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Abstract. For convenient adiabatic constants, existence of weak solutions to the steady
compressible Navier-Stokes equations in isentropic regime in smooth bounded domains is
well known. Here we present a way how to prove the same result when the bounded domains
considered are Lipschitz.
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1. Introduction

In this note we investigate the existence of the so-called renormalized bounded en-

ergy weak solutions to the steady Navier-Stokes system of equations which describes
the flow of a compressible and isentropic fluid in a bounded region Ω ⊂ � 3 with

Lipschitz boundary. These equations read

div(%u) = 0 in Ω,(1.1)

div(%u⊗ u− µ1∆u− (µ1 + µ2)∇ div u +∇%γ = %f + g in Ω.(1.2)

The unknown quantities are the scalar field %(x), x ∈ Ω, which represents
the density of the fluid and has to be non-negative, and the vector field u(x) =
(u1(x), u2(x), u3(x)), x ∈ Ω, which represents the velocity of the fluid. The quanti-
ties f(x) = (f1(x), f2(x), f3(x)) and g(x) = (g1(x), g2(x), g3(x)) at the right-hand
side of equation (1.2) are two given vector fields defined on Ω. They correspond
respectively to volumic and non volumic external forces acting on the fluid. The vis-
cosity coefficients µ1 and µ2 are assumed to be constant and to satisfy the physically

331



reasonable constraints

(1.3) µ1 > 0,
2
3
µ1 + µ2 > 0,

and the adiabatic constant γ is supposed to be such that

(1.4) γ >
3
2
if curl f = 0, γ >

5
3
otherwise.

To complete equations (1.1)–(1.2) we require the so-called no-slip boundary condi-

tions

(1.5) u = 0 on ∂Ω

and prescribe the total mass of the fluid in the volume Ω

(1.6)
∫

Ω

% dx = M > 0.

Before we recall the meaning of a renormalized bounded energy weak solution
to the problem (1.1), (1.2), (1.5) and (1.6), let us introduce some notation used

throughout the text. By a domain O ⊂ � 3 we mean a connected open set. As
usual, D(O) denotes the space of infinitely differentiable functions with compact
support in O endowed with the usual topology inducing its dual D′(O), the space
of distributions on O; W 1,p(O), p ∈ [1,∞], is the Sobolev space of functions whose
generalized derivatives up to order 1 belong to the Lebesgue space of integrable

functions Lp(O). W 1,p
0 (O) is the completion of D(O) with respect to the norm

‖v‖1,p,O =
∑
|α|61

‖Dαv‖0,p,O where ‖ · ‖0,p,O denotes the Lp-norm. The subspace of

functions in Lp(O) with zero mean value over O will be denoted by L̃p(O). The
characteristic function of a set A ⊂ � 3 will always be denoted by 1A. Often, in the
text, we will not make any distinction between a function defined on a domain O
and its extension by zero outside O.
Consider functions b : � + → � satisfying

(1.7) b ∈ C0([0,∞)) ∩ C1((0,∞)), ∃ c > 0, ∃λ0 < 1, ∀ t ∈ (0, 1], |b′(t)| 6 ct−λ0 ,

and behaving at infinity as follows:

(1.8) ∃ c > 0, ∃λ1, λ2 ∈ � , ∀ t > 1, |b′(t)| 6 ctλ1 , |tb′(t)− b(t)| 6 ctλ2 .

Let p ∈ [ 32 ,∞). A couple of functions (%, u) will be called a renormalized bounded
energy weak solution to the problem (1.1), (1.2), (1.5) and (1.6) if
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(i) % ∈ Lp(Ω), % > 0 a.e. in Ω and satisfies (1.6), u ∈ W 1,2
0 (Ω)]3;

(ii) equation (1.1) holds in the sense of distributions on � 3 ;
(iii) (%, u) is a renormalized solution of the continuity equation in the sense of dis-

tributions on � 3 . More precisely, for any function b satisfying (1.7) and (1.8)

with

(1.9) −1 < λ1 6 p

2
− 1 and 0 < λ2 6 p

2
,

we have

(1.10) div(b(%)u) + {%b′(%)− b(%)} div u = 0 in D′( � 3 );

(iv) equation (1.2) holds in the sense of distributions on Ω;
(v) the following energy inequality holds:

(1.11)
∫

Ω

{µ1|∇u|2 + (µ1 + µ2)(div u)2} dx 6
∫

Ω

(%f + g) · u dx.

