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A NOTE O N T H E I N T E R V A L - V A L U E D 
MARGINAL PROBLEM 
AND ITS MAXIMUM ENTROPY SOLUTION1 

JIŘINA VEJNAROVÁ 

This contribution introduces the marginal problem, where marginals are not given pre­
cisely, but belong to some convex sets given by systems of intervals. Conditions, under 
which the maximum entropy solution of this problem can be obtained via classical meth­
ods using maximum entropy representatives of these convex sets, are presented. Two coun­
terexamples illustrate the fact, that this property is not generally satisfied. Some ideas of 
an alternative approach are presented at the end of the paper. 

1. INTRODUCTION 

The marginal problem, the question of the existence of an extension - a measure 
with given marginals, belongs to the most challenging aspects of probability theory. 
The reason is not only its applicability in various questions of statistics, but also a 
great deal of relevant theoretical problems. One of them is that problem of finding 
a sufficient condition for the existence of a solution of the marginal problem. The 
necessary condition - the projectivity (or weak compatibility) condition - is very 
natural; it means, loosely speaking, that the given marginal measures have common 
"lower-dimensional" marginals. In some specific situations it becomes a necessary 
and sufficient condition ([4, 6]). 

If an extension exists, it is usually not unique, but the problem has an infinite 
number of solutions. Therefore the problem of the existence of an extension is 
usually solved together with the problem of the choice of an - in some sense -
optimum representative of the set of these solutions. One of the possibilities is to 
choose a measure P* with maximum entropy, which corresponds to the well-known 
(and widely used) maximum entropy principle ([1]). This choice is justified by the 
fact that the maximum entropy measure utilizes all information contained in the 
family of marginal measures. If we choose another measure with lower entropy, we 
would add some new information to the family. 

1 The work was partially supported by the grant VS96008 of the Ministry of Education of the 
Czech Republic. 
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In this paper the marginal problem is modified in such a way, that the marginals 
are not given precisely, but are supposed to belong to some convex sets. In our 
case it means that any of these sets is given by a system of intervals. This results 
in a nonlinear programming problem (a nonlinear function has to be maximized 
under linear constraints), but it is a problem of very high complexity even in low 
dimensional case. 

It will be shown that in some specific situations maximum entropy solution of this 
problem can be obtained as the solution of a "classical" marginal problem, where 
the marginals are maximum entropy measures from the given convex sets. 

2. "CLASSICAL" MARGINAL PROBLEM AND ITS REFORMULATION 

The marginal problem is usually understood as follows: Let us suppose {Xi,X{), 
i G IV, 0 ^ IV < oo be measurable spaces, T be a system of nonempty subsets of 
IV and 

S = {PT,TET} 

a family of probability measures, where any PT is a measure on a product space 
{XT,XT) = XieT{Xi,X{). The problem is the existence of an extension, i.e. a 
measure P on {X^^X^), whose marginals are measures from S. 

Denoting Ps the marginal of P on {Xs, Xs), the set 

V = {P:PT = PT,TGT} 

is of interest. The existence of an extension is equivalent to the nonemptiness of the 
set V. 

The maximum entropy measure can be found using Lagrange multipliers ([1]) or 
by the IPFP algorithm ([2]). 

The projectivity condition, as mentioned in the introduction, a necessary condi­
tion for the existence of an extension, means that the equality 

DSnT _ pSnT rs _ rT 

is satisfied for any pair S,T E T, such that S D T ^ 0. 
Let us suppose Xi,i E IV, with finite ranges. Now, the probabilities PT belong 

to some convex sets VT, i.e. the family S is now 

S={VT,TeT}. (1) 

The existence of an extension - in this situation - means that the set 

V = {P:PT EVT,TeT} (2) 

is nonempty. We shall consider situation, when the set VT is given by a system of 
inequalities, i.e. 

