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KYBERNETIKA — VOLUME 34 (1998), NUMBER 2, PAGES 235-237

LETTER TO THE EDITOR: CONSISTENCY OF LPC +Ch

JorMA K. MATTILA

In his paper [4] “Algebraic analysis of LPC+Ch calculus”, Kybernetika 31 (1995),
No. 1, pp.99-106 Turunen says in Corollary on p. 106:

“...(Notice that the third last line on page 195 in [2] stating that LPC+Ch
Calculus is consistent is not correct.)”

The reference [2] in Turunen’s paper is the same as [2] here.

The system LPC+Ch is consistent, which can be seen quite trivially. For pure
syntactical logical systems there are three kinds of consistencies which are quite
closely related:

(i) absolute consistency: not the every formula is a theorem;
(1) canonical consistency: if « is some fixed theorem, then -« is not a theorem;

(iii) consistency with respect to the negation: there does not exist a formula « such
that @ and —a both are theorems.

There is still a fourth kind of consistency, namely consistency with respect to inter-
pretation, and it cannot be used with purely syntactical systems without possible
models they can have. (Different kinds of consistency are considered for example in
the following books: Margaris, A., First Order Mathematical Logic, Blaisdell, 1967;
Rogers, R., Mathematical Logic and Formalized Theories, North Holland, 1971;
Mendelson, E., Introduction to Mathematical Logic, Van Nostrand, 1964; Kleene,
S.C., Mathematical Logic, Wiley, 1967, and Church, A., Introduction to Mathemat-
ical Logic, Princeton, 1956.)

LPC+Ch is absolutely consistent, because for example a single M-formula p (an
element of the set of atoms) is not a theorem of LPC+Ch. Canonical consistency fol-
lows from the consistency with respect to the negation, which is the most important
kind of consistency, and which follows from the definition stating that a syntactical
logical system is consistent iff all the formulas do not belong to the system. (Note
that any system consists of its axioms and theorems.)

We prove that LPC+Ch is consistent with respect to the negation using the well-
known method of PC-transform (see e. g. [1], p.145). This method is generally used
for proving the consistency of intensional logics. For any M-formula a of LPC+Ch
we can form its PC-transform o’ in the following way:
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1. Rewrite « (if necessary) in primitive notation.

2. Eliminate all occurrences of the identity symbol ‘=’ by using its definition in
LPC.

3. Delete all modifiers, quantifiers and individual variables.

4. Replace each distinct predicate variable by a distinct propositional variable.

The resulting expression o’ will be a proposition of PC. The PC-transform has the
following properties: :

(i) Every M-formula will have one and only one PC-transform (though two M-
formulas may have the same PC-transform).

(ii) If the PC-transform of e is o', then the PC-transform of —a will be ~a.

Proposition. The system LPC+Ch is consistent with respect to the negation.

Proof. We will show that the PC-transform of every provable M-formula in the
system LPC+Ch, every theorem of LPC+Ch, is a valid formula of PC by showing
that the PC-transform of every axiom is a valid formula of PC and the inference
rules preserve this property.

This obviously holds for the axioms of FC, since they are themselves valid for-
mulas of PC. It is also easy to see that the PC-transforms of the axioms of LPC are
valid formulas of PC.

The PC-transform of AxStr is o’ — o' which is valid formula of PC. The PC-
transform of AxId is @’ « o’ which is valid formula of PC.

Every theorem of LPC+Ch is either an axiom or an M-formula obtained from
one or more axioms by the inference rules MP, GMP and RS.

Let o/, #,... be respectively the PC-transforms of «, 3,... . Suppose 3 is ob-
tained by MP from « and @ — . The PC-transforms of & and @ — [ are respec-
tively o’ and (e — fB)'. But (o — B)’ is the same formula as o’ — #'. Hence 8’ may
be obtained from o’ and (a — )’ by MP in PC. But MP also preserves validity in
PC.

The PC-transform of GMP reduces to that of MP.

The PC-transforms of « is identical with that of F;(«) for any F; € 0. Hence if
B is obtained from a by RS, and o' is valid, so is #'.

The PC-transforms of every theorem of LPC+Ch is therefore a valid formula
of PC. It follows that for every M-formula a of LPC+Ch, a and -« are not both
theorems; for if they were, o’ and —a’ would both be valid formulas of PC, which
we already know to be impossible. Hence LPC+Ch is consistent with respect to the
negation. (]

We already mentioned above that a number of distinct M-formulas can have the
same PC-transform. In fact an M-formula which is not a theorem of LPC+Ch
sometimes has the same PC-transform as one which is. This happens e.g. in the
case of F(a) — a and a — F(a), F € 0. The former is a theorem while the
latter is not, but they both have the PC-transform o’ — o’. This gives us a further
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important result, viz, that LPC+Ch is not maximal consistent (as has been noted
already in [2]). For the fact that & — F(a) has a valid PC-transform shows that it
could be added to LPC+Ch without the system being thereby made inconsistent.
According to the consistency with respect to interpretation, LPC+Ch has several
models. If we interpret all the substantiating operators F; € 0 as necessities of

different strength then some models of multimodal T are models of LPC+Ch (see
also some few details in [3]).

(Received January 28, 1998.)
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