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ON SELECTING THE BEST FEATURES 
IN A NOISY ENVIRONMENT 

JAN FLUSSER1 AND TOMÁŠ SuK 

This paper introduces a novel method for selecting a feature subset yielding an optimal 
trade-off between class separability and feature space dimensionality. We assume the fol­
lowing feature properties: (a) the features are ordered into a sequence, (b) robustness of 
the features decreases with an increasing order and (c) higher-order features supply more 
detailed information about the objects. We present a general algorithm how to find under 
those assumptions the optimal feature subset. Its performance is demonstrated experimen­
tally in the space of moment-based descriptors of 1-D signals, which are invariant to linear 
filtering. 

1. INTRODUCTION 

Selection of a subset of a large set of features which is "optimal" in some sense is 
an essential task on the field of pattern recognition. Usually there are two opposite 
requirements working against one another: the subset should be "small enough" 
to reduce significantly the dimension of the feature space and, on the other hand, 
it should provide sufficient object representation and discriminative power. There 
have been published numerous feature selection methods in the last three decades, 
we refer to classical monographs [1] and [2] for a survey. 

The problem formulation we are dealing with in this paper is slightly different. 
We assume the features are ordered and having the following property: robustness 
to noise in the original data decreases with the increasing feature order whereas its 
ability to supply detailed information about the objects increases. Central moments 
of signals and images, all moment-based invariants and some of differential invariants 
and Fourier descriptors behave exactly in that way. 

We consider only subsets formed by first p members of the feature sequence. 
Thus, the problem of the optimal feature selection is restricted to searching for an 
optimal order popi. 

There have not been many publications devoted to the problem formulated above. 
Mostafa and Psaltis [3] and Teh and Chin [4] proved that image moments satisfy 
our assumption. Liao and Pawlak analyzed the one-class problem of noisy image 

1 This work has been supported by the grant No. 102/96/1694 of the Grant Agency of the Czech 
Republic and by the grant No. 4178-3 of the Ministry of Health. 
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representation by moments in [5] and [6]. They defined the optimal order popt 

according to the minimum-reconstruction-error criterion and they showed that such 
an optimum exists and that it decreases with increasing noise variance. 

In this paper, we consider objects belonging to different classes. We try to opti­
mize the discrimination power of the features (i.e. the separability of the classes) 
which obviously differs from its reconstruction ability. 

2. A TWO-CLASS PROBLEM 

Consider a problem of two pattern classes w\ and W2 with mean vectors mi,ni2 
and covariance matrices Ci ,C2, respectively, in a p-dimensional space of features 
5 i , . . . , 5p. Define the mean covariance matrix C as 

C = P(w1)C1 + P(w2)C2l 

where P{wi) is an a priori probability of it;,- and assume that C is non-singular. 

D(p) 

Fig. 1. Typical behaviour of the Mahalanobis distance between two classes. 
p\ - threshold of separability; p2 - threshold of noise sensitivity. 
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Under these conditions, we can take the Mahalanobis distance 

D(p) = (mi — m 2 ) C _ 1 ( m i — 1x12)' 

as the measure of the class separability. 
The typical course of the Mahalanobis distance under the assumptions given in 

Section 1 as a function of p is depicted in Figure 1. The features of order less than pi 
have not enough discriminative power to separate the given classes. The features of 
order greater than p2 do not contribute significantly to the class separability because 
of their high sensitivity to noise. Thus, we consider (SPl,... ,SP2) as the optimal 
feature subset. Clearly, the values of p\ and p2 depend on the given classes. If the 
classes are "well-separable" by lower-order features, then p\ is close to one. Similarly 
if they are "well-separable" by higher-order features, p2 becomes very high. On the 
other hand, if the classes are "similar" to each other, then p2 may be equal to p\ 
and those classes may be non-separable by any feature subset. 

In practice we do not search for p\ because it is usually small and the dimen­
sionality reduction by p\ is not significant. Moreover, most features we are dealing 
with are calculated recursively. To calculate the feature Sp of the object, one has to 
know all lower-order features first. 

3. AN OPTIMIZATION PROCEDURE 

In this Section, we present a numeric algorithm which finds the optimal feature 
number defined above. 

1. Inputs: 

f\ »• • • > fnk ~ training patterns of wk, k = 1,2, 
e - user defined tolerance parameter. 

2. Set p = 1; i n d = 0 ; 

3. for k = 1 : 2 
P(wk) = nk/(n\ + n2); 

end; 

4. for k = 1 : 2 
Estimate mk and C k ; 

end; 

5. C = P(w1)C1 + P(w2)C2) 

6. D(p) = (mi - m 2 ) C - 1 ( m i - m a ) ' ; 

7. if (p < 2) then goto Step 8; 
else if (D(p) - Dip - 2) > 2e) then ind = 1; 

else if (ind = 1) then popt = p - 2; STOP 
end; 

end; 
end; 

8. p = p + l ; 
goto Step 4. 
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Step 7 is a key point of the algorithm. The logical variable ind tells us whether 
the current p is greater than pi (ind = 1 ) . Without this indicator the algorithm 
would stop in most cases at the beginning giving a false result popt < p\. The stop 
condition says that for two consecutive values of p the average increment of the 
Mahalanobis distance D(p) must be less than e. 

4. NUMERICAL EXPERIMENTS 

To demonstrate the previous considerations as well as the optimization procedure 
experimentally, we employ one kind of moment invariants of 1-D signals. (We could 
use, however, any features meeting our assumptions.) 

In the following text, by signal we understand any absolutely integrable function 
f(t) which is non-zero on bounded support and the integral of which is non-zero. 

Let us define for any odd p the feature Sp(f) by the following recursive formula: 

SP(f)=^p
J)-—) £ (*)Sp-2n(f)'rf£, 

where fip*' is the central moment of the signal f(t). 
It was proved in [7] that each Sp is an invariant with respect to blur, that means 

its value does not change when the signal is convolved with any symmetric impulse 
response /i(/), i.e. Sp(f) = Sp(f*h). Due to this property, these invariants are very 
powerful features for recognizing signals filtered by an unknown linear system [8]. 

First, let us demonstrate that the blur invariants do meet our assumption about 
the decreasing robustness. Let g be a, noisy version of / , i.e. g = / + n, where n 
denotes zero-mean Gaussian noise. The robustness of the invariants can be charac­
ter^ ed by their relative error 

\SP(g) - Sp(f)\ 

SP(f) 

(high relative error indicates low robustness). 
The course of the mean value of rp as the function of the order of the invariants 

is depicted in Figure 2. In this experiment, 100 realizations of the noisy signal 
were generated to estimate E(rp). Signal-to-noise ratio was always equal to 5 dB. 
The increasing character of E(rp) demonstrates the decreasing robustness of the 
invariants with respect to additive random noise. 

Now two classes of 1-D digital signals are given, each of them containing 30 
elements. We applied the above algorithm (with the tolerance parameter e = 0,05) 
to find the optimal number of the blur invariants for class separation. Figure 3 
shows the course of the Mahalanobis distance between the classes depending on the 
number of the invariants used. The algorithm yields the result popt = 6. Thus, the 
optimal subset consists of blur invariants 53, 5s, 57, 5g, 5 n and 5i3 in this case (5i 
is useless because 5i = 0 everywhere). 



On Selecting the Best Features in a Noisy Environment 415 

Fig. 2. Robustness of the blur invariants with respect to additive random noise. 
Horizontal axis: the order of the invariant; vertical axis: relative error (mean value over 

100 runs). 

5. CONCLUSION 

In this paper, we have introduced a method for selecting the optimal feature subset 
for class separability in a noisy environment. The method works for any ordered 
feature sets which meet the two following assumptions: robustness of the features 
decreases with the increasing order and the higher-order features supply more de­
tailed information about the objects. The performance of the presented algorithm 
lias been demonstrated experimentally in the space of the moment-based descriptors 
of 1-D signals, which are invariant to linear filtering. 

We have defined the optimal number of features popt as the highest order, which 
contributes "significantly" to class separability measured by Mahalanobis d is tant . 
If we use more than popt features, the class separability cannot be worse but com­
putational cost increases. On the other hand, popt might be in some cases too high 
to employ all features up to the order popt in practice. Moreover, the algorithm 
may be numerically unstable for high p because covariance matrix C may become 
ill-conditioned. Thus, we should define some threshold values of p or of Mahalanobis 
distance D(p). Once one of these thresholds is exceeded the algorithm should stop 
even if popt has not been reached. 

(Received December 18, 1997.) 
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Fig . 3. The Mahalanobis distance in the space of blur invariants between two classes of 
signals depending on the order of invariants used. 
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