At this stage, we are ready to state a result similar to [5, Theorem 1.1] where the
domain considered is a bounded Lipschitz one.

Theorem 1.1. Assume that Ω ⊂ � 3 is a bounded domain of class C0,1, f , g ∈
[L∞(Ω)]3, the viscosity coefficients µ1 and µ2 satisfy (1.3), the adiabatic constant γ

satisfies (1.4) and M > 0. Then there exists a renormalized bounded energy weak
solution (%, u) to the problem (1.1), (1.2), (1.5) and (1.6) such that % ∈ Ls(γ)(Ω)
where

(1.12) s(t) =

{
3(t− 1) if t < 3,

2t if t > 3.

Theorem 1.1 is an improvement of [5, Theorem 1.1] which is needed as a technical
tool in our foregoing paper [6] where we deal with the existence of weak solutions to

the steady compressible and isentopic Navier-Stokes equations considered in domains
with several outlets at infinity.

2. Outline of the proof

In order to prove [5, Theorem 1.1], our starting point were the results of P.-L. Li-
ons [4, Theorem 6.7 and Section 6.10]. More precisely, we have used the following

theorem:
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Theorem 2.1. Let Ω ⊂ � 3 be a bounded domain of class C2,ν , ν ∈ (0, 1],
let f , g ∈ [L∞(Ω)]3, let the viscosity coefficients µ1 and µ2 satisfy (1.3), let β > 5

3 ,

δ ∈ (0, 1] andM > 0. Then there exists a couple (%, u) with the following properties:
% ∈ Ls(β)(Ω), % > 0 a.e. in Ω,

∫
Ω

% dx = M , u ∈ [W 1,2
0 (Ω)]3,

div(%u) = 0 in D′( � 3 ),

div(%u⊗ u)− µ1∆u− (µ1 + µ2)∇ div u +∇{%γ + δ%β} = %f + g in [D′(Ω)]3.

Moreover,
∫

Ω

{µ1|∇u|2 + (µ1 + µ2)(div u)2} dx 6
∫

Ω

(%f + g) · u dx.

We claim that this theorem holds as well when Ω is a bounded Lipschitz domain.
Once this result is known, proof of Theorem 1.1 follows word by word by the argu-
mentation of [5], letting δ → 0+ in Theorem 2.1. In the sequel, we shall therefore

explain how to prove Theorem 2.1 for domains with only Lipschitz boundary.
To prove Theorem 2.1, P.-L. Lions investigated the following approximation of the

original problem:

α% + div(%u) = αh in Ω,(2.1)
1
2
αhu +

3
2
α%u + div(%u⊗ u)− µ1∆u− (µ1 + µ2)∇ div u(2.2)

+∇{%γ + δ%β} = %f + g in Ω,

u = 0 on ∂Ω,(2.3) ∫

Ω

% dx =
∫

Ω

h dx(2.4)

where α ∈ (0, 1] and h ∈ L∞(Ω), h > 0 a.e. in Ω. He proved the following lemma:

Lemma 2.1. Assume that the assumptions of Theorem 2.1 are satisfied. Let
α ∈ (0, 1] and let h ∈ L∞(Ω), h > 0 a.e. in Ω. Then there exists a pair of functions
(%α, uα) enjoying the following properties:
(i) %α ∈ L2β(Ω), %α > 0 a.e. in Ω,

∫
Ω %α dx =

∫
Ω h dx, uα ∈ [W 1,2

0 (Ω)]3;
(ii) there holds

(2.5) α%α + div(%αuα) = αh in D′( � 3 );