VT = {PT ' a{xT) < PT{XT) < KXT), * T 6 XT}> 
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where 0 < a(xT) < 6(XT) < 1 for all XT G XT-
From the fact that the equality 

b(xT) = 1 — a(x%) 

(where xc denotes the complement of x) must be satisfied for any XT G XTJT G T 
(see e.g. [7]), it follows that 

a(xт) + У^ b(yт) > 1 
yT^XT'-yT^XT 

and 
KXT) + Y* a(yT) < 1 

v } ^yTexT'.yT*XT v ' " 

must be again satisfied for any T £T and any choice of XT G XT-
If a(xT) = 6 ( X T)J for a-l #T G XT,T G T, then we obtain "classical" marginal 

problem. On the other hand, a(xT) = 0 and 6 ( # T ) = 1 f° r a-l ^T G XT^T G T, 
means that we have no constraints, and therefore this is not a marginal problem. 
The cases of interest, from the viewpoint of this paper, are all those between these 
two extreme ones. 

The projectivity condition is in this situation weakened to 

TInTnP|nT^0 
for any pair S,T £T, such that S C\T / 0. It means that there exists at least one 
measure in Vs and at least one in VT, whose marginals on S D T coincide. 

3. MAXIMUM ENTROPY SOLUTION 

As mentioned above, the maximum entropy solution can be obtained, in special cas­
es, as a solution of "classical" marginal problem, where the marginals are maximum 
entropy measures P£ from VT- The simplest situation is described by the following 
proposition. 

3.1. Proposi t ion. Let T be a system of pairwise disjoint subsets of N. Then the 
maximum entropy measure P* of V is given by the equality 

P'{*N) = Y\.TZTPT{*T) (3) 

for any xjy G Xjyy P£ being maximum entropy measures from VT,T G T. 

P roo f . The proof is an immediate consequence of the inequality 

H(P)<J2TeTH(PT), (4) 

holding for any distribution P with marginals PT, T £T, where the equality holds 
if and only if P is a product of PT, T G T. The maximum value of the right side of 
(4) is obtained for P^, T G T, and the equality for P* defined by (3). • 

But if the system T does not consist of pairwise disjoint sets, P* is not, in general, 
derivable from P/p, T (zT. It is demonstrated by the following example. 
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3.2. Example . Let X\ = X2 = X3 = {0,1} and Vn and P13 be defined as 
follows: 

^i2 = {E i 2 : | < P i 2 ( 0 , 0 ) < i , 

i < P i 2 ( 0 , l ) < | , 

i < P i 2 ( i , o ) < i , 

and 

è<Лa(l, l)<è} 

^ i з = { E i з : 0 < P 1 3 ( 0 , 0 ) < | , 

è < P i з ( 0 , l ) < | , 

0 < P i з ( l , 0 ) < ì , 

0 < P i з ( l , l ) < | } . 

It can be easily verified that the sets are projective, i.e. 

Ph = {P^2- k<PM<l l<Ph(i)<l}, 
and 

^13 = {P13: h < PhW < 1. O ^ P ^ l ) ^ ! } 

have nonempty intersection. On the other hand 

Pn(i,J) = \, 

for i, j = 0,1, is the maximum entropy measure from *Pi2 and 

Pis(o.o) = | , pr3(o,i) = l AVi.O = I. 
for i = 0,1, is the one from ^13. Therefore Px*2 and Px*3 are not projective (since 

Pl*2 ± PW)-

This is caused by the obvious fact, that the projectivity of the families of measures 
from S defined by (1) does not imply the projectivity of measures from 

5* = { P ; , T G T } 

of their maximum entropy representatives. 
It is obvious that the projectivity condition of maximum entropy measures is 

the necessary condition for getting the solution of our marginal problem via the 
solution of the "classical" one. It is, in general, not the sufficient one, since the 
projectivity condition in "classical" marginal problem does not imply the existence 
of an extension. But we can get the following result. For this purpose, let us remind 
the notion of running intersection property. A system T possesses the running 
intersection property, if there exists an ordering of subsets of T such that for each i 
exists j < i such that 

