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Abstract. By means of eigenvalue error expansion and integral expansion techniques, we
propose and analyze the stream function-vorticity-pressure method for the eigenvalue prob-
lem associated with the Stokes equations on the unit square. We obtain an optimal order of
convergence for eigenvalues and eigenfuctions. Furthermore, for the bilinear finite element
space, we derive asymptotic expansions of the eigenvalue error, an efficient extrapolation
and an a posteriori error estimate for the eigenvalue. Finally, numerical experiments are
reported.
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1. Introduction

There are various approximation methods for solving the Stokes problem, see
Bercovier and Pironneau [2], Brezzi et al. [6], Girault and Raviart [10], Glowinski and

Pironneau [11], Křížek [15], Rannacher and Turek [23], Stenberg [25], Verfurth [26],
Ye [30], Zhou et al. [31], Wang et al. [27], and references cited therein. In [20] and

[22] the authors describe an eigenvalue problem associated with the Stokes problem
as follows:

*The first author was supported by China Postdoctoral Sciences Foundation.
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Find λ, u and p satisfying

(1)





−∆u + grad p = λu in Ω,

div u = 0 in Ω,

u = 0 on Γ = ∂Ω,

where Ω = (0, 1)× (0, 1).
The approximation of the eigenvalue involves problems that are of great interest

and have been extensively investigated (see, e.g., [1], [3]–[5], [7], [12], [14], [18], [20]–

[22], [24], [28], [29], and references cited therein).

In this paper we consider a stream function-vorticity-pressure method to solve
eigenvalue problem (1).

If we introduce the stream function ψ for the velocity (u = curlψ = (∂2ψ,−∂1ψ)),
based on the identities

(2) curl(curlu) = −∆u + grad(div u), curl(curlψ) = −∆ψ,

where curlu = −∂2u1 +∂1u2, problem (1) can be expressed as the following buckling

plate problem:

Find λ, ψ satisfying

(3)

{−∆2ψ = λ∆ψ in Ω,

ψ =
∂ψ

∂n
= 0 on Γ,

where n is the outward unit normal.
From now on, we shall use the standard notation as those in Ciarlet [8], for ex-

ample, the notation of the Sobolev spaces, product, norms, seminorms, discretized
norms, etc.

We then consider the following mixed formulation for (3):

Find λ, (ψ, ω) ∈ H1
0 (Ω)×H1(Ω) such that |ψ|1,Ω = 1 and

(4)

{
a(ω, θ) + b(θ, ψ) = 0 ∀ θ ∈ H1(Ω),

b(ω, ϕ) = −λs(ψ, ϕ) ∀ϕ ∈ H1
0 (Ω),

and find p ∈ H1(Ω) such that

(5)





(grad p,grad q) = λ(u − curlω,grad q) ∀ q ∈ H1(Ω),∫

Ω

p dx = 0,
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where ω = −∆ψ and

a(ω, θ) = (ω, θ) for ω, θ ∈ H1(Ω),

b(ω, ϕ) = −(curlω, curlϕ) for ω ∈ H1(Ω), ϕ ∈ H1
0 (Ω),

s(ψ, ϕ) = (curlψ, curlϕ) for ψ, ϕ ∈ H1
0 (Ω).

Problem (4) has an eigenvalue sequence {λj} (see [1]):

0 < λ1 6 λ2 6 . . . 6 λk 6 λk+1 6 . . . , lim
k→∞

λk = ∞,

and the associated eigenfuctions

(ψ1, ω1), (ψ2, ω2), . . . , (ψk, ωk), (ψk+1, ωk+1), . . . ,

where (curlψi, curlψj) = δij , ωk = −∆ψk.
It is well known that if (λ, ψ) is an eigenpair of (3) and ω = −∆ψ then (λ, ψ, ω) is

an eigenpair of (4), and if (λ, ψ, ω) is an eigenpair of (4) then (λ, ψ) is an eigenpair
of (3) and ω = −∆ψ.
Assume that Th = {e} is a regular family of rectangular meshes on Ω with mesh

size h, where e = [xe−he, xe+he]× [ye−ke, ye+ke]. Introduce finite element spaces

