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KYBERNETIKA — VOLUME 3j ( 1 998 ) , NUMBER 6 . P A G E S 7 1 3 - 7 2 4 

NONEXPANSIVE MAPS 
AND OPTION PRICING THEORY 

VASSILI N. KOLOKOLTSOV 

The famous Black-Sholes (BS) and Cox-Ross-Rubinstein (CRR) formulas are basic 
results in the modern theory of option pricing in financial mathematics. They are usually 
deduced by means of stochastic analysis; various generalisations of these formulas were 
proposed using more sophisticated stochastic models for common stocks pricing evolution. 
In this paper we develop systematically a deterministic approach to the option pricing that 
leads to a different type of generalisations of BS and CRR formulas characterised by more 
rough assumptions on common stocks evolution (which are therefore easier to verify). On 
the other hand, this approach is more elementary, because it uses neither martingales nor 
stochastic equations. 

1. GENERALISED CRR MODEL: A DETERMINISTIC APPROACH 

We start with an exposition of a deterministic approach to the analysis of the stan­
dard discrete Cox-Ross-Rubinstein model of financial market and its natural modi­
fication with more rough assumptions on the underlying common stocks prices evo­
lution. This discussion leads naturally to three types of the prices of an option: 
hedge price, minimal price and mean price. Next, we develop this approach to cover 
more general models of options, in particularly those depending on several types of 
common stocks, and then consider these models in the continuous limit deriving the 
multidimensional versions of the Black-Sholes formula and more general equations 
proposed recently by T.Lyons in [6]. In the last section we discuss the connection 
with the theory of nonexpansive mappings. 

A simplest model of financial market deals with only two securities: the risk-
free bonds (or bank account) and common stocks. The prices of the units of these 
securities, B = (Bk) and S = (Sk) respectively, change in discrete moments of time 
k = 0 , 1 , . . . according to the recurrent equations Bk+i = pBk, where p > 1 is a fixed 
number, and Sk+i = £k+iSk, where £* is an (a priori unknown) sequence taking 
value in a fixed compact set M 6 1Z. We denote by u and d respectively the exact 
upper and lower bounds of M (u and d stand for up and down) and suppose that 
0 < d < p < u. We shall be interested especially in two cases: 

(i) M consists of only two elements, its upper and lower bounds u and d, 
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(ii) M consists of the whole closed interval [d, ti]. 

No probability assumptions on the sequence £* are specified. Case (i) corresponds 
to the CRR model and case (ii) stands for the situation when only minimal infor­
mation on the future evolution of common stocks pricing is available, namely, the 
rough bounds on its growth per unit of time. 

An investor is supposed to control the growth of his capital in the following way. 
Let Xk-i be his capital at the moment fe — 1. Then the investor chooses his portfolio 
defining the number 7* of common stock units held in the moment k — 1. Then one 
can write 

Xk-i = 7kSk-i + (Xk-i — 7kSk-i), 

where the sum in brackets corresponds to the part of the capital laid on the bank 
account (and which win thus increases deterministically). All operations are friction-
free. The control parameter 7* can take all real values, i.e. short selling and 
borrowing are allowed. In the moment k the value £* becomes known and thus the 
capital becomes equal to 

Xk = 7ktkSk-i + (Xk-i - 7kSk-i)p* 

The strategy of the investor is by definition any sequence of numbers T = (71 , . . . , 7n) 
such that each jj can be chosen using the whole previous information: the sequences 
XOJ ..., Xj-i and So , . . . , Sy-i. It is supposed that the investor, selling an option by 
the price C = Xo should organise the evolution of this capital (using the described 
procedure) in a way that would allow him to pay to the buyer in the prescribed 
moment n some premium f(Sn) depending on the price Sn. The function / defines 
the type of the option under consideration. In the case of the standard European 
call option, which gives to the buyer the right to buy a unit of the common stocks in 
the prescribed moment of time n by the fixed price K, the function / has the form 

/ ( 5 n ) = max(5n-/ iT,0). (1) 