(TiU-'-UTi-.iJnTi = i } n 7 ; . 
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3.3. Proposition . Let T be a system of subsets of N possessing the running 
intersection property and S be a family of measures possessing the projectivity 
condition. If the family S* satisfies this condition as well, then the measure P* 
defined by the equality 

P*(x„) - RTZTPTM 

for all XN £ -X/v, is the maximum entropy solution of the interval-valued marginal 
problem (where P£ and P^ are measures from S* and their restrictions to the 
elements from W = {U :U = S n T , S , T e T } , respectively). 

P r o o f . The proof is an analogy of the one of Proposition 3.1. The maximum 
entropy measure has maximum entropy marginals and the maximum entropy ex­
tension of them (the solution of the "classical" marginal problem) is given by the 
equality (5) (see [6]). D 

Propositions 3.1 and 3.3 describe the only known situations, in which we were 
able to express the maximum entropy solution of interval-valued marginal problem 
in explicit form. The following existence theorem comprises wider class of problems. 

3.4. Proposition. Let S be a family of projective measures and S* the family of 
their maximum entropy representatives. If P* is the maximum entropy extension of 
measures from S*, then it is also the maximum entropy extension of measures from 
S. 

P r o o f . The proof is obvious. Let P* be the maximum entropy extension of 
measures from S* and Q E V such that H(Q) > H(P*), Then either H(QT) > 
H(P^) for at least one T G T, which violates the maximality of H(P^) or H(QT) = 
H(P*) for all T 6 T and H(Q) > H(P*), which violates the maximality of the 
entropy of the extension. D 

This existence proposition allows us to obtain the maximum entropy solution 
even if the running intersection property is not fulfilled. We can use some iterative 
methods to obtain the maximum entropy extension of the maximum entropy repre­
sentatives. Such an extension is the optimal solution of the interval-valued marginal 
problem. 

It should be stressed the meaning of the implication in Proposition 3.4. If the 
extension of the measures from S* does not exist, it does not mean that there exists 
no extension of measures from «5>, which is shown in the next example. 

3.5. Example . Let Xx = X2 = X3 - {0,1} and V\2, V\3 and V23 be defined as 
follows: 

Pi2 = { P i 2 : è < i > i 2 ( 0 . 0 ) < ± , 
è < E i 2 ( o , i ) < i , 

\< ^12(1,0) < ì , 

è<Лa(l, l)<H. 
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^ 1 3 = { P I 3 : 0 < P 1 3 ( 0 , 0 ) < i , 

n < ^ 3 ( o , i ) < | , 
^ < A 3 ( 1 , 0 ) < I , 

o < p 1 3 ( i , i ) < - V } 

and 

P 2 3 = { P 2 3 : 0 < P 1 3 ( 0 , 0 ) < ^ , 

n < p i 3 ( o , i ) < | , 
n < A 3 ( i , o ) < i , 

o < E i 3 ( i , i ) < i } . 

Their maximum entropy representatives are 

PUiJ) = i 

for i, j = 0,1, 

Ei*3(0,0) = £ , Pr3(0,l) = ± Pr3(l,0) = ± P*3(l,l) = -L, 

and 

E2*3(0,0) = -L P2*3(0,1) = £ , P2*3(1,0) = JL, P2*3(l,l) = X . 

It can be easily verified that the one-dimensional marginals coincide, which means 
that the projectivity condition is satisfied. Nevertheless, denoting 

P(0,0,0) = a 

(this a will be later specified), the following equalities are obtained from P;/2, Pj*3 

and P2 3: 

P(0,0,1) = \ - a , P(0,1,0) = X - a , P(0,1,1) = \ + a, 

P(1,0,0) = X - a , P(1,0,1) = i + a, P(1,1,0) = ± + a, 

P ( l , l , l ) = - & - « • 

It is evident that for any a > 0 the last expression is negative, which implies the 
emptiness of the set V* = {P : P 1 2 = P12,P

13 = PjVE 2 3 = P2*3}. On the other 
hand, the set V = {P : P 1 2 € V12,P

13 6 V13,P
23 E V23] is nonempty, e.g. the 

measure 

P(0,0,0) = 0, P(0,0,1) = ì , P(0,1,0) = X, P(0,1,1) = 
12' 

P(1,0,0) = X, P(1,0,1) = X, P(1,1,0) = i , P ( l , l , l ) = 0 

belongs to V. 
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4. ANOTHER APPROACH 

Situations, in which we are able to obtain the maximum entropy solution via classical 
methods using maximum entropy representatives of VT,T E T, are very specific. 
Either T must be a system of pairwise disjoint subsets of IV (which is trivial problem) 
or «S* must be a family of projective measures (which is very strong assumption). 
The rest of situations is unsolved. Therefore we want to present some ideas which 
seem to help us to solve at least some of them. 

If T is not a system of pairwise disjoint subsets, the projectivity condition of 
VT, T E T, is a necessary one. It has been shown in Example 3.2 that the projectivity 
of the families of measures from S does not imply the projectivity of the measures 
from S*. In other words: if Vs and VT,SC\T ^ 0, are families of projective measures, 
it does not mean that any PT E VT and any Ps E Vs,S C\T ^ 0, are projective. 
Moreover, there may exist a measure QT E VT and a family Qs (S E T,S / T) 
such that 

Qs
T

nT^QssnT 

for all Qs E QS. 
This is the reason why to introduce the projectivity of a family S. The family 

S defined by (1) is projective if for any PT E VT,T E T, there exists at least one 
Ps e Vs(S e T, S fl T + 0) such that 

pSnT __ pSnT r 5 — rT 

4.1. Proposi t ion. For any VT e S let us define 

where 

VTns = {PT ' a(xsnT) < PTn (xTns) < b(xsnT), xTns e XTns} , 

(a(xsnT) = V a(xs) ) 
\ ^-^xs-liTns\<^s)=XTns J 

then 
Sw = {V¥,TeT} (7) 

is projective family of sets of measures. 

P r o o f . The proof is straightforward. Let PT be arbitrary measure from Vw 

and S E T such that S D T ^ 0, then 

E , -n t , flM * PTn5(*TnS) < E n t . 6 ^ ) ' W 
^- /a?5.n-ris(-:s)=iFTns z—'x5:nTns(ff5)= ; r

Tns 

for all XTns E -XynS and since 

a(xs) <-Ps(xs) < b(xs), 
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for all xs G Xs the inequality (8) is satisfied for P$nT(xTns) as well, and therefore 
we can find such Ps which satisfies 

p | n T = P * n T . • 

This fact seems to be very useful. If we use Sw instead of «5, the maximum en­
tropy representatives of Vw may satisfy projectivity condition (due to more restric­
tive character of Sw) or - at least - we will get the following existence proposition. 

4.2. Proposition. Let T be a system of subsets of N possessing running inter­
section property. If Vw defined by (6) is nonempty for all T G T, then V defined 
by (2) is nonempty, i.e. the solution of the marginal problem exists. 

P r o o f . The proof is an immediate consequence of the fact that T satisfies 
running intertsection property and for any PT G VT there exists some Ps €Vs,S € 
T, which are projective. • 

Let us note that Proposition 4.2 assures the existence of the solution of the 
problem presented in Example 3.2. 

It is evident that this existence proposition does not give us the answer to the 
question: How to get the maximum entropy solution? It seems to us, at this stage, 
that the most promising is the following approach. 

