldots \int_a^b \left[f'_+\left(\frac{x_1 + \ldots + x_n}{n}\right)\right]^2 dx_1 \ldots dx_n\right)^{\frac{1}{2}}
\]

for all \(t \in [0,1] \) and \(n \geq 1 \).
Proof. By the convexity of \(f \), we have that

\[
 f\left(\frac{x_1 + \ldots + x_n}{n} + (1-t)\frac{a+b}{2}\right) - f\left(\frac{x_1 + \ldots + x_n}{n}\right) \\
 \geq (1-t)f'\left(\frac{x_1 + \ldots + x_n}{n}\right)\left[\frac{a+b}{2} - \frac{x_1 + \ldots + x_n}{n}\right]
\]

for all \(x_1, \ldots, x_n \in [a,b] \) and \(t \in [0,1] \).

Now, the argument proceeds as above and we omit the details. \(\square \)

Corollary 4. Under the assumptions as in Theorem 3 and provided \(M := \sup_{x \in [a,b]} |f'(x)| < \infty \), we have the inequality

\[
 0 \leq H_n(1) - H_n(t) \leq \frac{(1-t)(b-a)M}{2\sqrt{3n}}.
\]

In particular,

\[
 \lim_{n \to \infty} [H_n(1) - H_n(t)] = 0
\]

uniformly on \([0,1]\).

Corollary 5. Under the assumptions as in Theorem 3 and provided there exists a constant \(K > 0 \) such that

\[
 |f_+'(x) - f_+'(y)| \leq K|x - y| \quad \text{for all } x, y \in [a,b],
\]

we have the inequality

\[
 0 \leq H_n(1) - H_n(t) \leq \frac{K(1-t)(b-a)^2}{12n}
\]

for all \(n \geq 1 \) and \(t \in [0,1] \).

Now we establish an upper bound for the difference \(H_n(t) - H_{n+1}(t) \), \(n \geq 1 \) which is non-negative for all \(t \in [0,1] \) (cf. Theorem 2):
Theorem 6. Let \(f : I \subseteq \mathbb{R} \to \mathbb{R} \) be a convex function on the interval \(I \) and let \(a, b \in I \) with \(a < b \). Then the inequality

\[
0 \leq H_n(t) - H_{n+1}(t) \leq \frac{t}{n+1} \left[\frac{1}{(b-a)^n} \int_a^b \cdots \int_a^b f_+^\prime \left(\frac{t x_1 + \ldots + x_n}{n} + (1-t) \frac{a+b}{2} \right) \right.
\]

\[
\times \left(x_1 - \frac{a+b}{2} \right) dx_1 \cdots dx_n
\]

\[
\leq \frac{t(b-a)}{2\sqrt{3/n(n+1)}} \left[\frac{1}{(b-a)^n} \int_a^b \cdots \int_a^b \left[f_+^\prime \left(\frac{t x_1 + \ldots + x_n}{n} + (1-t) \frac{a+b}{2} \right) \right] \right.
\]

\[
\left. \left[\frac{1}{(b-a)^n} \int_a^b \cdots \int_a^b \left(x_1 - \frac{a+b}{2} \right) \right] \right]^{1/2}
\]

holds for all \(t \in [0,1] \) and \(n \geq 1 \).

Proof. By the convexity of \(f \), we have that

\[
f \left(\frac{x_1 + \ldots + x_{n+1}}{n+1} + (1-t) \frac{a+b}{2} \right) - f \left(\frac{x_1 + \ldots + x_n}{n} + (1-t) \frac{a+b}{2} \right)
\]

\[
\geq \frac{t}{n(n+1)} f_+^\prime \left(\frac{t x_1 + \ldots + x_n}{n} + (1-t) \frac{a+b}{2} \right) [n x_{n+1} - (x_1 + \ldots + x_n)]
\]

for all \(x_1, \ldots, x_{n+1} \in [a, b] \) and \(t \in [0,1] \).

Taking an integral mean on \([a, b]^{n+1} \), we derive

\[
0 \leq H_n(t) - H_{n+1}(t)
\]

\[
\leq \frac{t}{n+1} \left[\frac{1}{(b-a)^n} \int_a^b \cdots \int_a^b f_+^\prime \left(\frac{x_1 + \ldots + x_n}{n} + (1-t) \frac{a+b}{2} \right) x_1 dx_1 \ldots dx_n
\]

\[
- \frac{a+b}{2} \frac{1}{(b-a)^n} \int_a^b \cdots \int_a^b f_+^\prime \left(\frac{x_1 + \ldots + x_n}{n} + (1-t) \frac{a+b}{2} \right) dx_1 \ldots dx_n \right]
\]

and the second inequality in (2.17) is proved.
Now, let us observe that

\[
\frac{1}{(b-a)^n} \int_a^b \cdots \int_a^b f_+\left(t \frac{x_1 + \ldots + x_n}{n} + (1-t) \frac{a+b}{2} \right) \\
\times \left(x_1 - \frac{a+b}{2} \right) dx_1 \ldots dx_n
\]

\[
= \frac{1}{(b-a)^n} \int_a^b \cdots \int_a^b f_+\left(t \frac{x_1 + \ldots + x_n}{n} + (1-t) \frac{a+b}{2} \right) \\
\times \left(\frac{x_1 + \ldots + x_n}{n} - \frac{a+b}{2} \right) dx_1 \ldots dx_n
\]

\[
\leq \left(\frac{1}{(b-a)^n} \int_a^b \cdots \int_a^b \left[f_+\left(t \frac{x_1 + \ldots + x_n}{n} + (1-t) \frac{a+b}{2} \right) \right]^2 dx_1 \ldots dx_n \right)^{\frac{1}{2}}
\times \left(\frac{1}{(b-a)^n} \int_a^b \left(\frac{x_1 + \ldots + x_n}{n} - \frac{a+b}{2} \right)^2 dx_1 \ldots dx_n \right)^{\frac{1}{2}},
\]

and thus the last inequality is also proved.

\[\square\]

Corollary 6. Under the assumptions as in Theorem 3, given that \(M := \sup_{x \in [a,b]} |f'(x)| < \infty \), we have

\[
0 \leq H_n(t) - H_{n+1}(t) \leq \frac{Mt(b-a)}{2\sqrt{3}\sqrt{n(n+1)}}
\]

for all \(t \in [0,1] \) and \(n \geq 1 \).

