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Abstract. Amesh independent bound is given for the superlinear convergence of the CGM
for preconditioned self-adjoint linear elliptic problems using suitable equivalent operators.
The results rely on K-condition numbers and related estimates for compact Hilbert-Schmidt
operators in Hilbert space.
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1. Introduction

The conjugate gradient method has become the most widespread way of solving
large symmetric positive definite (SPD) linear algebraic systems

(1) Ax = b

in the past fifty years. One of its the most important features is superlinear conver-
gence, first proved in [15] (see also [7], [13], [27], [28]). A comprehensive summary
on the convergence of the CGM, with much of the results covering nonsymmetric
systems as well, is given in the book [1].

Since its first presentation in [16], the convergence properties of the CGM have
been deeply understood, sometimes involving Hilbert space theory. The survey
given in [1] includes a characterization of the three typical phases of convergence
of the CGM (namely, sublinear, linear and superlinear), see also [2]. While the

*This research was supported by the Hungarian National Research Fund OTKA under
grant No. T043765.
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well-known linear estimate uses the standard condition number, the superlinear esti-
mate of [2] is based on the K-condition number of A. The superlinear convergence of
the CGM can be further understood from the related Hilbert space result on compact
perturbations of the identity operator (i.e. for operators of the form A = I + C with
C compact) proved in [28]. Here the convergence is estimated using the sequence
of eigenvalues of the compact operator (see also [27]) and the author’s paper [3]
where the K-condition numbers are related to the eigenvalues of the compact oper-
ator).

However, when the CGM is applied to the discretizations of elliptic problems, the
convergence estimates deteriorate under refinement, i.e., the number of iterations
for prescribed accuracy tends to ∞ when the mesh parameter h tends to 0. In the
case of the linear estimate the standard condition numbers κh satisfy κh = O(h−2)
(see [1]). This suggests that mesh independent convergence can only be expected if
suitable preconditioning is applied as a remedy. For the linear convergence estimate,
the problem of mesh independence has been rigorously described in the framework of
equivalent operators even for nonsymmetric problems [11]. Using the discretizations
of suitable linear preconditioning operators as preconditioning matrices, the linear
convergence estimate is mesh independent. (Moreover, the equivalence of the two
operators is essentially necessary for such a result.) We note that this idea has wide
applications for both linear and nonlinear problems, see e.g. [19], [20], [22] and was
considered by the author in [12], [18]. Moreover, it has been shown in [11] that the
PCG using equivalent operators is competitive with multigrid methods. A central
area of the application of equivalent operators is the case when an original elliptic
operator with variable (i.e. nonconstant) coefficients is preconditioned by an elliptic
operator with constant coefficients, since the latter is cheaper to solve [6], [8], [10],
[21], [26].

The above-mentioned mesh independence results have been extended to the case
of superlinear convergence for some nonsymmetric elliptic problems in [4]. Namely,
mesh independent superlinear convergence of the CGM has been proved for the
symmetric part preconditioner S = 1

2 (L + L∗) for general elliptic operators L, and
for constant coefficient preconditioners when the original operator L has also (other)
constant coefficients. These cases leave a gap, i.e., the result is still unproved in
general for an elliptic operator with variable coefficients and a preconditioner with
constant coefficients.

Our purpose is to take a step towards filling this gap: in this paper the mesh
independence result is proved when the original (variable coefficient) operator is also
symmetric (self-adjoint). For nonsymmetric operators, this result can be used in the
framework of outer-inner iterations: that is, if the symmetric part preconditioner is
used in an outer iteration cycle and in each step a constant coefficient preconditioning

278



operator is used in an inner iteration cycle, then (by joining the results of [4] and
the present paper) the superlinear convergence is mesh independent in both cycles.
Some further additions to the results of [4] are given in this paper by exploiting

the self-adjoint setting. Namely, on a general bounded domain the superlinear con-
vergence estimate now has the explicit form ‖en‖1/n 6 c/