(iii) for any function b : � + → � belonging to the class of functions C1([0,∞)) which
satisfy (1.8) and (1.9) with p = 2β,

(2.6) div(b(%α)uα)+{%αb′(%α)− b(%α)} div uα = α(h−%α)b′(%α) in D′( � 3 );
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(iv) there holds

1
2
αhuα +

3
2
α%αuα + div(%αuα ⊗ uα)− µ1∆uα − (µ1 + µ2)∇ div uα(2.7)

+∇{%γ
α + δ%β

α} = %αf + g in [D′(Ω)]3;

(v) (%α, uα) fulfils the energy inequality

α

∫

Ω

(h + %α)|uα|2 dx +
∫

Ω

{µ1|∇uα|2 + (µ1 + µ2)(div uα)2} dx(2.8)

+
γα

γ − 1

∫

Ω

(%α − h)(%γ−1
α − hγ−1) dx +

δβα

β − 1

∫

Ω

(%α − h)(%β−1
α − hβ−1) dx

6
∫

Ω

(%αf + g) · uα dx +
γα

γ − 1

∫

Ω

(h− %α)hγ−1 dx +
δβα

β − 1

∫

Ω

(h− %α)hβ−1 dx.

In the sequel, we are going to explain how to prove the same result when Ω is
only a bounded Lipschitz domain. To this end, we shall need the following lemma

concerning the approximation of a bounded domain by a decreasing sequence of
smooth bounded domains.

Lemma 2.2. Let N > 2 and let Ω ⊂ � N be a bounded Lipschitz domain. Then

there exists a sequence of bounded domains {Ωn}n∈ � ∗ satisfying
(i) Ωn ∈ C∞;

(ii) Ω ⊂ Ωn+1 ⊂ Ωn+1 ⊂ Ωn and lim
n→∞

|Ωn \ Ω| = 0.

���������
. Let ωn = {x; dist(x, Ω) < 1

n}. Clearly ωn+1 ⊂⊂ ωn and hence there

exists a function ϕn ∈ D(ωn, [0, 1]) such that ϕn ≡ 1 on ωn+1. Thus, according to
the Morse-Sard Lemma (see [3]), for almost all t ∈ (0, 1),

(2.9) {ϕn = t} ∩ {Jϕn = 0} = ∅

where Jϕn denotes the Jacobian of ϕn. We choose tn ∈ (0, 1) such that (2.9) is
satisfied and put Ωn = {ϕn > tn}. Then it is easy to check that Ωn possesses the

properties (ii). The property (i) is a consequence of the Implicit Functions Theorem.
�

Now, let Ω ⊂ � 3 be a bounded Lipschitz domain, let f , g ∈ [L∞(Ω)]3 and let
h ∈ L∞(Ω), h > 0 a.e. in Ω. Then, according to Lemma 2.1, for any n ∈ � ∗ , there
exists a pair of functions (%n, un) enjoying the following properties: %n ∈ L2β(Ωn),
%n > 0 a.e. in Ωn,

∫
Ωn

%n dx =
∫
Ω h dx, un ∈ [W 1,2

0 (Ωn)]3; equations (2.5)–(2.7) and
energy inequality (2.8) hold with %n, un and Ωn instead of %α, uα and Ω respectively.
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Our ultimate goal in this note is to pass to the limit n →∞. To this end, we first
need some estimates. In order to prove these estimates, we will use the following
result due to Bogovskĭı [1].

Lemma 2.3. Let G ⊂ � 3 be a bounded Lipschitz domain. Then there exists

a linear operator BG = (B1
G,B2

G,B3
G) such that

∀ p ∈ (1,∞), BG : L̃p(G) → [W 1,p
0 (G)]3, ∀F ∈ L̃p(G), div BG(F) = F a.e. in G,

∀F ∈ L̃p(G), ∀ p ∈ (1,∞), ‖∇BG(F)‖0,p,G 6 c(G, p)‖F‖0,p,G.