In particular,

\[
\lim_{n \to \infty} [H_n(t) - H_{n+1}(t)] = 0
\]

uniformly on \([0,1]\).

The following theorem also holds.

Theorem 7. Under the assumptions as in Theorem 3, we also have the bound

\[
0 \leq H_n(t) - H_{n+1}(t) \leq \frac{t(b-a)}{2\sqrt{3}\sqrt{n(n+1)}} \left[\frac{1}{(b-a)^n} \int_a^b \cdots \int_a^b \left[f_+\left(t \frac{x_1 + \ldots + x_n}{n} + (1-t) \frac{a+b}{2} \right) \\
- f_+\left(\frac{a+b}{2} \right) \right]^2 dx_1 \ldots dx_n \right]^{\frac{1}{2}}
\]

for all \(t \in [0,1] \) and \(n \geq 1 \).

Proof. The proof is similar to the one of Theorem 6 and we omit the details.

\[\square\]
Corollary 7. Under the assumptions as in Theorem 3, given that there exists a \(K > 0 \) such that
\[
|f_+(x) - f_+(y)| \leq K|x - y| \quad \text{for all } x, y \in [a, b],
\]
we have the inequality
\[
0 \leq H_n(t) - H_{n+1}(t) \leq \frac{t^2(b-a)^2K^2}{12n(n+1)}
\]
for all \(t \in [0,1] \) and \(n \geq 1 \).

Finally, note that, by a similar argument to that in the proof of Theorem 6, we can give the following result which completes, in a sense, the estimate in Theorem 3.

Theorem 8. Under the above assumptions the inequality
\[
0 \leq H_n(t) - f\left(\frac{a+b}{2}\right)
\leq \frac{t(b-a)}{2\sqrt{3\sqrt{n}}} \left[\frac{1}{(b-a)^n} \int_a^b \ldots \int_a^b \left[f_+\left(t \frac{x_1 + \ldots + x_n}{n} + (1-t) \frac{a+b}{2}\right) - f_+\left(\frac{a+b}{2}\right) \right]^2 \, dx_1 \ldots dx_n \right]^\frac{1}{2}
\]
holds for all \(t \in [0,1] \) and \(n \geq 1 \).

Corollary 8. Under the above assumptions, given that there exists a \(K > 0 \) such that
\[
|f_+(x) - f_+(y)| \leq K|x - y| \quad \text{for all } x, y \in [a, b],
\]
we have the inequality
\[
0 \leq H_n(t) - f\left(\frac{a+b}{2}\right) \leq \frac{t^2(b-a)^2K^2}{12n}
\]
for all \(t \in [0,1] \) and \(n \geq 1 \).
3. APPLICATIONS TO SPECIAL MEANS

Let $0 \leq a < b$ and $p \in (-\infty, 0) \cup [1, \infty) \setminus \{-1\}$. Let us define sequence of mappings

$$h_{p,n}(t) := \frac{1}{(b-a)^n} \int_a^b \cdots \int_a^b \left(t \frac{x_1 + \cdots + x_n}{n} + (1 - t) \frac{a + b}{2} \right)^p \, dx_1 \cdots dx_n,$$

where $n \geq 1$, $n \in \mathbb{N}$, and $t \in [0, 1]$.

By virtue of the above results, we can establish the following properties:
(i) $h_{p,n}(t)$ are convex and monotonic nondecreasing on $[0, 1]$;
(ii) $h_{p,n}(t) \geq h_{p,n+1}(t)$ for all $n \geq 1$ and $t \in [0, 1]$;
(iii) the inequalities

$$\left(A(a, b) \right)^p \leq h_{p,n}(t)$$

$$\leq \frac{1}{(b-a)^{n+1}} \int_a^b \cdots \int_a^b \left(t \frac{x_1 + \cdots + x_n}{n} + (1 - t) \frac{a + b}{2} \right)^p \, dx_1 \cdots dx_{n+1}$$

and

$$h_{p,n}(t) \leq t \frac{1}{(b-a)^n} \int_a^b \cdots \int_a^b \left(\frac{x_1 + \cdots + x_n}{n} \right)^p \, dx_1 \cdots dx_n$$

$$+ (1 - t) \left(A(a, b) \right)^p$$

$$\leq \frac{1}{(b-a)^n} \int_a^b \cdots \int_a^b \left(\frac{x_1 + \cdots + x_n}{n} \right)^p \, dx_1 \cdots dx_n$$

hold for all $n \geq 1$ and $t \in [0, 1]$, where $A(a, b) := \frac{a + b}{2}$.

(iv) If $p \geq 1$, then the inequalities

$$0 \leq h_{p,n}(t) - \left(A(a, b) \right)^p \leq \frac{t(b-a)pb^{p-1}}{2\sqrt{3\sqrt{n}}}$$

and

$$0 \leq \frac{1}{(b-a)^n} \int_a^b \cdots \int_a^b \left(\frac{x_1 + \cdots + x_n}{n} \right)^p \, dx_1 \cdots dx_n - h_{p,n}(t)$$

$$\leq \frac{(1 - t)(b-a)pb^{p-1}}{2\sqrt{3\sqrt{n}}}$$

hold for all $n \geq 1$ and $t \in [0, 1]$.

136
(v) If \(p \geq 1 \), the inequalities

\[
0 \leq th_{p,n}(1) + (1-t)h_{p,n}(0) - h_{p,n}(t) \leq \frac{t(1-t)pb^{p-1}}{2\sqrt{3}\sqrt{n}}
\]

and

\[
0 \leq h_{p,n}(t) - h_{p,n+1}(t) \leq \frac{t(b-a)pb^{p-1}}{2\sqrt{3}\sqrt{n}(n+1)}
\]

hold for all \(n \geq 1 \) and \(t \in [0,1] \).