Thus the income of the investor will be Xn - f(Sn). The strategy 7 1 , . . . , 7n is called 
a hedge, if for any sequence f 1 , . . . , £n the investor is able to meet his obligations, 
i.e. Xn—f(Sn) > 0. The minimal value of the initial capital Xo for which the hedge 
exists is called the hedging price Ch of an option. The hedging price Ch will be called 
correct (or fair), if moreover, Xn — f(Sn) = 0 for any hedge and any sequence £j. 
The correctness of the price is equivalent to the impossibility of arbitrage, i.e. of a 
risk-free premium for the investor. It was in fact proven in [2] (using some additional 
probabilistic assumptions on the sequence £,) that for case (i) the hedging price Ch 
exists and is correct. On the other hand, it is known that when the set M consists of 
more than two points, the hedging price will not be correct anymore. We shall show 
now using exclusively deterministic arguments that both for cases (i) and (ii) the 
hedge exists and is the same for both cases whenever the function / is nondecreasing 
and convex (possibly not strictly). 

When calculating prices, one usually introduces the relative capital Yk defined by 
the equation Yk = Xk/Bk- Since the sequence Bk is positive and deterministic, the 
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problem of the maximisation of the value Xn — f(Sn) is equivalent to the maximi­
sation of Yn — f(Sn)/Bn. Consider first the last step of the game. If the relative 
capital of the investor at moment n — 1 is equal to Yn_i = Xn-\/Bn-\, then his 
relative capital at the next moment will be 

Yn(7n,tn) " ^ " ^ = Yn-1 + T n ^ ^ n - P) - •-}-/(«.. S„-l). 
Dn Dn ±fn 

Therefore, it is clear that the guaranteed income (in terms of relative capital) in the 
last step can be written as 

Yn-l-1±-(Bf)(Sn-i), 

where the Bellman operator B is defined by the formula 

(Bf) (z) = -p minmax[/(*z) - 7z(S - p)]. (2) 

We suppose further the function / to be nondecreasing and convex (perhaps, not 
strictly), having in mind the main example, which corresponds to the standard 
European call option and where this assumption is satisfied. Then the maximum in 
(2) is evidently attained on the end points of M and thus 

(Bf) (z) = - minmax[/(rfz) - jz(d - p), f(uz) - yz(u - p)]. (3) 

One sees directly that for 7 > j h (resp. 7 < 7*), the first term (resp. the second) 
under max in (3) is maximal, where 

7^^,m=iM^m. (4) 

It implies that the minimum in (3) is given by 7 = j h , which yields 

(Bf)(z) = \ P ~~ d r/ ч w — P - / , ч f(uz) + Ҷf(dz) 
p \u — d 

(5) 

The mapping B is a linear operator on the space of continuous functions on the 
positive line that preserves the set of nondecreasing convex functions. Using this 
property and induction in k one gets that the guaranteed relative income of the 
investor to the moment of time n is given by the formula Yn — JBu"

1(Bn/) (SQ) and 
thus his guaranteed income is equal to 

pn(X0-(Bnf)(S0)). (6) 

The hedge strategy (the use of which guarantees him this guaranteed income) is 
r* = (7i, • •. )7n), where each j h is calculated step by step using formula (4). The 
minimal value of XQ for which this income is not negative (and which by definition 
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is the hedge price Ch of the corresponding option contract) is therefore given by the 
formula 

Ch = (Bnf)(S0). (7) 

Using (4) one easily finds for Ch the following CRR formula [2]: 

*-^£«(^Hj3rVi--'*). m 
where Ck are standard binomial coefficients. When / is defined by (1), this yields 

where the function Vk is defined by the formula 

^(«) = EC7^(l- ,)»-i f 
j=k 

the integer \i is the minimal integer k such that ukdn~kSo > K, and it is supposed 
that /i < n. 

If the investor uses his hedge strategy Th = (y%,..., 7^), then the two terms under 
max in expression (3) are equal (for each step j = 1 , . . . , n). Therefore, in the case 
(i) (when the set M consists of only two elements), if XQ = Ch, the resulting income 
(6) does not depend on the sequence f i , . . . ,£ n and vanishes always, whenever the 
investor uses his hedge strategy, i.e. the prize Ch is correct in that case (Cox-Ross-
Rubinstein theorem). 