Skh = {v ∈ H1(Ω): v|e ∈ Qk ∀ e ∈ Th},
◦
Skh = H1

0 (Ω) ∩ Skh,

where Qk = span{xiyj , 0 6 i, j 6 k}.
The approximation schemes for (4) are:

Find λh, (ψh, ωh) ∈
◦
Skh ×Skh such that |ψh|1,Ω = 1,

(6)

{
a(ωh, θh) + b(θh, ψh) = 0 ∀ θh ∈ Skh,

b(ωh, ϕh) = −λhs(ψh, ϕh) ∀ϕh ∈
◦
Skh,

and find ph ∈ Skh such that

(7)





(grad ph,grad qh) = λ(uh − curlωh,grad qh) ∀ qh ∈ Skh,∫

Ω

ph dx = 0,

with u = curlψh.
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Problem (6) has eigenvalues

0 < λh1 6 . . . 6 λhi 6 . . . 6 λhN(h)

and the corresponding eigenfunctions

(ψh1 , ω
h
1 ), . . . , (ψhi , ω

h
i ), . . . , (ψ

h
N(h), ω

h
N(h)),

where (ψhi , ψ
h
j ) = δij and ωhk = −∆hψ

h
k (where ∆h is a suitable discretization of ∆).

For the sake of using the approximation theory of spectrum to analyze the above

approximation scheme, we define the associated source problem for (4) and the ap-
proximation source problem for (6), respectively: For g ∈ H1(Ω), find Ag ∈ H1(Ω),
Bg ∈ H1

0 (Ω) such that

(8)

{
a(Ag, θ) + b(θ,Bg) = 0 ∀ θ ∈ H1(Ω),

b(Ag, ϕ) = −s(g, ϕ) ∀ϕ ∈ H1
0 (Ω),

and find Ahg ∈ Skh, Bhg ∈
◦
Skh such that

(9)

{
a(Ahg, θh) + b(θh, Bhg) = 0 ∀ θh ∈ Skh,

b(Ahg, ϕh) = −s(g, ϕh) ∀ϕh ∈
◦
Skh .

We can define adjoint operators A∗, B∗ of A, B as those in [20]. Clearly B∗ = B,

A∗ = A, and thus A and B are selfadjoint. Problems (8)–(9) are uniquely solvable
and B,Bh : H1(Ω) → H1(Ω) are compact.
So the eigenvalues of (3) can be characterized in terms of the operator B. If λ,

(ω, ψ) is an eigenpair of (3) then λBψ = ψ, ψ 6= 0, and if λBψ = ψ, ψ 6= 0, then
there exists an ω ∈ H1(Ω) such that λ, (ω, ψ) is an eigenpair of (3). In a similar way
we see that the eigenvalues of (6) are the reciprocals of the eigenvalues of Bh.

From now on, we denote by (λ, ψ, ω) = (λj , ψj , ωj) the jth eigensolution of (4),
and by (λh, ψh, ωh) = (λhj , ψ

h
j , ω

h
j ) its corresponding discretized eigensolution of (6).

An outline of the paper goes as follows. In Section 2 we introduce the ‘vertices-
edges-element’ interpolation and describe the integral expansions. In Section 3, we

prove the error estimate for the source problem. Then, in Section 4, we first give
an optimal order estimate for the eigenvalue and eigenfuntion, then construct the

error expansion for the eigenvalue in Lemma 5. By using the technique of eigenvalue
error expansion and integral expansions, we demonstrate the eigenvalue asymptotic

expansion. Furthermore, in Section 5, we get an efficient extrapolation and an a
posteriori error estimate for the eigenvalue on a square mesh.
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Finally, in Section 6, we present a numerical experiment to show a good perfor-

mance of the methods and illustrate the theoretical results.

Throughout this paper, the symbol C(v1, v2, . . .) denotes a generic positive con-
stant which is dependent on v1, v2, . . ., and independent of h. In addition, we shall

assume that ψ is sufficiently smooth, and the smoothness requirements will be shown
by the norms in our analysis.

2. Integral expansions

Starting from the next section we will use integral expansion techniques to analyze

the eigenvalue problem associated with the Stokes problem and its source problem.
In this section we will introduce some integral expansions.