(vi) If \(p \geq 2 \), then the inequalities

\[
0 \leq h_{p,n}(t) - [A(a,b)]^p \leq \frac{t^2(b-a)^2p(p-1)b^{p-2}}{12n}
\]

and

\[
0 \leq h_{p,n}(t) - h_{p,n+1}(t) \leq \frac{t^2(b-a)^2p(p-1)b^{p-2}}{12n(n+1)}
\]

and

\[
0 \leq th_{p,n}(1) + (1-t)h_{p,n}(0) - h_{p,n}(t) \leq \frac{t(1-t)(b-a)^2p(p-1)b^{p-2}}{12n}
\]

and

\[
0 \leq h_{p,n}(1) - h_{p,n}(t) \leq \frac{(1-t)(b-a)^2p(p-1)b^{p-2}}{12n}
\]

hold for all \(n \geq 1 \) and \(t \in [0,1] \).

Acknowledgement. The author would like to thank the anonymous referee for many valuable comments and remarks that have been incorporated in the final version of the paper.

References

Author’s address: S. S. Dragomir, School of Computer Science & Mathematics, Victoria University, P.O. Box 14428, Melbourne City, MC 8001, Australia, e-mail: sever@matilda.vu.edu.au.
A SEQUENCE OF MAPPINGS ASSOCIATED WITH THE HERMITE-HADAMARD INEQUALITIES AND APPLICATIONS

SEVER S. DRAGOMIR, Melbourne City

(Received January 1, 2002, in revised version May 16, 2003)

Abstract. New properties for some sequences of functions defined by multiple integrals associated with the Hermite-Hadamard integral inequality for convex functions and some applications are given.

Keywords: Hermite-Hadamard inequality

MSC 2000: 26D15, 26D10, 26D99

1. Introduction

The integral inequality

\[f \left(\frac{a + b}{2} \right) \leq \frac{1}{b - a} \int_a^b f(t) \, dt \leq \frac{f(a) + f(b)}{2}, \]

which holds for any convex function \(f : [a, b] \to \mathbb{R} \), is well known in literature as the Hermite-Hadamard inequality.

There is an extensive amount of literature devoted to this simple and nice result which has many applications in the theory of special means and in information theory for divergence measures, from which we would like to refer the reader to [1]–[54].

The main aim of this paper is to consider some natural sequences of functions defined by multiple integrals and study their properties in relation to the Hermite-Hadamard inequality.
2. Properties of the sequence of mappings H_n

Let $I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be an interval of real numbers and $a, b \in I$ with $a < b$, and let $f: I \rightarrow \mathbb{R}$ be a mapping which is integrable on $[a, b]$. Then we can define a sequence of mappings $H_n: [0, 1] \rightarrow \mathbb{R}$ by

$$H_n(t) := \frac{1}{(b-a)^n} \int_a^b \cdots \int_a^b f\left(\frac{x_1 + \cdots + x_n}{n} + \frac{1-t}{2}\right) dx_1 \cdots dx_n$$

for $n \geq 1$ and $t \in [0, 1]$.

Some properties of this sequence of mappings are embodied in the following theorem.

Theorem 1. Let $f: I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be a convex mapping on I and let $a, b \in I$ with $a < b$. Then

(i) H_n are convex on $[0, 1]$ for all $n \geq 1$;

(ii) the following inequalities hold:

$$f\left(\frac{a+b}{2}\right) \leq H_n(t) \leq \frac{1}{(b-a)^{n+1}} \int_a^b \cdots \int_a^b f\left(\frac{x_1 + \cdots + x_n}{n} + \frac{1-t}{2}\right) dx_1 \cdots dx_{n+1}$$

and

$$H_n(t) \leq t \frac{1}{(b-a)^n} \int_a^b \cdots \int_a^b f\left(\frac{x_1 + \cdots + x_n}{n}\right) dx_1 \cdots dx_n + (1-t)f\left(\frac{a+b}{2}\right)$$

$$\leq \frac{1}{(b-a)^n} \int_a^b \cdots \int_a^b f\left(\frac{x_1 + \cdots + x_n}{n}\right) dx_1 \cdots dx_n$$

for all $t \in [0, 1]$;

(iii) the mapping H_n is monotonic nondecreasing on $[0, 1]$ for all $n \geq 1$ and one has the bounds

$$\min_{t \in [0, 1]} H_n(t) = f\left(\frac{a+b}{2}\right) = H_n(0) \text{ for all } n \geq 1$$

and

$$\max_{t \in [0, 1]} H_n(t) = \frac{1}{(b-a)^n} \int_a^b \cdots \int_a^b f\left(\frac{x_1 + \cdots + x_n}{n}\right) dx_1 \cdots dx_n$$

$$= H_n(1) \text{ for } n \geq 1.$$
Proof. (i) Follows by the convexity of f.

(ii) Applying Jensen’s integral inequality, we obtain

\[
\frac{1}{b - a} \int_a^b f\left(\frac{t x_1 + \ldots + x_n}{n} + (1 - t)x_{n+1}\right) \, dx_{n+1} \\
\geq f\left[\frac{1}{b - a} \int_a^b \left(\frac{t x_1 + \ldots + x_n}{n} + (1 - t)x_{n+1}\right) \, dx_{n+1}\right] \\
= f\left(\frac{t x_1 + \ldots + x_n}{n} + (1 - t)\frac{a + b}{2}\right)
\]

for all $x_1, \ldots, x_n \in [a, b]$ and $t \in [0, 1]$.

Taking an integral mean over $[a, b]^n$ we deduce the second inequality in (2.1).

By Jensen’s integral inequality for multiple integrals we have

\[
\frac{1}{(b - a)^n} \int_a^b \ldots \int_a^b f\left(\frac{x_1 + \ldots + x_n}{n} + (1 - t)\frac{a + b}{2}\right) \, dx_1 \ldots dx_n \\
\geq f\left[\frac{1}{(b - a)^n} \int_a^b \ldots \int_a^b \left(\frac{t x_1 + \ldots + x_n}{n} + (1 - t)\frac{a + b}{2}\right) \, dx_1 \ldots dx_n\right] \\
= f\left(\frac{a + b}{2}\right),
\]

and the inequality (2.1) is completely proved.