In general case it is not so anymore. Let us give first the exact formula for the 
maximum of the possible income of the investor in the general case supposing that he 
uses his hedge strategy. Copying the previous arguments one sees that this maximal 
income is given by the formula 

Pn(X0-(B^inf)(So)), (9) 

where 

(ftnin/) (*) = \ ™W(SZ) - 7*tf - P)] • (10) 

Thus, in the case of general M, the income of the investor playing with his hedge 
strategy will consists of the sum of the guaranteed income (6) and some unpre­
dictable surplus (risk-free premium), which does not exceed the difference between 
expressions (13) and (10). Hence, a reasonable price for the option should belong to 
the interval [Cm[n,Ch] with Ch given by (7) and 

Cmm = ( - & „ / ) (Bo). (I-) 

Since the value Bmm is essentially more difficult to calculate than Bn, it may be 
useful to have some simple reasonable estimate for it. Taking £ = p in (10) yields 
(^min/) (z) -̂  P~lf(Pz) a n d therefore by induction 

(B£in/ )W<p- B / (^*) . (12) 
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Looking at the evolution of the capital Xk as at the game of the investor with 
the nature (7* and £k are their respective controls) one can say that (for the hedge 
strategy of the investor) the nature plays against the investor, when its controls £„ lie 
near the boundary [d, u] of the set M (then the investor gets his minimal guaranteed 
income (6)) and conversely, it plays for the investor, when its controls £* are in the 
middle of M, say, near p. If it is possible to estimate roughly the probability p that 
£jt would be near the boundaries of M, one can estimate the mean income of the 
investor (who uses his hedge strategy) by 

where 

pn(X0-((Bmean)
nf)(So)), 

(Bmeлnf) (z) - p(Bf) (z) + (1 - p)-f(pz) 
P 

p?-JLf(dz) + (1 - p)f(pz) + p^-Ąf(uz) 
u — а u — а 

_ 1 

~ p 

which gives for the mean price the following approximation 

(13) 

Omean = ((/5mean)n/)(5o). (14) 

Denoting by Ck the coefficients in the polynomial development 

(ei + e2 + e 3 f = __ Cjj'ef-'-'e'c',. 
i+j<k 

and using induction, one gets for (14) the following representation: 

((Bm^n)
nf)(S0) (15) 

= £ £ cs(^)~V,J'(^)V-v-'*>. 
r i+j<n x ' x ' 

For the function / of form (1), it can be rewritten as 

?E<# ( -Hpc- r f («£!)' K-WS.-K), 
where the set P is given by the formula 

p = {i > 0, j > 0 : i + j < n & ilog ^ + jlog ^ > logK - log50 - n logd} . 

2. OPTION CONTRACTS ON SEVERAL COMMON STOCKS 

Suppose now there is a number, say 7, of common stocks whose prices Sk,i G 
I,fc = 0 , 1 , . . . , satisfy the recurrent equations Sk = £J.-SJ.__, where £j take values 
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in compact sets Mi with bounds dt- and Ui respectively. The investor controls his 
capital by choosing in each moment of time Ar — 1 his portfolio consisting of j*k units 
of common stocks of the type z, the rest of the capital being laid on the risk-free 
bank account. His capital at the next time k becomes therefore 

xk = iklsl-! + ...+ikisLx+P (X*-i - T*SLI - • • • - ilsLJ. 
The premium to the buyer of the option at a fixed time n will be now f(S„,..., 5^), 
where / is a given nondecreasing convex continuous function on the positive octant 
1V+. For instance, the analog of the standard European option is given by the 
function 

f(zi,..., zj) = max(max(0, z\ — A ' i ) , . . . , max(0, zj - Kj)), (15) 

which describes the option contract that permits to the buyer to purchase one unit 
of the common stocks belonging to any type 1, . . . , I by his choice. 