Define ‘vertices-edges-element’ interpolation operator (see [19]) Ikh : C(Ω) → Skh
by the following conditions:

For k = 1

I1
hu(Zi) = u(Zi), i = 1, 2, 3, 4.

For k > 2

∫

li

(Ikhu− u)v dl = 0 ∀ v ∈ Pk−2(li), i = 1, 2, 3, 4,
∫

e

(Ikhu− u)v dx dy = 0 ∀ v ∈ Qk−2(e),

where Zi, li (i = 1, 2, 3, 4) are the vertices and edges of e, and Pk−2(li) is a polynomial
space on li of degree no more than k − 2.
We have the following integral expansions (see [17]):

Lemma 1. For v ∈ S1
h we have integral expansions

∫

e

(ω − I1
hω)v dx dy = − 1

3

∫

e

(h2
eωxx + k2

eωyy)v dx dy +O(h3)|ω|3,e‖v‖0,e,(10)
∫

e

(ω − I1
hω)xvx dx dy = − 1

3
k2
e

∫

e

ωxyyvx dx dy +
4
45
k4
e

∫

e

ωxyyyvxy dx dy(11)

+O(h4)|ω|5,e|v|1,e.
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Lemma 2. For v ∈ S2
h we have

∫

e

(ω − I2
hω)v dx dy = − h4

e

45

∫

e

ωxxxvx dx dy − k4
e

45

∫

e

ωyyyvy dx dy(12)

+O(h4)|ω|4,e‖v‖0,e,∫

e

(ω − I2
hω)xvx dx dy = − k4

e

45

∫

e

ωxyyyvxy dx dy +
32k6

e

33527

∫

e

ωxyyyyvxyy dx dy(13)

+O(h6)|ω|6,e‖v‖0,e.

Lemma 3. For v ∈ Skh, k > 3, we have
∫

e

(ω − Ikhω)v dx dy = − C1

∫

e

(h2k
e ∂

k+1
x ω · ∂k−1

x v + k2k
e ∂

k+1
y ω · ∂k−1

y v) dx dy(14)

+O(h2k+2)|ω|k+3,e|v|k,e,∫

e

(ω − Ikhω)xvx dx dy = − C1k
2k
e

∫

e

∂x∂
k+1
y ω · ∂x∂k−1

y v dx dy(15)

+O(h2k+2)|ω|k+4,e|v|k+1,e,

where

C1 =
1

(2k − 1)!!(2k + 1)!!
.

From Lemmas 1–3, using Green’s formulas and the inverse inequalities in the finite
element space Skh, we can easily obtain

Lemma 4. For v ∈ S1
h,

(16) (curl(ω − I1
hω), curl v) =





O(h2)‖ω‖3,Ω‖v‖1,Ω,

O(h2)‖ω‖4,Ω‖v‖0,Ω, for
∂ω

∂n
= 0 on Γ.

For v ∈ Skh (k > 2),

(17) (curl(ω − Ikhω), curl v) =





O(hk+1)‖ω‖k+2,Ω‖v‖1,Ω,

O(hk+2)‖ω‖k+3,Ω‖v‖1,Ω for v ∈
◦
Skh,

O(hk+2)‖ω‖k+3,Ω‖v‖1,Ω for
∂ω

∂n
= 0 on Γ.

3. Theoretical analysis of the source problem

In this section we will demonstrate the error estimate for the source problem (8)

by the approximation scheme (9).
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Theorem 1. For operators A, Ah, B, Bh defined by (8) and (9), respectively,
we have

‖(A−Ah)g‖0,Ω 6 Chk+1,(18)

‖(A−Ah)g‖1,Ω 6 Chk,(19)

‖(B −Bh)g‖0,Ω 6 Chk+1,(20)

‖(B −Bh)g‖1,Ω 6 Chk+1.(21)

�
�������
. From (8) and (9) we get

‖(A−Ah)g‖2
0,Ω = (Ag − Ikh(Ag), Ag −Ahg)

+ (curl(Bg − Ikh(Bg)), curl(Ahg − Ikh(Ag)))

+ (curl(Ag − Ikh(Ag)), curl(Ikh(Bg)−Bhg)).