By the convexity of f on $[a, b]$, we can write

\[
f\left(\frac{t x_1 + \ldots + x_n}{n} + (1 - t)\frac{a + b}{2}\right) \leq tf\left(\frac{x_1 + \ldots + x_n}{n}\right) + (1 - t)f\left(\frac{a + b}{2}\right)
\]

for all $x_1, \ldots, x_n \in [a, b]$ and $t \in [0, 1]$. Taking an integral mean over $[a, b]^n$, we deduce

\[
H_n(t) \leq t \frac{1}{(b - a)^n} \int_a^b \ldots \int_a^b f\left(\frac{x_1 + \ldots + x_n}{n}\right) \, dx_1 \ldots dx_n + (1 - t)f\left(\frac{a + b}{2}\right),
\]

and the first inequality in (2.2) is proved.

As we know (see for example [26]) that

\[
f\left(\frac{a + b}{2}\right) \leq \frac{1}{(b - a)^n} \int_a^b \ldots \int_a^b f\left(\frac{x_1 + \ldots + x_n}{n}\right) \, dx_1 \ldots dx_n,
\]

we obtain the last part of (2.2).

(iii) Let $0 < t_1 < t_2 \leq 1$. By the convexity of H_n, which follows by (i) now proved, we have that

\[
\frac{H_n(t_2) - H_n(t_1)}{t_2 - t_1} \geq \frac{H_n(t_1) - H_n(0)}{t_1},
\]

125
but \(H_n(t_1) \geq H_n(0) \) (see the first inequality in (2.1)) and hence we get that \(H_n(t_2) - H_n(t_1) \geq 0 \) for all \(0 \leq t_1 < t_2 \leq 1 \), which shows that the mapping \(H_n(\cdot) \) is monotonic nondecreasing on \([0, 1]\). The bounds (2.3) and (2.4) follow by the inequalities (2.1) and (2.2). We omit the details. \(\square \)

We now give another result on monotonicity which, in a sense, completes the above theorem.

Theorem 2. Let \(f : I \subseteq \mathbb{R} \to \mathbb{R} \) be a convex mapping on \(I \) and let \(a, b \in I \) with \(a < b \). Then

\[
(2.5) \quad f\left(\frac{a + b}{2}\right) \leq H_{n+1}(t) \leq H_n(t) \leq \ldots \leq H_1(t) = H(t),
\]

where

\[
H(t) := \frac{1}{b - a} \int_a^b f\left(tx + (1 - t)\frac{a + b}{2}\right) \, dx
\]

for all \(n \geq 1 \) and \(t \in [0, 1] \). That is, the sequence of mappings \((H_n)_{n \geq 1} \) is monotonically nonincreasing.

Proof. Let us define real numbers belonging to \([a, b]\):

\[
y_1 := t \frac{x_1 + \ldots + x_n}{n} + (1 - t)\frac{a + b}{2};
\]

\[
y_2 := t \frac{x_2 + x_3 + \ldots + x_{n+1}}{n} + (1 - t)\frac{a + b}{2};
\]

\[
\vdots
\]

\[
y_{n+1} := t \frac{x_{n+1} + x_1 + \ldots + x_{n-1}}{n} + (1 - t)\frac{a + b}{2},
\]

where \(x_1, \ldots, x_{n+1} \in [a, b] \).

Using Jensen’s discrete inequality, we may state that

\[
\frac{1}{n+1} \left[f\left(\frac{x_1 + \ldots + x_n}{n}\right) + (1 - t)\frac{a + b}{2}\right]
\]

\[
+ f\left(\frac{x_2 + \ldots + x_{n+1}}{n}\right) + (1 - t)\frac{a + b}{2}\right) + \ldots
\]

\[
+ f\left(\frac{x_{n+1} + x_1 + \ldots + x_{n-1}}{n}\right) + (1 - t)\frac{a + b}{2}\right)\]

\[
\geq f\left(\frac{x_1 + \ldots + x_{n+1}}{n+1}\right) + (1 - t)\frac{a + b}{2}\right)
\]

for all \(t \in [0, 1] \) and \(x_1, \ldots, x_{n+1} \in [a, b] \).
Taking an integral mean over \([a, b]^{n+1}\), we deduce
\[
\frac{1}{n+1} \left[\frac{1}{(b-a)^{n+1}} \int_a^b \cdots \int_a^b f\left(\frac{t x_1 + \ldots + x_n}{n} + (1-t) \frac{a+b}{2} \right) \, dx_1 \ldots \, dx_{n+1} \\
+ \ldots + \frac{1}{(b-a)^{n+1}} \int_a^b \cdots \int_a^b f\left(\frac{t x_{n+1} + x_1 + \ldots + x_{n-1}}{n} \\
+ (1-t) \frac{a+b}{2} \right) \, dx_1 \ldots \, dx_{n+1} \right]
\geq \frac{1}{(b-a)^{n+1}} \int_a^b \cdots \int_a^b f\left(\frac{t x_1 + \ldots + x_n}{n+1} + (1-t) \frac{a+b}{2} \right) \, dx_1 \ldots \, dx_n
\]

However, it is easy to see that
\[
\frac{1}{(b-a)^{n+1}} \int_a^b \cdots \int_a^b f\left(\frac{t x_1 + \ldots + x_n}{n} + (1-t) \frac{a+b}{2} \right) \, dx_1 \ldots \, dx_{n+1}
= \ldots = \frac{1}{(b-a)^{n}} \int_a^b \cdots \int_a^b f\left(\frac{t x_1 + \ldots + x_n}{n} + (1-t) \frac{a+b}{2} \right) \, dx_1 \ldots \, dx_n
\]

and thus, by the above inequality, we conclude
\[
H_n(t) \geq H_{n+1}(t) \quad \text{for all } t \in [0, 1] \text{ and } n \geq 1.
\]

The proof is thus completed. \(\square\)

It is natural to ask what happens with the difference \(H_n(t) - f\left(\frac{1}{2}(a+b) \right)\) which is clearly non-negative for all \(t \in [0, 1]\).