From the energy inequality (2.8) satisfied by (%n, un), it is not difficult to convince
oneself that Hölder’s, Sobolev’s and Young’s inequalities lead to

(2.10) ‖∇un‖0,2,Ωn 6 c(Ω, f , g, h)(1 + ‖%n‖0, 65 ,Ω).

Notice that the L
6
5 -norm of the density %n occurring on the right-hand side of (2.10)

is taken over Ω. This fact will play an essential role in the sequel. Next, according
to the properties of (%n, un) and Lemma 2.3, it is not difficult to check that the
extension by zero outside Ω of the function ϕ = BΩ

(
%β

n − 1/|Ω|
∫
Ω

%β
n dy

)
is an

admissible test function of the momentum equation (2.2) satisfied by (%n, un). By
standard computations which essentially consist in several integrations by parts,
Hölder’s inequality, some interpolations, the Poincaré inequality, Sobolev’s inequality

and Lemma 2.3 (see [5, Lemma 4.2] for similar computations), we finally conclude
that

(2.11) ‖%n‖0,2β,Ω 6 c(Ω, f , g, h).

Since 2β > 6
5 , this new information inserted in (2.10) implies that

(2.12) ‖∇un‖0,2,Ωn 6 c(Ω, f , g, h).

Consequences of estimates (2.11) and (2.12) are summarized in the following state-

ment.

Lemma 2.4. There exist functions %α, %γ
α, %β

α, uα and a subsequence of

{(%n, un)}n∈ � ∗ such that

%n ⇀ %α in L2β( � 3 ), %α > 0 a.e. in Ω, %α = 0 a.e. in � 3 \ Ω,

%γ
n ⇀ %γ

α in L2β/γ( � 3 ), %β
n ⇀ %β

α in L2( � 3 ),

un ⇀ uα in [W 1,2( � 3 )]3, uα = 0 a.e. in � 3 \ Ω,

∀ p ∈ [1, 6), un → u in [Lp(Ω)]3,

%nun ⇀ %u in [L6β/(β+3)( � 3 )]3, %nun ⊗ un ⇀ %u⊗ u in [L6β/(2β+3)( � 3 )]3×3.
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Moreover, we have

α%α + div(%αuα) = αh in D′( � 3 ),(2.13)
1
2
αhuα +

3
2
α%αuα + div(%αuα ⊗ uα)− µ1∆uα − (µ1 + µ2)∇ div uα(2.14)

+∇{%γ
α + δ%β

α} = %αf + g in [D′(Ω)]3.

Since Ω is a bounded Lipschitz domain in � 3 , it is clear that uα ∈ [W 1,2
0 (Ω)]3.

Then, in order to check that %α satisfies (2.4), consider the sequence of functions

{Φn}n∈ � ∗ ⊂ D(Ω) defined by

0 6 Φn 6 1, Φn(x) =

{
1 if x ∈ {y ∈ Ω, dist(y, ∂Ω) > 2

n},
0 if x ∈ {y ∈ Ω, dist(y, ∂Ω) 6 1

n},
|∇Φn| 6 2n in Ω.

Equation (2.1) with a test function Φn yields

∫

Ω

(%α − h)Φn dx = 1/α

∫

Ω

%αuα · ∇Φn dx.

On the one hand, as n tends to infinity, it is obvious that the left-hand side of this

equality tends to
∫
Ω(%α − h) dx. On the other hand, the right-hand side is bounded

by

(2.15) c‖%α‖0,2,supp∇Φn‖uα(dist(x, ∂Ω))−1‖0,2,Ω.

In accordance with the definition of Φn, one has |supp∇Φn| → 0 as n →∞. Conse-
quently, using Hardy’s inequality

‖uα(dist(x, ∂Ω))−1‖0,2,Ω 6 c‖∇uα‖0,2,Ω, uα ∈ [W 1,2
0 (Ω)]3

and the summability of %α, we get the convergence to zero of (2.15).

Next, we have to prove that %s
α = %s

α a.e. in Ω, s = γ, β. In other words, we
have to prove e.g. at least the strong convergence of the sequence of densities {%n}n

in L1(Ω) which, in accordance with the bound (2.11), the weak lower semicontinuity
of norms and interpolation, will imply that %n → %α in Lp(Ω), p ∈ [1, 2β). Let
us briefly describe the main lines how to get this proof. First, following the ideas
of P.-L. Lions [4, Chapter 6], the following weak compactness result for the effective

pressure p(%α) − (2µ1 + µ2) div uα can be proved: for any function b ∈ C1([0,∞))
satisfying (1.8) and (1.9) with p = 2β and λ1 = 0, one has

p(%α)b(%α)− (2µ1 +µ2)b(%α) div uα = p(%α) b(%α)− (2µ1 +µ2)b(%α) div uα a.e. in Ω
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where p(%) = %γ + δ%β and overlined quantities stand for weak limits of the corre-

sponding sequences. Next, using the transport theory of DiPerna and P.-L. Lions [2]
applied to the continuity equation (2.5), one can prove the following lemma.

Lemma 2.5. Let p > 2, let λ1, λ2 satisfy (1.9). Assume that % ∈ Lp
loc( � 3 ), % > 0

a.e. in � 3 , u ∈ [W 1,2
loc ( � 3 )]3, and f ∈ Lq′

loc( � 3 ), 1 6 q 6 p/λ1 if λ1 > 0, 1 < q < +∞
if λ1 6 0, satisfy

(2.16) div(%u) > f in D′( � 3 ).

Then for any non decreasing function b ∈ C1([0, +∞)) with growth conditions (1.8)
at infinity we have

(2.17) div(b(%)u) + {%b′(%)− b(%)} div u = fb′(%) in D′( � 3 ).

If f ≡ 0, the assumptions on b can be relaxed to (1.7)–(1.9).

Applying Lemma 2.5 with b(t) = (t + l)θ, l > 0, 0 < θ < 1, to the continuity
equation (2.5), one obtains

αθ(%n + l)θ + div((%n + l)θun) + (θ − 1)(%n + l)θ div un

> αθh(%n + l)θ−1 + θl(%n + l)θ−1 div un + αθl(%n + l)θ−1

> αθh(%n + l)θ−1 + θl(%n + l)θ−1 div un in D′( � 3 ).

Letting n →∞, one gets

αθ(%α + l)θ + div((%α + l)θuα) > (1− θ)(%α + l)θ div uα + αθh(%α + l)θ−1

+ θl(%α + l)θ−1 div uα in D′( � 3 ).

Applying Lemma 2.5 with b(t) = t1/θ to the last equation, then using the weak
compactness result for the effective pressure with b(t) = (t + l)θ, and finally letting

l → 0+, one concludes that

α
(
%θ

α

)1/θ + div
{(

%θ
α

)1/θ
uα

}

> αh +
(1− θ)

θ(2µ1 + µ2)
{
p(%α)%θ

α − p(%α) %θ
α

}(
%θ

α

)1/θ−1
in D′( � 3 ).

This fact combined with the continuity equation (2.5) implies

αrα + div(rαuα) > (1− θ)
θ(2µ1 + µ2)

{
p(%α)%θ

α − p(%α) %θ
α

}(
%θ

α

)1/θ−1
in D′( � 3 )
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where rα =
(
%θ

α

)1/θ − %α 6 0 a.e. in � 3 . Then, by standard arguments of convex
analysis, one obtains %s

α = %s
α a.e. in Ω, s = γ, β. This yields the strong convergence

%n → %α in L1(Ω).
Finally, it remains to show inequality (2.8). It comes from the similar energy

inequality (2.8) satisfied by (%n, un) supplemented by Lemma 2.4, the strong con-
vergence of densities and the weak semicontinuity of the convex positive quadratic

form
v ∈ [W 1,2(Ω)]3 7→

∫

Ω

{µ1|∇v|2 + (µ1 + µ2)(div v)2} dx.
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