√
n, moreover, the (mesh

independent) constant c > 0 has a computable bound. (For the nonsymmetric case
this was proved for the special case when the original operator also has constant
coefficients and the domain is the unit square.) We also note that, owing to the
symmetry, we can now rely on the theory of Hilbert-Schmidt operators, and the cor-
responding estimates for the discretized operators involve K-condition numbers and
their relation to Frobenius norms.
The paper is organized as follows. In Section 2 some background is given on

K-condition numbers. In Section 3 we consider preconditioned operator equations
in Hilbert space in which the operator is a compact Hilbert-Schmidt perturbation
of the identity, and prove an independence result with respect to the discretization
subspaces. Using the latter, in Section 4 the mesh independent estimate is derived
for elliptic boundary value problems and their finite discretizations. The result is
verified when the operator is preconditioned by its principal part, and a computable
estimate of the arising constant is given here. Then examples illustrate that the
scope of the main result includes some known efficient preconditioning methods.

2. Preliminaries

The superlinear estimate of the CGM in [1], [2] is based on the K-condition number

(2) K(A) =
(1

k
trace (A)

)k

/ det(A) =
(

1
k

k∑

i=1

λi(A)
)k( k∏

i=1

λi(A)
)−1

,

where λi(A) are the eigenvalues of the k × k SPD matrix A. Namely:

Proposition 1 ([1], [2]). If n ∈ � is even and n > 3 ln K(A), then the residuals
satisfy

(3)
‖en‖
‖e0‖

6
(3 lnK(A)

n

)n/2

.

K-condition numbers can be related to Frobenius norms if the matrix is consid-
ered as a perturbation of the identity matrix. The Frobenius norm of a symmetric
matrix B is defined via

(4) ‖B‖2
F :=

k∑

i=1

λi(B)2.

279



Then the following relation holds, which follows from the proof of the assertion (1)
of Theorem 8 in [3]:

Proposition 2. If B is positive semidefinite then

(5) ln K(I + B) 6 1
2
‖B‖2

F

where I is the identity matrix.

Corollary 1. If A = I + B for some positive semidefinite matrix B, then the
CGM for (1) satisfies

(6)
‖en‖
‖e0‖

6
(

3‖B‖2
F

2n

)n/2

(n ∈ � is even and n > 3
2‖B‖2

F ).

Our study of mesh independence will be based accordingly on Frobenius norms.

�����������
2.1. (i) Estimates (5)–(6) can be extended to indefinite B if A = I+B

is still positive definite: then in both estimates the factors 2 are replaced by 2λmin(A).
This also follows from the quoted proof in [3].

(ii) As mentioned before, the superlinear convergence result extends to Hilbert
space for perturbations of the identity [9], [15], [28]. In [3] an analogue of (6) is
proved, also for the case allowing B to be indefinite. The superlinear convergence
does not hold for general bounded self-adjoint positive operators [13], here only the
linear estimate is valid [9]. That is, the assumption that A is a compact perturbation
of the identity is in some sense necessary for superlinear convergence. Accordingly,
for such operators one can expect that the superlinear convergence factor of the
underlying operator is an upper bound for those of the discretized problems.

3. Mesh independence of the CGM for discretized
operator equations in Hilbert space

Let H be a separable Hilbert space and let us consider a linear operator equation

(7) Bu = g

with some g ∈ H , under the following
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1.

(i) The operator B is decomposed as B = S + Q where S is a self-adjoint operator
in H with dense domain D and Q is a self-adjoint operator defined on the
domain H .

(ii) There exists p > 0 such that 〈Su, u〉 > p‖u‖2 (u ∈ D).
(iii) 〈Qu, u〉 > 0 (u ∈ H).
(iv) The operator S−1Q, defined on the energy space HS , is a compact Hilbert-

Schmidt operator, i.e.,

(8) |||S−1Q|||2 ≡
∞∑

i=1

λi(S−1Q)2 < ∞

where λi(S−1Q) (i ∈ � ) are the eigenvalues of S−1Q. (Here |||S−1Q||| is called
the Hilbert-Schmidt norm of S−1Q.)

We recall that the energy space HS is the completion of D under the energy inner
product 〈u, v〉S = 〈Su, v〉, and the corresponding norm has the obvious notation ‖·‖S.
Assumption (ii) implies HS ⊂ H . We also note that assumptions (i)–(ii) on S imply
that R(S) = H (see e.g. [24]), hence S−1Q makes sense indeed.
We replace equation (7) by its preconditioned form (I + S−1Q)u = S−1g. This is

equivalent to the weak formulation

(9) 〈u, v〉S + 〈Qu, v〉 = 〈g, v〉 (∀ v ∈ HS),

which has a unique solution u ∈ HS since by assumption (iii) the bilinear form on
the left is coercive on HS .
Now equation (9) is solved numerically using a Galerkin discretization.

Construction of the discretization. Let V = span{ϕ1, . . . , ϕk} ⊂ HS be a
given finite-dimensional subspace,

S = {〈ϕi, ϕj〉S}k
i,j=1 and Q = {〈Qϕi, ϕj〉}k

i,j=1

the Gram matrices corresponding to S and Q. We look for the numerical solution
uV ∈ V of equation (9) in V , i.e., for which

(10) 〈uV , v〉S + 〈QuV , v〉 = 〈g, v〉 (∀ v ∈ V ).

Then uV =
k∑

j=1

cjϕj , where c = (c1, . . . , ck) ∈ % k is the solution of the system

(11) (S + Q)c = b
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with b = {〈g, ϕj〉}k
j=1. (For simplicity the dependence on V in (11) is not indicated.)

The matrix S + Q is SPD.
As a discrete counterpart of the above used operator preconditioning with S, we

introduce the matrix S as the preconditioner for the system (11) and replace this
system by its preconditioned form

(12) (I + S−1Q)c = b̃

where b̃ = S−1b and I is the identity matrix in % k . Then we apply the CGM for
the solution of the system (12).
Our main theorem below states that the Frobenius norm of S−1Q is bounded by

the Hilbert-Schmidt norm of the operator S−1Q. This bound is natural but not at
all trivial (except for the case when the eigenvalues of S−1Q equal some of those of
the operator S−1Q, which does not hold for any practical discretization).

Theorem 1. Let assumptions 1 hold. Then

(13) ‖S−1Q‖2
F 6 |||S−1Q|||2.

&'��"("*)
. For simplicity let us only denote by λm the eigenvalues of S−1Q. Let

cm = (cm
1 , . . . , cm

k ) ∈ % k be the corresponding eigenvectors. Then

(14) Qcm = λmScm

for all m. Since S−1Q is self-adjoint with respect to the S-inner product, therefore
the eigenvalues are λ1, . . . , λk (with multiplicity), and the vectors cm (m = 1, . . . , k)
are orthogonal in % k with respect to the S-inner product. Let us choose them such
that they are also orthonormal:

(15) Scm · cl = δml (m, l = 1, . . . , k),

where δml is the Kronecker symbol.

Let um =
k∑

i=1

cm
i ϕi ∈ V (m = 1, . . . , k). Then for all m, l = 1, . . . , k

(16) 〈um, ul〉S =
k∑

i,j=1

〈ϕi, ϕj〉S cm
i cl

j = S cm · cl,

hence (15) implies that u1, . . . , uk (as elements of HS) form an orthonormal base
in V with respect to the HS-inner product. Then (14) and (15) yield

Q cm · cl = lmδml (m, l = 1, . . . , k)
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and, together with the analogue of (16) for Q, this implies

(17) 〈Qum, ul〉 = λmδml (m, l = 1, . . . , k).

Let uk+1, uk+2, . . . be a complete orthonormal system in the orthocomplement of V
in HS . Then u1, u2, . . . form a complete orthonormal system in HS . An invariance
theorem on an arbitrary Hilbert-Schmidt operator L in a Hilbert space [14] asserts
that

|||L|||2 =
∞∑

m,l=1

|〈Lum, ul〉|2

for any complete orthonormal system (ul). In our setting, we obtain for S−1Q in the
space HS that

(18) |||S−1Q|||2 =
∞∑

m,l=1

|〈S−1Qum, ul〉S |2 =
∞∑

m,l=1

|〈Qum, ul〉|2.

Here, using (17), we have

(19)
k∑

m=1

λ2
m =

k∑

m,l=1

|〈Qum, ul〉|2

with λm = λm(S−1Q) (m = 1, . . . , k). Then (18) and (19) imply that (13) is satisfied.
�

Corollary 1 and Theorem 1 imply

Corollary 2. The CGM applied to system (12) yields

(20)
‖en‖
‖e0‖

6
(

3|||S−1Q|||2
2n

)n/2

(if n ∈ � is even and n > 3
2 |||S−1Q|||2). This estimate is independent of the sub-

space V .
�����������

3.2. (i) Theorem 1 can also be proved without the assumption
R(S) = H, in this case the operator S−1Q is replaced by a suitable weak form.

(ii) Theorem 1 includes as a special case the non-preconditioned case when S = I

is the identity operator (and D = H). However, we are rather interested in the
case when S is an unbounded operator including elliptic differential operators. The
following section is devoted to such applications.
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4. Mesh independence of the CGM for discretized linear
elliptic problems

In this section we consider self-adjoint second order elliptic boundary value prob-
lems and their finite element discretizations. First we verify that by preconditioning
an elliptic operator with its principal part, the superlinear convergence of the CGM
becomes mesh independent. Then a computable estimate of the arising constant is
given. Finally some examples illustrate that the arising preconditioned CG itera-
tion has efficient realization—here we underline that our aim is not the construction
of new numerical procedures but to demonstrate the mesh independence for known
efficient methods.

4.1. The general mesh independence result
Let N 6 3 and Ω ⊂ % N be a bounded domain. We consider the elliptic problem

(21)

{
− div(G∇u) + du = g,

u|∂Ω = 0,

under the standard assumptions listed below. Our main interest is the case when
the principal part has constant or separable coefficients, i.e.

G(x) ≡ G ∈ % N×N or G(x) ≡ diag{Gi(xi)}N
i=1,

whereas

d = d(x)

is a general variable (i.e. nonconstant) coefficient. Our goal is to use the principal
part as preconditioning operator; such a setting has been considered e.g. in [6], [8],
where the mesh independence of the rate of linear convergence has been observed.

Let the problem (21) satisfy the following assumptions:

(i) The symmetric matrix-valued function G ∈ C1(Ω, % N×N ) satisfies

(22) G(x)ξ · ξ > m|ξ|2 (ξ ∈ % N )

with some m > 0 independent of ξ.
(ii) d ∈ C(Ω) and d > 0.
(iii) ∂Ω is piecewise C2 and Ω is locally convex at the corners.
(iv) g ∈ L2(Ω).
Then the problem (21) has a unique weak solution in H1

0 (Ω).
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Let Vh ⊂ H1
0 (Ω) be a given FEM subspace. We look for the numerical solution uh

of (21) in Vh:

(23)
∫

Ω

(G∇uh · ∇v + duhv) =
∫

Ω

gv (v ∈ Vh).

The corresponding linear algebraic system has the form

(24) (Gh + Dh) c = gh,

where Gh and Dh are the corresponding stiffness and mass matrices, respectively.
We apply the matrix Gh as preconditioner, thus the preconditioned form of (24) is

(25) (Ih + G−1
h Dh) c = g̃h

with g̃h = G−1
h gh.

Let us apply the CGM to the system (25).

Theorem 2. There exists a constant σ > 0 independent of the subspace Vh such
that

(26) ‖G−1Dh‖F 6 σ,

and hence the CGM applied to the system (25) yields

(27)
‖en‖
‖e0‖

6
(3σ2

2n

)n/2

if n ∈ � is even and n > 3
2σ2.

&'��"("*)
. Let us consider the Hilbert space H = L2(Ω) endowed with the usual

inner product. Let D = H2(Ω) ∩H1
0 (Ω). We define the operators

Su ≡ − div(G∇u) (u ∈ D) and Qu ≡ du (u ∈ L2(Ω)).

Then

〈Su, u〉 > m

∫

Ω

|∇u|2 > mν

∫

Ω

u2 (u ∈ D)

and

〈Qu, u〉 =
∫

Ω

du2 > 0 (u ∈ L2(Ω))
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where ν > 0 comes from the Sobolev inequality. By assumption (iii) the symmetric
operator S maps onto L2(Ω) (see [17]), hence it is self-adjoint [23] as well as the
bounded operator Q. Further, HS = H1

0 (Ω) with 〈u, v〉S =
∫
Ω G∇u · ∇v and

〈S−1Qu, v〉S = 〈Qu, v〉 =
∫

Ω

duv (v ∈ H1
0 (Ω)),

hence S−1Q is a Hilbert-Schmidt operator in HS [3].
This means that Assumptions 1 are satisfied, and therefore Theorem 1 and Corol-

lary 2 hold for the system (25) with S = Gh and Q = Dh. These imply (26) and
(27), respectively, with

(28) σ = |||S−1Q|||.

�
�����������

4.2. Theorem 2 holds with more general conditions on (21) as well:
(i) It suffices to assume G, d ∈ L∞ instead of G ∈ C1 and q ∈ C, further, the
assumption (iii) on Ω may be omitted. In this case the proof uses Remark 3.2 (i)
instead of Theorem 1.

(ii) We may allow d(x) > −d0 > −mµ1, where µ1 is the first eigenvalue of −∆
on Ω. Then the operator I + S−1Q is still strictly positive and we may rely
on Remark 2.1.

(iii) The theorem also holds with mixed boundary conditions

u|ΓD
= 0, G∇u · ν|ΓN

= γ

where ∂Ω is decomposed in measurable subparts ΓD, ΓN and γ ∈ L2(ΓN ). Then
the FEM subspace is chosen as Vh ⊂ H1

D(Ω) := {u ∈ H1(Ω): u|ΓD
= 0} and

γ enters in (23) as
∫

Ω

(G∇uh · ∇v + duhv) =
∫

Ω

gv +
∫

ΓN

γv (v ∈ Vh).

Defining now the operator Su = − div(G∇u) with domainD = H2(Ω)∩H1
D(Ω),

the proof of the theorem goes on in the same way using Remark 3.2 (i) again.

4.2. A computable estimate of the constant in the bound
The constant σ in Theorem 2 can be estimated as follows. We underline that

(29) below not only gives an a priori bound for (26)–(27) but also helps to avoid
a more costly calculation or estimation of the K-condition number of the matrix
in (25).
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Proposition 3. Let d∞ = supΩ d and m be the lower spectral bound of G

from (22).
(1) Let N = 2 and let R = [0, a] × [0, b] ⊂ % 2 be the smallest rectangle that

contains a translate of Ω. Then

(29) σ2 6 d2
∞

m2π4

∞∑

k,l=1

(
k2

a2
+

l2

b2

)−2

.

(2) For N = 3 the obvious analogue holds, i.e, k2/a2 + l2/b2 is replaced by k2/a2 +
l2/b2 + m2/c2.

&'��"("*)
. Let λj = λj(S−1Q) (j ∈ � + ), then |||S−1Q|||2 =

∞∑
j=1

λ2
j . Since S−1Q is a

compact operator in HS , the variational characterization of the eigenvalues asserts
that

λj = inf
v1,...,vj−1∈HS

sup
u⊥ span{v1,...,vj−1}

〈S−1Qu, u〉S
‖u‖2

S

.

Here
〈S−1Qu, u〉S

‖u‖2
S

=
〈Qu, u〉
‖u‖2

S

=

∫
Ω du2

∫
Ω G∇u · ∇u

6
d∞

∫
Ω u2

m
∫
Ω |∇u|2 .

Hence

λj 6 d∞
m

inf
v1,...,vj−1∈HS

sup
u⊥ span{v1,...,vj−1}

∫
Ω u2

∫
Ω
|∇u|2 =

d∞
m

1
µj(Ω)

,

where µj(Ω) is the jth eigenvalue of−∆ on Ω with the Dirichlet boundary conditions.
If R ⊂ % 2 contains a translate of Ω then µj(R) 6 µj(Ω) (see [25]). Let R = [0, a]×
[0, b] and let us re-index the eigenvalues {λj}j∈ + + into {λkl}k,l∈ + + and similarly
for µj . We thus obtain

λkl 6 d∞
m

1
µkl(Ω)

6 d∞
m

1
µkl(R)

=
d∞
mπ2

(
k2

a2
+

l2

b2

)−1

(k, l ∈ � + ).

This, together with (28), yields the required estimate.
The analogous statement for N = 3 is obvious. �

For an illustration of the magnitude of σ, let us consider the Dirichlet problem
for the equation −∆u + du = g on the unit square as a special case of (21). Then
Proposition 3 yields that σ 6 0.0663 d∞.
(In general, the rough estimate (k/a)2+(l/b)2 > 2kl/ab yields the bound π4( 1

12ab)2

for the infinite sum in (29), which implies σ 6 1
12 (ab/m)d∞.)

4.3. Some efficient realizations and applications
As mentioned previously, our main interest is the case when the principal part

of the elliptic operator has constant or separable coefficients, whereas d = d(x) is
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a general variable (i.e. nonconstant) coefficient. Such a setting has been considered
in various papers (e.g. [6], [8], [19], [22]) since there exist well-known fast solution
methods for separable problems [5], [21], [26] that have made the separable principal
part an efficient preconditioner. In these applications the mesh independence of the
rate of linear convergence has been usually observed. Now our result of Subsection 4.1
provides mesh independence also for the superlinear convergence of CG in these
preconditioning methods. We refer to some of these settings and related applications.
(a) Separable principal part. If the matrix G in (21) has the special form G(x) ≡

diag{ai(xi)}N
i=1 then the corresponding operator S is separable. Problems containing

only the operator S can be solved efficiently by fast direct solvers [5], [21], [26], and
the cost of this is of smaller order than for the original problem (21) whenever the
function d is not separable.
(b) Scaling of diffusion problems. Let us consider the diffusion problem

(30)

{
− div(a∇u) = f,

u|∂Ω = 0,

where a ∈ C2(Ω) and a(x) > m > 0. Using the method of scaling [8], the prob-
lem (30) can be rewritten as

(31)

{
−∆v + dv = g,

v|∂Ω = 0,

with d = a−1/2∆(a1/2) and g = a−1/2f . Hence we obtain a special case of (21) where
now some fast Poisson solver [21], [26] can be applied for the efficient solution of the
auxiliary problems.
(c) Outer-inner iterations for nonlinear reaction-diffusion equations. The Newton

linearization of a nonlinear reaction-diffusion equation

{
−∆u + f(x, u) = 0,

u|∂Ω = 0

involves auxiliary equations of the form

(32)

{
−∆pn + dnpn = gn,

pn|∂Ω = 0

at step un, where dn = ∂uf(x, un) and gn = ∆un − f(x, un). For autocatalytic
reactions, i.e. if ∂uf(x, u) > 0, the problem (32) falls into the type (21). In view of
our results, when the CGM is applied to solve the problems (32) using the principal
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part as preconditioner, then the overall outer-inner iteration converges superlinearly
and at the same time it requires only Laplacian solvers.
(d) Elliptic systems. Theorem 2 can be extended to systems in a natural way.

That is, for simplicity let us consider the system

(33)

{
−∆ui + di1u1 + . . . + disus = gi,

ui|∂Ω = 0 (i = 1, . . . , s),

with a symmetric positive semidefinite variable coefficient matrix {dij}s
i,j=1. Then

the mesh independent superlinear convergence can be proved in an analogous way
using the operator n-tuple S(u1, . . . , us) ≡ (−∆ui)s

i=1. Since this S consists of
independent Laplacians, the auxiliary problems are not only separable but also have
smaller size than the original one. In the context of the previous paragraph (c), such
systems arise in the Newton linearization of a nonlinear reaction-diffusion system

which corresponds to a potential ϕ(u1, . . . , us) =
∫
Ω

(
1
2

s∑
i=1

|∇ui|2 + F (u1, . . . , us)
)
.

�����������
4.3. Most of the above fast solvers also extend to the case when a

separable or constant coefficient lower order term is added to the separable principal
part. Such an operator can also be proposed for the role of S (see [8], [19]) and,
clearly, in this case the bounds in Proposition 3 are improved to some extent. The
details are left to the interested reader.
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