To simplify formulas, we reduce ourselves to the case of two types of common 
stocks, i.e. to the case 1 = 2. Similarly to the case 1 = 1 one obtains a similar 
formula to the guaranteed relative income of the investor in the last step of the game 
starting from the relative capital Yn-i at the time n — 1, namely 

Yn-i- -^—(Bf)(S1
n-1,SL1), 

-On-1 

where the Bellman operator B has the form 

(Bf)(zuz2) = ~n min max [ / ( ^ i . ^ - T ^ i t f 1 -/>)-7 2 -2 (£2 "/>)]• (16) 

In order to give an explicit formula for this operator (similar to (5)), one should make 
additional assumptions on the function / . We say that a nondecreasing function / 
on 11+ is nice, if the expression 

f(d\zuu2z2) + f(uxzi,d2z2) - f(dizud2z2) - f(uxzuu2z2) 

is nonnegative everywhere. One easily sees for instance, that any function of the 
form f(z\yz2) = max(fi(zi), f2(z2)) is nice for any nondecreasing functions /1-/2 
and any numbers di < i/,-, i = 1,2, and in particular, function (15) is nice. Clear 
the nice functions constitute a linear space and the set of continuous nondecreasing 
convex nice functions is a convex subset in this space, which we denote NS (nice 
set). Furthermore, let 

= (UIM 2 - did2) - p(ux -di + u 2 - d2) . . 

" (u>i-di)(u2-d2) 

Lemma. If / G NS and K > 0, then 

(tf/)(zi .z 2 ) = ł 
P 

-7— j~f(uizi, d2z2) + 2-f(d1zl,u2z2) + Kf(dizi,d2z2) 
«i — «i u2 — d2 

(18) 



! Nonexpansive Maps and Option Pricing Theory 719 

and the yhl, yh2 giving minimum in (20) are equal to 

hi f(^\Zlyd2z2) - f(d1zud2z2) h2 __ f(d1zuu2z2) - f(d1zlyd2z2) 
7 ~~ ^ i ( w i - d i ) ' 7 ~~ 22(^2-^2) 

If K < 0 (and again / G -VS), then 

(Bf)(zuz2) = - ———/(cfi*i,U2*2) + ——Tf(u izud 2 z 2 ) + \K\f(uxzlyu2z2) p lui — d1 u2 — d2 

hl _ / ( t i l * 1 , t*2*2) ~ f(d\Zj, U2Z2) A 2 = f(Ul*UU2Z2) - f(uiZl,d2Z2) 

z i ( w i - d i ) ' 2 r 2 ( w 2 - d 2 ) 
I 

The p r o o f of this lemma uses only elementary manipulations. It follows that 
! the operator B preserves NS and by the same induction as in the previous section 
one proves that if the premium is defined by a function / € NS, then the hedge 
price for the option contract exists and is equal to 

Ch = (Bnf)(Sl
0,S

2). (19) 

One can write down a more explicit expression (analogous to (8)). For instance, for 
the simplest case K = 0, 

a =£±<* (•£$)" (£%f~,JVr><t».4<rk»)- <*> 
For the most important particular case, when the function / is of form (15) with 
7 = 2 formula (20) can be written in terms of the function Vk defined above (after 
formula (8)). The answer depends on the position of the integers fi and v on the 
real line, where \i (resp. v) is the minimal (resp. maximal) integer k such that 
uld^Sl > Ki (resp. u^d^Sl > K2). For instance, if 0 < v < // < n, then 

* - *K^)-«'>-"M^) 
*M3£-f)-*"-"*-'(££)-

and if 0 < /i < v < n, then 

*-**(^)-*<•*(£*) 
,cflv fu2(p-d2)\ ( p-d2\ +b0Vn-k+i I —. -J-T - K2p Vn-k+i y , 

\p(u2-d2)J \u2-d2J 

where k is the minimal integer such that 

dn
1-

kuk
1S

1
0-K1>dk

2urkS2
0-K2. 
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This formula for for Ch is similar to (8), but even if each M,- consists of only two 
points, this hedge price is not correct. As in the previous section, one can represent 
the maximal income of the investor who uses his hedge strategy by the formula 

p%Yo-(zