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DETECTING A DATA SET STRUCTURE THROUGH 
THE USE OF NONLINEAR PROJECTIONS 
SEARCH AND OPTIMIZATION 

VICTOR L. BRAILOVSKY AND MICHAEL HAR-EVEN 

Detecting a cluster structure is considered. This means solving either the problem of 
discovering a natural decomposition of data points into groups (clusters) or the problem of 
detecting clouds of data points of a specific form. In this paper both these problems are 
considered. To discover a cluster structure of a specific arrangement or a cloud of data of a 
specific form a class of nonlinear projections is introduced. Fitness functions that estimate 
to what extent a given subset of data points (in the form of the corresponding projection) 
represents a good solution for the first or the second problem are presented. To find a 
good solution one uses a search and optimization procedure in the form of Evolutionary 
Programming. The problems of cluster validity and robustness of algorithms are considered. 
Examples of applications are discussed. 

1. INTRODUCTION 

The main approach to Exploratory Data Analysis is connected with Projection Pur­
suit (PP). In many cases this search for "structure in data" is reduced to finding 
clusters or cluster-like structures. Traditional understanding of what a cluster means 
is based on the description presented in Everitt (cf. [3]): "A cluster is an aggrega­
tion of points in the test space such that the distance between any two points in the 
cluster is less than the distance between any point in the cluster and any point not 
in it". The basic approaches to Cluster Analysis are discussed in [3] and [5]. 

Over the years there has been a tendency to widen this rather vague definition 
of clusters. This tendency is most clearly expressed in conceptual clustering, with 
the basic premise that "objects should be arranged in classes that represent simple 
concepts and are useful from the viewpoint of the goal of clustering. These objects 
in the same cluster do not necessarily have to be similar in some mathematically 
defined sense, but must as a group represent the same concept" (cf. [8]). 

Thus, according to the latter definition straight lines, spherical and ellipsoidal 
surfaces, etc may be considered as concepts, and clouds of data points elongated 
around these lines and surfaces represent clusters. As a result of such an approach 
there is a bridge between the problem of clustering and the problem of form recog­
nition for 2D images which is a central problem in Image Analysis and Computer 
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Vision [1]. 
Nevertheless, despite some robust properties of the methods, developed in this 

field, it is very problematic to apply them to the problem of interest: to discover 
and to identify clouds of data points elongated around a certain line or surface. 

In this paper we introduce a class of nonlinear projections that are used to detect 
cluster structures of a given form. On the basis of these projections one performs a 
PP procedure that should culminate either in discovering a cluster of a given form 
or in establishing that no clusters of that kind exist in a given data set. 

2. NONLINEAR PROJECTIONS 

2—1. Consider a d-dimensional space of objects (data points) Rd with coordinates 
xi,x2,.. .,xd. 

Let a surface (a curve) exist that can be described by the equation: 

d d 
F(x) = X^ avxixJ + X^a*Xi + flo = 0. (2.1) 

*,j=i -=1 

If there is a structure that may be represented as a cloud of data points elongated 
around the surface than the majority of such data points complies with the inequality 
—e < F(x) < e. Here the value of the threshold e is chosen according to the "width" 
of the cloud. 

If one searches for two clusters that may be separated by a surface of form (2.1) 
then the following classification rule applies: 

If F(x) > t then data point x belongs to cluster 1; otherwise to cluster 2. 
Consider now the transformation of the coordinates and transition to a new space 

with dimensionality m = 2d + d(d — l ) /2 

Zi = Xi, . . . , Zd = Xd\ Zd+i = x\, . . . , Z2d = x\\ 

z2d+i = xix2,..., z2d+d(d_iy2 = xd-ixd. (2.2) 

In this new coordinate system the left-hand-side of (2.1) takes the form of the inner 
product of the transformed data point with coordinates zi, z2,..., zm with a param­
eter vector that may be easily calculated from eqs (2.1), (2.2). The inner products 
(projections) that correspond with a cloud of data points of parametric form (2.1), 
are concentrated within a 2e interval (see above). As for the cluster structure de­
scribed above, it may be found in the one dimensional distribution of the projections 
of data points. 

Naturally, such a transformation may be performed for polynomials of any order 
(not only for the order two). Note that such a transformation was used in algorithm 
for optimal margin classifier [9]. 

2 -2 . Consider a number of special cases. 

1. Let (2.1) represent a hyperplane, i.e. all values a,j = 0. In this case there is 
no need to make a transition to a new space; we should consider the usual projection 
on a vector which is orthogonal to the hyperplane and search for the optimal one. 
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The dimensionality of the space of search is d— 1. In the case of cluster analysis the 
considered situation means the search for linearly separable clusters. This case will 
be considered in Section 3. 

2. Let (2.1) represent a hypersphere with center (#io,#20> • • -j^rfo)* In this case 
eq. (2.1) maybe written in the form Yli-i (x* ~~ xio)2 = r2. Clearly, in the considered 
case the value of the projection is equivalent to the Euclidian distance between a data 
point with coordinates #,-, and center X(o) i = 1,2,.. .,d. So, one should calculate 
Euclidean Distances between data points and the center of the hypersphere and 
search for the optimal location of the center. The dimension of the search space is 
equal to d. 

3. Let (2.1) represent a hyperellipsoid with center X(o and let, for simplicity, its 
semiaxes a;, i = 1,2,.. . ,d be oriented along the coordinate axes. In this case eq. 
(2.1) may be written in the form Yli=i ^ ' ~ 2 t 0 ' = 1. So, in the case of hyperellip­
soid one should calculate Mahalanobis Distances between data points and its center 
taking into account its orientation and search for its optimal location, eccentric­
ity and orientation. It is easy to estimate the dimensionality of the search space: 
d i m = 2 d + d ( d - l ) / 2 - l . 

. 3. LINEARLY SEPARABLE CASE 

3-1 . In this section we consider an algorithm which detects linearly separable 
clusters. The algorithm is of hierarchical type and is built on a tree-like principle. 
As a result, the cluster structure detected by it, has the form of a binary tree; the 
dendrogram is cut automatically when a statistically significant number of clusters is 
found. The first version of this algorithm is described in [4]. The algorithm consists 
of the following steps. 

- Perform a projection pursuit using the clustering-indicating function as an 
index until a requested statistical bound is achieved (first level of validation). 
Repeat this process several times to obtain a list of clustering candidates. 

- Use a statistical score to choose the best clustering candidate (second level of 
validation). If the highest score passes a validation bound, the data are split 
into two clusters according to the best candidate. Otherwise, it indicates the 
absence of (additional) clustering. Continue the same procedure with each of 
these two clusters. 

A second level of validation is needed to ensure the stability of the algorithm and 
to improve its performance. In the next two paragraphs we present some details of 
these steps. 

3-2. For the clustering-indicating function, we have chosen an enhanced version 
of the Fisher criterion [4]. If a set of n one-dimensional observations xi , X2,..., xn 

is partitioned into two parts by a threshold t with n\ observations in one part and 
ri2 in the other, one can estimate the average values in each part mi and rri2 and 
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the variances a\ and v\ for the distributions on the left and right parts respectively. 
The clustering-indicating function of this partition is 

_ nin2(mi - m2)2
 ( . 

(n1 + n2)(al+a\Y ^ 

Changing the threshold t one may try all n possible partitions of the sample set and 
obtain the maximum value of (3.1) max5. 

While working with clustering data against a noisy background (like objects on 
a 2D noisy image) we need a more robust clustering-indicating function than (3.1). 
In these circumstances, in the numerator of (3.1), we use the square difference of 
percentiles, instead of the square difference of the mean values (e. g. the value of 90 % 
percentile for the left part and, symmetrically, the value of 10% percentile for the 
right part); in the denominator of (3.1), we use the respective median values of square 
deviations of the data points on the left and right parts from the corresponding 
medians, instead of variances. 

To establish a statistical significance threshold for the value max S one can gener­
ate n samples from the uniform (or Gaussian) distribution (on a segment) and find 
max5 for the samples. By repeating this procedure many times, we can estimate 
the set of values Ba such that for the random sample set Prob(maxS' < Ba) = a, 
where a is a preestablished significance level. The values Ba depend on n and may 
be found as preprocessing. 

Projection pursuit was performed with the help of a stochastic optimization proce­
dure called simulating annealing which is described in [4]. In later stages of research 
we moved on to another procedure of stochastic optimization called evolutionary 
programming [7]. 

3 - 3 . The list of clustering candidates obtained as a result of a number of activa­
tions of the searching phase is analysed with the help of a bootstrapping procedure 
[6]. This procedure serves two purposes: the final selection of the best clustering 
candidate and (if the candidate is statistically significant) determination of the op­
timal split point of the clustering. The latter problem is connected to the fact that, 
generally speaking, the threshold t that corresponds to max5 may not represent the 
optimal split point. 

We repeat the following procedure p times: 

1. Randomly choose a subsample of m points from n input data points. 

2. Compute max S and the corresponding separation point t on the subsample. 

If maxS rejects the null hypothesis, i.e. if maxS > 5 a * , then increase the 
content of the accumulator cell hits by one. 

3. Choose the final separation point to according to the best value max S. 

As discussed in [4], if enough subsamples are generated, there is a high proba­
bility of reaching a situation in which the final separation point to indicates a good 
clustering. Note that the threshold t that corresponds to the maximum of the robust 
version of (3.1) (see above) gives a much better representation of the optimal split 
point. 
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As mentioned above, another advantage of this approach is the ability to validate 
the partition suggested by maximizing S. The global clustering structure should 
correspond to a large number of hits, hence, ~ p could be used for internal validation 
(in addition to null hypothesis testing). 

3-4. The performance of the algorithm was tested on artificial and real data. Ar­
tificial clustering data were created by performing a version of the Neyman-Scott 
process [6]: m clusters are randomly created in a d-dimensional unit hypercube. The 
algorithm was tested for the values of d = 2 — 64. For m = 3 the algorithm worked 
well for the whole range of d. The algorithm also demonstrated very good result for 
two known clustering problems: Iris plant data and wine recognition data [4]. 

4. GENERAL CASE 

4 - 1 . In the previous section we described the clustering-indicating function (3.1) 
and its robust version. This function may be used as a fitness function for any kind 
of cluster types described in Section 2. In this paper we also consider clusters in the 
form of clouds of data points elongated around some lines or surfaces. For detecting 
such clusters we should introduce fitness function of another type. 

4-2. As seen from Section 2, a high concentration of projected data points within 
a small interval on the axis of projection may be an indication of the presence of 
a cloud of data points around a surface (a line) of a given parametric form. We 
introduce a fitness function that detects such highly populated intervals. Consider 
the interval of possible projection values and divide this interval into a number (e. g. 
50) of small subintervals. We want to find a set of neighboring subintervals such that 
(1) the density of the projected data points is significantly higher than the average 
density; (2) the number of data points projected into the set is high enough. Choose 
the following function: 

/<*= \ ; / = m«[/u]- (4.1) 
K i,k 

The numerator here is equal to the number of data points projected in k consecutive 
subintervals beginning with the number i to the power 1.5. 

If the value / is significant then we may have discovered a surface (a curve) of the 
given parametric form. One can easily see that the fitness function / introduced by 
(4.1) is robust with respect to the scattering of data points around the ideal curve 
(surface) as well as with respect to general level of noise in the image and the image 
clutter constituted by its structure. 

4-3 . The search for the maximum of the fitness functions (3.1), (4.1) is performed 
with the help of a stochastic optimization algorithm known as evolutionary program­
ming [7]. We use the simplest version of this algorithm with a population of p = 20 
candidate vectors in the search space (see Section 2) and with a probabilistic selec­
tion of candidates for the next generation. The number of generations that should 
be produced to reach an adequate solution depends on the kind of parametric form 
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(less for lines, more for ellipses) and on the complexity of the whole da ta space. In 
our experiments 2 5 - 1 0 0 generations were produced. 

After the opt imal projection is fixed the algorithm continues to work as follows. 
If one detects a clustering structure with the help of the fitness function (3.1), the 
algorithm works according to tree-like structure as described in Section 3. If one 
detects a cloud of da ta points of a given geometric form with the help of the fitness 
function (4.1) the following operations are performed. Find the number of selected 
consecutive subintervals k and their location i. Single out the set of da ta points 
tha t were projected into these subintervals. Now decide whether this set of data 
points corresponds with the given geometric primitive or whether it is an accidental 
gathering of da ta points tha t does not represent a primitive of a given form. To make 
such a decision analyze the selected set of da ta points according to the following 
criteria: the number of da ta points in the set should be higher than a threshold; the 
arrangement of the da ta points should be sufficiently uniform, etc. If the decision is 
positive, remove this set of da ta points from the image and continue to search the 
other geometric primitives. 

4—4. Several experiments and applications of the cluster algorithm for linearly 
separable case are described in [4] and in Section 3. We also applied the suggested 
technique to a number of problems where there were either clusters tha t could not 
be linearly separated (but could be separated with the help of a circle or an ellipse), 
or there were clusters which were a "fuzzy" version of rings, circles or ellipses. In all 
the cases all these clusters were found. Figures representing problems of such kind 
are presented in [2]. 

(Received December 18, 1997.) 
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