It follows from the above equation and Lemma 4, ∂(Bg)
∂n |Γ = 0 and the approximation

properties of the finite element space Skh that

‖(A−Ah)g‖2
0,Ω 6 Chk+1‖Bg‖k+3,Ω‖Ag −Ahg‖0,Ω + Ch2k+2‖Bg‖2

k+3,Ω(22)

+ Chk+1‖Bg‖k+4,Ω‖Ikh(Bg)−Bhg‖0,Ω.

Furthermore, we have by using the Poincaré inequality, (8), (9) and Lemma 4 that

‖Ikh(Bg)−Bhg‖2
1,Ω 6 C(curl(Ikh(Bg)−Bhg), curl(Ikh(Bg)− Bhg))

= C[(curl(Ikh(Bg)−Bg), curl(Ikh(Bg)−Bhg))

+ (Ag −Ahg, I
k
h(Bg)−Bhg)]

6 Chk+1‖Bg‖k+3,Ω‖Ikh(Bg)−Bhg‖1,Ω

+ C‖Ag −Ahg‖0,Ω‖Ikh(Bg)−Bhg‖0,Ω,

which implies

(23) ‖Ikh(Bg)−Bhg‖2
1,Ω 6 Ch2k+2‖Bg‖2

k+3,Ω + C‖Ag −Ahg‖2
0,Ω.

Using a similar argument, we have

‖Bg −Bhg‖2
1,Ω 6 Chk+1‖Bg‖k+1,Ω‖Bg −Bhg‖1,Ω

+ C‖Ag −Ahg‖0,Ω‖Ikh(Bg)−Bhg‖0,Ω.
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Then

(24) ‖Bg −Bhg‖2
1,Ω 6 Ch2k+2‖Bg‖2

k+1,Ω + C‖Ag −Ahg‖2
0,Ω.

From (22) and (23) we prove (18). Combing (22) with (24) implies (20) and (21).
Finally, using the approximation properties of the interpolation operator Ikh and (18),
we obtain (19). �

4. Theoretical analysis for the eigenvalue problem

Assuming here that all eigenvalues have ascent and their geometric multiplicity is

one, in this section we will give theoretical analysis of the eigenvalue problem.

From Theorem 6.1 and Theorem 6.2 in [20], and from the error estimate for the

source problem in the preceding section, we have the following error estimate for the
discretized eigenvalue problem described by (4) and (6).

Theorem 2. Assume that (λ, ψ, ω) ∈ � ×H1
0 (Ω)×H1(Ω) is the solution of (4)

and (λh, ψh, ωh) ∈ � ×
◦
Skh ×Skh is the solution of (6). Then we have

|λ− λh| 6 Ch2k,(25)

‖ψ − ψh‖1,Ω 6 Chk+1.(26)

From Theorem 2 we can easily prove the following result:

Theorem 3. Using the notation given by (4), (5), (6) and (7), we have

‖u− uh‖0,Ω + ‖ω − ωh‖0,Ω 6 Chk+1,(27)

‖p− ph‖1,Ω 6 Chk.(28)

�
�������
. From (4) and (6) we see

‖ω − ωh‖2
0,Ω = (ω − Ikhω, ω − ωh) + (curl(Ikhω − ωh), curl(ψ − Ikhψ))

+ (curl(Ikhω − ω), curl(Ikhψ − ψh))

+ λh(curl(ψ − ψh), curl(Ikhψ − ψh))

+ (λ− λh)(curlψ, curl(Ikhψ − ψh)).
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Notice that u|∂Ω = 0, ∂ψ∂n |∂Ω = 0. It follows by using the integral expansions in
Section 2, the approximation property for the interpolation Ikh , the inverse inequality
for the finite element space, Theorem 2 and the above equation that

(29) ‖ω − ωh‖0,Ω 6 Chk+1.

Combining (29) with (26) leads to (27).
Introduce the operator Rh : H1(Ω) → Skh such that

(30)

{
(grad(p−Rhp),grad qh) = 0 ∀ qh ∈ Skh ,
(p−Rhp, 1) = 0.

We know from (30) and the approximation property for the interpolation that

(grad(p−Rhp),grad(p−Rhp)) = (grad(p−Rhp),grad(p− Ikhp))

6 Chk|p−Rhp|1,Ω,

which implies

(31) |p−Rhp|1,Ω 6 Chk.

From (30) we see that p ∈ L2
0(Ω), which implies Rhp ∈ L2

0(Ω). Notice that ‖v‖1,Ω 6
C

(
|v|1,Ω + |

∫
Ω
v|

)
for all v ∈ H1(Ω). Then from (31) we obtain

(32) ‖p−Rhp‖1,Ω 6 Chk.

From (5), (7) and (30) we see that for qh ∈ Skh

(grad (Rhp− ph),grad qh) = (grad(p− ph),grad qh)(33)

= (λ− λh)(u− curlω,grad qh) + λh(u− uh,grad qh)

+ λh(curlωh − curlω,grad qh).

From (29) we can get |ω − ωh|1,Ω 6 Chk. Using (25) and (27) and taking qh =
Rhp− ph in (33), we have

|Rhp− ph|1,Ω 6 Chk.

Notice that, since Rhp − ph ∈ L2
0(Ω) ∩H1(Ω), an argument similar to that used to

get (32) yields

‖Rhp− ph‖1,Ω 6 Chk,

from which and (32) we prove (28). �
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For (ψ, ω) ∈ H1
0 (Ω)×H1(Ω) we define the projection (Mhψ,Nhω) ∈

◦
Skh ×Skh by

(34)

{
a(Nhω, θh) + b(θh,Mhψ) = a(ω, θh) + b(θh, ψ) ∀ θh ∈ Skh ,

b(Nhω, ϕh) = b(ω, ϕh) ∀ϕh ∈
◦
Skh .

Using a similar argument to that in the proof of Theorem 1, we derive the following

theorem.

Theorem 4. For the mixed projection defined by (34) we have

‖ω −Nhω‖0,Ω 6 Chk+1,(35)

‖ω −Nhω‖1,Ω 6 Chk,(36)

‖ψ −Mhψ‖0,Ω 6 Chk+1,(37)

‖ψ −Mhψ‖1,Ω 6 Chk+1.(38)

Set D((ϕ1, v1), (ϕ2, v2)) = a(v1, v2) + b(v1, ϕ2) + b(v2, ϕ1). Note that s(ψ, ψ) = 1
and s(ψh, ψh) = 1. From (4) and (6) we have

D((ψ, ω), (ψ, ω)) = − λ,(39)

D((ψh, ωh), (ψh, ωh)) = − λh,(40)

D((ψ, ω), (ψh, ωh)) = − λs(ψ, ψh),(41)

and

(42) λ|ψ − ψh|21,Ω = 2λ− 2λs(ψ, ψh).

Using (39)–(42), we have

D((ψ − ψh, u− uh), (ψ − ψh, u− uh)) = − λ− λh + 2λs(ψ, ψh)(43)

= λ− λh − λ|ψ − ψh|21.

From (4), (6), and (34), we get

D((ψ − ψh, ω − ωh), (ψ − ψh, ω − ωh))(44)

= − λ(curl(ψ − Ikhψ), curlψ)

−D((Mhψ,Nhω), (ψ − Ikhψ, ω − Ikhω))

+D((Mhψ − ψh, Nhω − ωh), (Mhψ − ψh, Nhω − ωh))

= − λ(curl(ψ − Ikhψ), curlψ)− (ω − Ikhω,Nhω)

+ (curl(ψ − Ikhψ), curl(Nhω)) + (curl(ω − Ikhω), curl(Mhψ))

+D((Mhψ − ψh, Nhω − ωh), (Mhψ − ψh, Nhω − ωh)).
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From (43) and (44), we obtain the expansion for the eigenvalue error:

Lemma 5. Assume that (λ, ψ, ω) ∈ � ×H1
0 (Ω)×H1(Ω) is a solution of (4) and

(λh, ψh, ωh) ∈ � ×
◦
Skh ×Skh is a solution of (6). Then we have the following expansion

for the eigenvalue error:

λ− λh = λ|ψ − ψh|21 − λ(curl(ψ − Ikhψ), curlψ)− (ω − Ikhω,Nhω)(45)

+ (curl(ψ − Ikhψ), curl(Nhω)) + (curl(ω − Ikhω), curl(Mhψ))

+D((Mhψ − ψh, Nhω − ωh), (Mhψ − ψh, Nhω − ωh)).

From now on, for k = 1, i.e., when we use the bilinear finite element space, we will
apply integral expansion techniques described in Section 2 and the error estimate

for the mixed projection demonstrated in Theorem 4 to estimate every term on the
right-hand side of the expansion (45). Finally, we can get the asymptotic expansion

for the eigenvalue error.
Theorem 2 implies

(46) |ψ − ψh|21,Ω 6 Ch4.

Using the error estimate for the eigenfunction (26), the integral expansion in
Lemma 1, and the approximation properties for the interpolation, we estimate

the second term of (45) as follows:

−λ(curl(ψ − Ikhψ), curlψ) = − λ(curl(ψ − Ikhψ), curl(ψ − ψh))(47)

− λ(curl(ψ − Ikhψ), curlψh)

=
λ

3

∑

e

∫

e

(k2
eψxyyψx + h2

eψyxxψy) dx dy +O(h3).

By an argument similar to that used to get (47), we can expand the third to
fifth terms of (45). Using the error estimate for the mixed projections described in

Theorem 4 we get

(48) −(ω − Ikhω,Nhu) =
1
3

∑

e

∫

e

(h2
eωxx + k2

eωyy)ω dx dy +O(h3)|u|3,Ω.

For the fourth term, we have

(curl(ψ − I1
hψ), curlNhω) = − 1

3

∑

e

k2
e

∫

e

ψxyyωx dx dy(49)

− 1
3

∑

e

h2
e

∫

e

ψyxxωy dx dy +O(h3),
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and we rewrite the fifth term as

(curl(ω − I1
hω), curlMhψ) = − 1

3

∑

e

k2
e

∫

e

ωxyyψx dx dy(50)

− 1
3

∑

e

h2
e

∫

e

ωyxxψy dx dy +O(h3).

From (4), (6), and (34) we have: ∀ (ϕ, v) ∈
◦
Skh ×Skh

|D((Mhψ − ψh, Nhω − ωh), (ϕ, v))| = |λs(ψ, ϕ) − λhs(ψh, ϕ)|
= |(λ− λh)s(ψ, ϕ) + λhs(ψ − ψh, ϕ)|
= O(1)(|λ − λh|+ |ψ − ψh|1,Ω|ϕ|1,Ω,

from which and Theorems 2 and 4 we obtain the error estimate for the sixth term
as follows:

|D((Mhψ − ψh, Nhω − ωh), (Mhψ − ψh, Nhω − ωh))|(51)

= O(1)(|λ − λh|+ |ψ − ψh|1,Ω)(|Mhψ − ψ|1,Ω + |ψ − ψh|1,Ω)

= O(h4).

Combining the error estimates (46)–(51) with the expansion (45), we derive the

following asymptotic expansion for the eigenvalue error:

Theorem 5. When we use the bilinear finite element space, we have

λ− λh =
λ

3

∑

e

∫

e

(k2
eψxyyψx + h2

eψyxxψy) dx dy(52)

+
1
3

∑

e

∫

e

(h2
eωxx + k2

eωyy)ω dx dy

− 1
3

∑

e

∫

e

(k2
eψxyyωx + h2

eψyxxωy) dx dy

− 1
3

∑

e

∫

e

(k2
eωxyyψx + h2

eωyxxψy) dx dy +O(h3).

For the uniform mesh (he ≡ h1, ke ≡ h2), noting that ω = −∆ψ, ψ|∂Ω = ∂ψ
∂n |∂Ω =

0 and using Green’s formula, we can prove
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Theorem 6. For the uniform rectangular mesh, when we use the bilinear finite
element space, the asymptotic expansion for the eigenvalue error has the form

λ− λh = − λ

3
(h2

1 + h2
2)‖ψxy‖2

0,Ω +
1
3

(
h2

1

∫

Ω

ωxxω dx dy + h2
2

∫

Ω

ωyyω dx dy
)

(53)

+
2
3
(h2

1 + h2
2)(‖ψxxy‖2

0,Ω + ‖ψxyy‖2
0,Ω) +O(h3).

For the square mesh (he ≡ ke ≡ h), noting that ω = −∆ψ, ∆ω = λ∆ψ, ψ|∂Ω =
∂ψ
∂n |∂Ω = 0, and using Green’s formula, from Theorem 5 we can prove

Theorem 7. If Th is a square mesh and if we use the bilinear finite element

space, then

λ− λh = − λh2

3

∫

Ω

(ψ2
xx + ψ2

yy + 4ψ2
xy) dx dy(54)

+
4h2

3

∫

Ω

(ψ2
xxy + ψ2

xyy) dx dy +O(h3)‖ψ‖6,Ω.

5. Extrapolation and an a posteriori error

estimate for eigenvalues

In this section, let Th be a square partition on Ω with mesh size h. We assume
that Th/2 has been obtained from Th by dividing each element into four squares. Let

(λh/2, ψh/2, ωh/2) ∈ � ×V h
0 ×V h be an eigensolution approximation on the mesh Th/2

by (6).

Denote by

(55) λ̃h =
4λh/2 − λh

3

the extrapolation of λ. By Theorem 7, we can get the following error estimate for
the extrapolation λ̃h and an a posteriori error estimate for the eigenvalue:

Theorem 8. We have

(56) λ− λ̃h = O(h3)‖ψ‖6,Ω

and thus,

(57) λ− λh/2 =
λh − λh/2

3
+O(h3)‖ψ‖6,Ω
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provides an a posteriori error estimate 1
3 (λh − λh/2) for λ− λh/2.

6. Numerical results

In this section we compute the first eigenvalue for the algebraic eigenvalue problem

(58)

(
A B

BT 0

)
X = λ

(
0 0
0 C

)
X,

which arises from the discrete scheme (6). Using the inverse power method and a

nonlinear inexact Uzawa algorithm (see [13]), we compute the first eigenvalue as
follows:

mesh λh |λh − λ|/λ λ̃h |λ̃h − λ|/λ
4× 4 59.138354834623172 0.1298 52.485719795258298 0.269e− 02

8× 8 54.148878555099522 0.345e− 01 52.336338480432033 0.1596e− 03

16× 16 52.789473499098904 0.8497e− 02 52.343869992942331 0.1569e− 04

32× 32 52.455270869481474 0.2113e− 02 52.344691794291471 0.1196e− 07

64× 64 52.372336563088972 0.5281e− 03

Table 1. Computation of the first eigenvalue of the Stokess problem.

Tab. 1 shows the numerical results obtained by using the stream function-vorticity-
pressure method to approximate the eigenvalue problem associated with the Stokes

problem discussed in Section 1 by bilinear elements on square meshes.

According to [3], [7] and [28], the most accurate approximation for the first eigen-

value given by Wieners [28] is 52.3446911. In Tab. 1 we take λ = 52.3446911.
Consequently, the theoretical results obtained in Sections 4 and 5 are well realized

in practice. The extrapolation of the eigenvalue gives a more efficient approximation.

7. Conclusions

We have derived an optimal error estimate for the Stream Function-Vorticity-

Pressure approximation of the eigenvalue problem associated with the Stokes prob-
lem. Further we have obtained an asymptotic expansion, an efficient extrapolation

and an a posteriori error estimate for the eigenvalue. The main tools we have used
here are the technique of eigenvalue error expansion (see [18]) and the technique of
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integral expansion which is a useful tool used to investigate superconvergence phe-

nomena (see [16], [17] and references cited therein). Finally, the efficiency of the
results has been illustrated by numerical experiments.

There are some possible future studies about the eigenvalue problem associated
with the Stokes problem:

1. In this paper, we have only considered a unit square region and assumed the
eigenfunction is smooth enough. The analysis on a region with smooth boundary

will be the subject of a forthcoming paper.

2. Here, we solve the eigenvalue problem associated with the Stokes equation by
the stream function and the vorticity. In the future, we will examine a finite element

approximation for the primitive variables provided the so-called BB compatibility
condition is true.

3. We have assumed here that all eigenvalues have ascent and their geometric
multiplicity is one. The theoretical analysis for the ascent larger than one will be

our future work.

Acknowledgement. Both authors gratefully acknowledge Prof. Shuhua Zhang
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