The following theorem contains an upper bound for this difference.

Theorem 3. Let \(f: I \subseteq \mathbb{R} \to \mathbb{R}\) be a convex mapping and \(f'_+\) its right derivative which exists on \(I\) and is monotonic nondecreasing on \(I\). If \(a, b \in I\) with \(a < b\), then the inequalities

\[
0 \leq H_n(t) - f\left(\frac{a+b}{2} \right)
\leq \frac{t}{(b-a)^{n}} \int_a^b \cdots \int_a^b f'_+\left(\frac{t x_1 + \ldots + x_n}{n} + (1-t) \frac{a+b}{2} \right) \\
\times \left(x_1 - \frac{a+b}{2} \right) \, dx_1 \ldots \, dx_n
\leq \frac{t}{\sqrt{n}} \frac{b-a}{2\sqrt{3}} \left[\frac{1}{(b-a)^{n}} \int_a^b \cdots \int_a^b \left[f'_+\left(\frac{t x_1 + \ldots + x_n}{n} \\
+ (1-t) \frac{a+b}{2} \right) \right]^2 \, dx_1 \ldots \, dx_n \right]^{\frac{1}{2}}
\]

hold for all \(n \geq 1\) and \(t \in [0, 1]\).
Proof. As f is convex on I, we can write

$$f(x) - f(y) \geq f'(y)(x - y) \quad \text{for all } x, y \in \hat{I}.$$

Choosing in this inequality

$$x = \frac{a + b}{2} \quad \text{and} \quad y = t \frac{x_1 + \ldots + x_n}{n} + (1 - t) \frac{a + b}{2},$$

we deduce the inequality

$$f\left(\frac{a + b}{2}\right) - f\left(t \frac{x_1 + \ldots + x_n}{n} + (1 - t) \frac{a + b}{2}\right) \geq tf'\left(t \frac{x_1 + \ldots + x_n}{n} + (1 - t) \frac{a + b}{2}\right) \left(\frac{a + b}{2} - \frac{x_1 + \ldots + x_n}{n}\right).$$

Taking an integral mean over $[a, b]^n$, we derive that

(2.7) \quad f\left(\frac{a + b}{2}\right) - H_n(t) \geq t \left[\frac{1}{(b - a)^n} \int_a^b \cdots \int_a^b \frac{a + b}{2} f'\left(t \frac{x_1 + \ldots + x_n}{n} + (1 - t) \frac{a + b}{2}\right) \, dx_1 \cdots dx_n \right.

- \left. \frac{1}{(b - a)^n} \int_a^b \cdots \int_a^b f'\left(t \frac{x_1 + \ldots + x_n}{n} + (1 - t) \frac{a + b}{2}\right) \times \left(\frac{x_1 + \ldots + x_n}{n}\right) \, dx_1 \cdots dx_n \right],$$

from where we deduce the second part of (2.6).

Now, let us observe that the right hand side in the inequality (2.7) is the integral

$$I = - \frac{t}{(b - a)^n} \int_a^b \cdots \int_a^b f'\left(t \frac{x_1 + \ldots + x_n}{n} + (1 - t) \frac{a + b}{2}\right) \times \left(\frac{x_1 + \ldots + x_n}{n} - \frac{a + b}{2}\right) \, dx_1 \cdots dx_n.$$

By the well-known Cauchy-Buniakowsky-Schwartz integral inequality for multiple integrals, we deduce the last part of the inequality (2.6).

The proof of the theorem is thus completed. \square
Corollary 1. Let \(f : I \subseteq \mathbb{R} \to \mathbb{R} \) be a convex mapping and \(a, b \in I \) with \(a < b \).

Put \(M := \sup_{x \in [a,b]} |f'(x)| < \infty \). Then we have the inequality

\[
0 \leq H_n(t) - f\left(\frac{a + b}{2}\right) \leq \frac{t(b - a)M}{2\sqrt{3\sqrt{n}}}
\]

for all \(t \in [0, 1] \) and \(n \geq 1 \).

In particular, we have

\[
\lim_{n \to \infty} H_n(t) = f\left(\frac{a + b}{2}\right) \text{ uniformly on } [0, 1].
\]

The following result also holds:

Theorem 4. Under the assumptions as in Theorem 3, we have

\[
0 \leq tH_n(1) + (1 - t)H_n(0) - H_n(t)
\]

\[
\leq \frac{t(1 - t)}{(b - a)^n} \int_a^b \cdots \int_a^b f'_+\left(\frac{x_1 + \ldots + x_n}{n}\right) \left(x_1 - \frac{a + b}{2}\right) \, dx_1 \ldots \, dx_n
\]

\[
\leq \frac{t(1 - t)(b - a)}{2\sqrt{3\sqrt{n}}} \left[\frac{1}{(b - a)^n} \int_a^b \cdots \int_a^b f'_+\left(\frac{x_1 + \ldots + x_n}{n}\right)^2 \, dx_1 \ldots \, dx_n \right]^{\frac{1}{2}}
\]

for all \(n \geq 1 \) and \(t \in [0, 1] \).

Proof. By the convexity of \(f \) we can write

\[
f\left(\frac{t \left(\frac{x_1 + \ldots + x_n}{n}\right) + (1 - t) \frac{a + b}{2}}{n}\right) - \frac{x_1 + \ldots + x_n}{n}
\]

\[
(1 - t)f'_+\left(\frac{x_1 + \ldots + x_n}{n}\right) \left(\frac{a + b}{2} - \frac{x_1 + \ldots + x_n}{n}\right)
\]

for all \(t \in [0, 1] \) and \(x_1, \ldots, x_n \in [a, b] \).

Similarly, we have

\[
f\left(\frac{t \left(\frac{x_1 + \ldots + x_n}{n}\right) + (1 - t) \frac{a + b}{2}}{n}\right) - \frac{a + b}{2}
\]

\[
- tf'_+\left(\frac{a + b}{2}\right) \left(\frac{a + b}{2} - \frac{x_1 + \ldots + x_n}{n}\right)
\]

for all \(t \in [0, 1] \) and \(x_1, \ldots, x_n \in [a, b] \).
If we multiply the inequality (2.10) by \(t \) and (2.11) by \((1-t)\) and add the obtained inequalities, we deduce

\[
f(t\frac{x_1 + \ldots + x_n}{n} + (1-t)\frac{a+b}{2}) - tf\left(\frac{x_1 + \ldots + x_n}{n}\right) - (1-t)f\left(\frac{a+b}{2}\right) \geq t(1-t)\left[f'_+(\frac{x_1 + \ldots + x_n}{n}) - f'_+(\frac{a+b}{2})\right]\left(\frac{a+b}{2} - \frac{x_1 + \ldots + x_n}{n}\right).
\]

That is,

\[
tf\left(\frac{x_1 + \ldots + x_n}{n}\right) + (1-t)f\left(\frac{a+b}{2}\right) - f\left(t\frac{x_1 + \ldots + x_n}{n} + (1-t)\frac{a+b}{2}\right) \leq t(1-t)\left[f'_+(\frac{x_1 + \ldots + x_n}{n}) - f'_+(\frac{a+b}{2})\right]\left(\frac{x_1 + \ldots + x_n}{n} - \frac{a+b}{2}\right)
\]

for all \(t \in [0,1) \) and \(x_1, \ldots, x_n \in [a, b] \).

Taking an integral mean over \([a, b]^n\), we have

\[
0 \leq tH_n(1) + (1-t)H_n(0) - H_n(t) \leq t(1-t)\left[\frac{1}{(b-a)^n} \int_a^b \ldots \int_a^b f'_+(\frac{x_1 + \ldots + x_n}{n})\left(\frac{x_1 + \ldots + x_n}{n}\right)x_1 \, dx_1 \ldots \, dx_n \right. \\
- \left. \frac{a+b}{2} \frac{1}{(b-a)^n} \int_a^b \ldots \int_a^b f'_+(\frac{x_1 + \ldots + x_n}{n}) \, dx_1 \ldots \, dx_n \right],
\]

because a simple calculation shows us that

\[
\frac{1}{(b-a)^n} \int_a^b \ldots \int_a^b f'_+(\frac{x_1 + \ldots + x_n}{n})\left(\frac{x_1 + \ldots + x_n}{n}\right) \, dx_1 \ldots \, dx_n \\
= \frac{1}{(b-a)^n} \int_a^b \ldots \int_a^b f'_+(\frac{x_1 + \ldots + x_n}{n})x_1 \, dx_1 \ldots \, dx_n
\]

and

\[
\frac{1}{(b-a)^n} \int_a^b \ldots \int_a^b \frac{x_1 + \ldots + x_n}{n} \, dx_1 \ldots \, dx_n = \frac{a+b}{2}.
\]

Thus, the second inequality in (2.9) is proved.

Now, applying the Cauchy-Buniakowsky-Schwartz integral inequality, we deduce the last part of the theorem. We omit the details. \(\square \)
Corollary 2. Under the assumptions as in Theorem 3 and provided $M := \sup_{x \in [a, b]} |f'(x)| < \infty$, we have the inequality

\begin{equation}
0 \leq tH_n(1) + (1 - t)H_n(0) - H_n(t) \leq \frac{t(1-t)}{2\sqrt{3}\sqrt{n}}M
\end{equation}

for all $n \geq 1$ and $t \in [0, 1]$.

In particular,

\[
\lim_{n \to \infty} \left[tH_n(1) + (1 - t)H_n(0) - H_n(t) \right] = 0
\]

uniformly on $[0, 1]$.

The following corollary is interesting as well.

Corollary 3. Under the assumptions as in Theorem 3 and provided there exists a constant $K > 0$ such that

\[|f'_+(x) - f'_+(y)| \leq K|x - y| \quad \text{for all } x, y \in [a, b], \]

we have the inequality

\begin{equation}
0 \leq tH_n(1) + (1 - t)H_n(0) - H_n(t) \leq \frac{Kt(1-t)}{12n}(b-a)^2
\end{equation}

for all $t \in [0, 1]$ and $n \geq 1$.

In addition, it is natural to ask for an upper bound for the difference $H_n(1) - H_n(t)$, $n \geq 1$ for all $t \in [0, 1]$.

Theorem 5. Let $f: I \subseteq \mathbb{R} \to \mathbb{R}$ be a convex mapping on the interval I and let $a, b \in \mathring{I}$ with $a < b$. Then we have the inequalities

\begin{equation}
\frac{1}{(b-a)^n} \int_a^b \cdots \int_a^b f \left(\frac{x_1 + \cdots + x_n}{n} \right) \, dx_1 \cdots dx_n - H_n(t)
\leq \frac{(1-t)(b-a)}{2\sqrt{3}\sqrt{n}} \left(\frac{1}{(b-a)^n} \int_a^b \cdots \int_a^b \left[f'_+ \left(\frac{x_1 + \cdots + x_n}{n} \right) \right]^2 \, dx_1 \cdots dx_n \right)^{\frac{1}{2}}
\end{equation}

for all $t \in [0, 1]$ and $n \geq 1$.

131
Proof. By the convexity of f, we have that

$$f\left(\frac{x_1 + \ldots + x_n}{n} + (1 - t)\frac{a + b}{2}\right) - f\left(\frac{x_1 + \ldots + x_n}{n}\right) \geq (1 - t)f'\left(\frac{x_1 + \ldots + x_n}{n}\right)\left[\frac{a + b}{2} - \frac{x_1 + \ldots + x_n}{n}\right]$$

for all $x_1, \ldots, x_n \in [a, b]$ and $t \in [0, 1]$.

Now, the argument proceeds as above and we omit the details. \qed

Corollary 4. Under the assumptions as in Theorem 3 and provided $M := \sup_{x \in [a, b]} |f'(x)| < \infty$, we have the inequality

$$0 \leq H_n(1) - H_n(t) \leq \frac{(1 - t)(b - a)M}{2\sqrt{3} \sqrt{n}}.$$ \hspace{1cm} (2.15)

In particular,

$$\lim_{n \to \infty} [H_n(1) - H_n(t)] = 0$$

uniformly on $[0, 1]$.