Let us suppose that T = {T, £} . We will start from the extreme points P^ns^ e ^ 
E of VT nVs = Vft HV^ (which follows from the definition of V%). The set of all 
marginals VsnT is then 

TSnT = {P5
anT = _Ze€E <*'PsnA*snT), a . > 0, J ^ a e = l } . (9) 

Since we are interested in maximum entropy measure from (2) we can confine our­
selves on the maximum entropy measures from Vs and VT> respectively, satisfying 
the projectivity condition given by (9) for any a — (ae > 0,e G -E\ ]CeeE a e = •'•)• 
Let us denote them P<? and Pjl. Their maximum entropy extensions are (according 
to (5)) 

( } Ps*nT(*SnT) ' 

and any Pa defined this way is solution of marginal problem (1). Let us note that it 
is not the whole set V, but these measures are, let us say, quasi-optimal solutions of 
(1). Among them we will find the maximum entropy solution. It is again nonlinear 
programming problem, but the number of constraints was substantially decreased in 
comparison with the original problem. It is demonstrated in the following example. 

4.3. Example. Let Vi2 and Vi3 be as in Example 3.2. We will find that V^ = Vi2 

and 
V% = {P13€V13: k<P}a(0)<l § < P}3(0) < §} . 
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From the extreme points of V\ = V\2 VI V\3 

P{(0) = 1 and P?(0) = i 
A1(i) = i, A2(i) = | . 

we obtain 

-T(O) = 5 + 5 « - IT(i) = i - 5 « , 

a G [0,1]. The maximum entropy measures from 7*12 and V\3 satisfying this marginal 
condition for a E [0,1] are 

Ef2(o,0 = £ + $«, PfiU.O = | - 5 « . 

i = 0,1 and 

Pf3(0,0) = i a , Pf3(0,l) = i , Pf3(l , i) = i - i a , 

z = 0,1. Their maximum entropy extension for a G [0,1] is 

Ea(0,i,0) = l a , Pa(0,i,l) = i , P a ( l , i , j ) = $-&<*, 

i) j = 0,1. The maximum entropy within this class of measures is obtained for a = | , 
i.e. the maximum entropy solution of the marginal problem is 

P*(0,i,0) = I , P ' (O. i . l ) = | , P* ( l , i , i ) = i , 

i, i = o, I. 
The original problem was to maximize a function of seven variables under sixteen 

inequalities. It was successively transformed to the problem of maximization of a 
function of one variable on the interval [0,1] (i.e. under two inequalities), which was 
easy to solve. 

It is obvious that the complexity of this problem depends on the size of S 0 T 
and the one of any X{> i G S fl T, nevertheless, the decrease of the complexity (in 
comparison with the original problem) is substantial. 

5. CONCLUSIONS 

Interval-valued marginal problem seems to be quite a natural modification of marginal 
problem. In practical situations, the marginals need not be known precisely, but can 
be obtained from statistical data in the form of confidence intervals or from expert 
as his/her subjective upper and/or lower probabilities. 

The solution of this problem is of a very high complexity, which was demonstrated 
even in our simple examples. The explicit solution using maximum entropy repre­
sentatives of given sets of measures can be obtained only in very specific situations 
(cf. Propositions 3.1 and 3.3), the existence proposition comprises the foregoing ones 
and points out how iterative methods-can be used in this kind of problems. 
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Since the class of situations covered by preceding propositions is very small, an­
other approach has been suggested in fourth section. The existence theorem (Propo­
sition 4.2) states the sufficient condition for the existence of the solution of the 
interval-valued marginal problem (but the class of solvable problems is wider, cf. 
Example 3.5). The method suggesting how to find the maximum entropy solution 
of marginal problem (1) seems to be promising, but the main ideas must be yet 
formalized (for richer systems T) and the optimality of the proposed solution should 
be proven. It will be one topic of our future work together with the study of the 
possible enlargement of solvable problems, i.e. finding weaker sufficient condition 
(or that defining another class of solvable problems). 

(Received November 7, 1997.) 
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