Corollary 5. Under the assumptions as in Theorem 3 and provided there exists a constant $K > 0$ such that

$$|f'_+(x) - f'_+(y)| \leq K|x - y| \quad \text{for all } x, y \in [a, b],$$

we have the inequality

$$0 \leq H_n(1) - H_n(t) \leq \frac{K(1 - t)(b - a)^2}{12n}$$ \hspace{1cm} (2.16)

for all $n \geq 1$ and $t \in [0, 1]$.

Now we establish an upper bound for the difference $H_n(t) - H_{n+1}(t)$, $n \geq 1$ which is non-negative for all $t \in [0, 1]$ (cf. Theorem 2):
Theorem 6. Let $f : I \subseteq \mathbb{R} \to \mathbb{R}$ be a convex function on the interval I and let $a, b \in \mathring{I}$ with $a < b$. Then the inequality

\begin{align*}
0 & \leq H_n(t) - H_{n+1}(t) \\
& \leq \frac{t}{n+1} \left[\frac{1}{(b-a)^n} \int_a^b \cdots \int_a^b f' \left(\frac{t}{n} \sum_{i=1}^n x_i + (1-t) \frac{a+b}{2} \right) \\
& \quad \times \left(x_1 - \frac{a+b}{2} \right) dx_1 \cdots dx_n \right] \\
& \leq \frac{t(b-a)}{2\sqrt{3}\sqrt{n(n+1)}} \left[\frac{1}{(b-a)^n} \int_a^b \cdots \int_a^b \left[f' \left(\frac{t}{n} \sum_{i=1}^n x_i + (1-t) \frac{a+b}{2} \right) + (1-t) \frac{a+b}{2} \right]^2 dx_1 \cdots dx_n \right]^{\frac{1}{2}}
\end{align*}

holds for all $t \in [0, 1]$ and $n \geq 1$.

Proof. By the convexity of f, we have that

\begin{align*}
f\left(\frac{t}{n+1} \sum_{i=1}^{n+1} x_i + (1-t) \frac{a+b}{2} \right) - f\left(\frac{t}{n} \sum_{i=1}^n x_i + (1-t) \frac{a+b}{2} \right) \\
\geq \frac{t}{n(n+1)} f' \left(\frac{t}{n} \sum_{i=1}^n x_i + (1-t) \frac{a+b}{2} \right) [nx_{n+1} - (x_1 + \cdots + x_n)]
\end{align*}

for all $x_1, \ldots, x_{n+1} \in [a, b]$ and $t \in [0, 1]$.

Taking an integral mean on $[a, b]^{n+1}$, we derive

\begin{align*}
0 & \leq H_n(t) - H_{n+1}(t) \\
& \leq \frac{t}{n+1} \left[\frac{1}{(b-a)^n} \int_a^b \cdots \int_a^b f' \left(\frac{t}{n} \sum_{i=1}^n x_i + (1-t) \frac{a+b}{2} \right) x_1 dx_1 \cdots dx_n \\
& \quad - \frac{a+b}{2} \frac{1}{(b-a)^n} \int_a^b \cdots \int_a^b f' \left(\frac{t}{n} \sum_{i=1}^n x_i + (1-t) \frac{a+b}{2} \right) dx_1 \cdots dx_n \right],
\end{align*}

and the second inequality in (2.17) is proved.
Now, let us observe that
\[
\frac{1}{(b-a)^n} \int_a^b \cdots \int_a^b f'_+(t \frac{x_1 + \ldots + x_n}{n} + (1-t) \frac{a+b}{2}) \times (x_1 - \frac{a+b}{2}) \, dx_1 \ldots dx_n
\]
\[
= \frac{1}{(b-a)^n} \int_a^b \cdots \int_a^b f'_+(t \frac{x_1 + \ldots + x_n}{n} + (1-t) \frac{a+b}{2}) \times \left(\frac{x_1 + \ldots + x_n}{n} - \frac{a+b}{2} \right) \, dx_1 \ldots dx_n
\]
\[
\leq \left(\frac{1}{(b-a)^n} \int_a^b \cdots \int_a^b \left[f'_+(t \frac{x_1 + \ldots + x_n}{n} + (1-t) \frac{a+b}{2}) \right]^2 \right)^{\frac{1}{2}} \times \left(\frac{1}{(b-a)^n} \int_a^b \cdots \int_a^b \left(\frac{x_1 + \ldots + x_n}{n} - \frac{a+b}{2} \right)^2 \, dx_1 \ldots dx_n \right)^{\frac{1}{2}},
\]
and thus the last inequality is also proved.

Corollary 6. Under the assumptions as in Theorem 3, given that \(M := \sup_{x \in [a,b]} |f'(x)| < \infty \), we have

\[
0 \leq H_n(t) - H_{n+1}(t) \leq \frac{Mt(b-a)}{2\sqrt{3} \sqrt{n(n+1)}}
\]
for all \(t \in [0,1] \) and \(n \geq 1 \).

In particular, \[
\lim_{n \to \infty} [H_n(t) - H_{n+1}(t)] = 0
\]
uniformly on \([0,1]\).

The following theorem also holds.

Theorem 7. Under the assumptions as in Theorem 3, we also have the bound

\[
0 \leq H_n(t) - H_{n+1}(t)
\]
\[
\leq \frac{t(b-a)}{2\sqrt{3} \sqrt{n(n+1)}} \left[\frac{1}{(b-a)^n} \int_a^b \cdots \int_a^b \left[f'_+(t \frac{x_1 + \ldots + x_n}{n} + (1-t) \frac{a+b}{2}) \right. \right.
\]
\[
- \left. \left. f'_+(\frac{a+b}{2}) \right]^2 \right] \times \left(\frac{1}{(b-a)^n} \int_a^b \cdots \int_a^b \left(\frac{x_1 + \ldots + x_n}{n} - \frac{a+b}{2} \right)^2 \, dx_1 \ldots dx_n \right)^{\frac{1}{2}}
\]
for all \(t \in [0,1] \) and \(n \geq 1 \).

Proof. The proof is similar to the one of Theorem 6 and we omit the details.
Corollary 7. Under the assumptions as in Theorem 3, given that there exists a $K > 0$ such that
\[
|f'_+(x) - f'_+(y)| \leq K|x - y| \quad \text{for all } x, y \in [a, b],
\]
we have the inequality
\[
0 \leq H_n(t) - H_{n+1}(t) \leq \frac{t^2(b-a)^2K^2}{12n(n+1)}
\]
for all $t \in [0, 1]$ and $n \geq 1$.

Finally, note that, by a similar argument to that in the proof of Theorem 6, we can give the following result which completes, in a sense, the estimate in Theorem 3.

Theorem 8. Under the above assumptions the inequality
\[
0 \leq H_n(t) - f\left(\frac{a + b}{2}\right)
\]
\[
\leq \frac{t(b-a)}{2\sqrt{3}n} \left[\frac{1}{(b-a)^n} \int_a^b \cdots \int_a^b \left[f'_+\left(\frac{x_1 + \cdots + x_n}{n} \right) + (1 - t) \frac{a + b}{2} \right]
\]
\[- f'_+\left(\frac{a + b}{2} \right)^2 \right] dx_1 \cdots dx_n \right]^\frac{1}{2}
\]
holds for all $t \in [0, 1]$ and $n \geq 1$.

Corollary 8. Under the above assumptions, given that there exists a $K > 0$ such that
\[
|f'_+(x) - f'_+(y)| \leq K|x - y| \quad \text{for all } x, y \in [a, b],
\]
we have the inequality
\[
0 \leq H_n(t) - f\left(\frac{a + b}{2}\right) \leq \frac{t^2(b-a)^2K^2}{12n}
\]
for all $t \in [0, 1]$ and $n \geq 1$.

135
3. Applications to special means

Let \(0 \leq a < b\) and \(p \in (-\infty, 0) \cup [1, \infty) \setminus \{-1\}\). Let us define sequence of mappings

\[
h_{p,n}(t) := \frac{1}{(b-a)^n} \int_a^b \cdots \int_a^b \left(t \frac{x_1 + \cdots + x_n}{n} + (1-t) \frac{a+b}{2}\right)^p \, dx_1 \cdots dx_n,
\]

where \(n \geq 1, n \in \mathbb{N},\) and \(t \in [0, 1]\).

By virtue of the above results, we can establish the following properties:

(i) \(h_{p,n}(t)\) are convex and monotonic nondecreasing on \([0, 1]\);

(ii) \(h_{p,n}(t) \geq h_{p,n+1}(t)\) for all \(n \geq 1\) and \(t \in [0, 1]\);

(iii) the inequalities

\[
[A(a, b)]^p \leq h_{p,n}(t)
\]

\[
\leq \frac{1}{(b-a)^{n+1}} \int_a^b \cdots \int_a^b \left(t \frac{x_1 + \cdots + x_n}{n} + (1-t)x_{n+1}\right)^p \, dx_1 \cdots dx_{n+1}
\]

and

\[
h_{p,n}(t) \leq t \frac{1}{(b-a)^n} \int_a^b \cdots \int_a^b \left(\frac{x_1 + \cdots + x_n}{n}\right)^p \, dx_1 \cdots dx_n
\]

\[
\quad + (1-t)[A(a, b)]^p
\]

\[
\leq \frac{1}{(b-a)^n} \int_a^b \cdots \int_a^b \left(\frac{x_1 + \cdots + x_n}{n}\right)^p \, dx_1 \cdots dx_n
\]

hold for all \(n \geq 1\) and \(t \in [0, 1]\), where \(A(a, b) := \frac{a+b}{2}\).

(iv) If \(p \geq 1\), then the inequalities

\[
0 \leq h_{p,n}(t) - [A(a, b)]^p \leq \frac{t(b-a)pb^{p-1}}{2\sqrt{3}\sqrt{n}}
\]

and

\[
0 \leq \frac{1}{(b-a)^n} \int_a^b \cdots \int_a^b \left(\frac{x_1 + \cdots + x_n}{n}\right)^p \, dx_1 \cdots dx_n - h_{p,n}(t)
\]

\[
\leq \frac{(1-t)(b-a)pb^{p-1}}{2\sqrt{3}\sqrt{n}}
\]

hold for all \(n \geq 1\) and \(t \in [0, 1]\).
(v) If \(p \geq 1 \), the inequalities

\[
0 \leq th_{p,n}(1) + (1 - t)h_{p,n}(0) - h_{p,n}(t) \leq \frac{t(1 - t)pb^{p-1}}{2\sqrt{3\sqrt{n}}}
\]

and

\[
0 \leq h_{p,n}(t) - h_{p,n+1}(t) \leq \frac{t(b - a)pb^{p-1}}{2\sqrt{3\sqrt{n}(n + 1)}}
\]

hold for all \(n \geq 1 \) and \(t \in [0, 1] \).

(vi) If \(p \geq 2 \), then the inequalities

\[
0 \leq h_{p,n}(t) - [A(a, b)]^p \leq \frac{t^2(b - a)^2p(p - 1)b^{p-2}}{12n}
\]

and

\[
0 \leq h_{p,n}(t) - h_{p,n+1}(t) \leq \frac{t^2(b - a)^2p(p - 1)b^{p-2}}{12n(n + 1)}
\]

and

\[
0 \leq th_{p,n}(1) + (1 - t)h_{p,n}(0) - h_{p,n}(t)
\leq \frac{t(1 - t)(b - a)^2p(p - 1)b^{p-2}}{12n}
\]

and

\[
0 \leq h_{p,n}(1) - h_{p,n}(t) \leq \frac{(1 - t)(b - a)^2p(p - 1)b^{p-2}}{12n}
\]

hold for all \(n \geq 1 \) and \(t \in [0, 1] \).

Acknowledgement. The author would like to thank the anonymous referee for many valuable comments and remarks that have been incorporated in the final version of the paper.

References

Author’s address: S. S. Dragomir, School of Computer Science & Mathematics, Victoria University, P.O. Box 14428, Melbourne City, MC 8001, Australia, e-mail: sever@matilda.vu.edu.au.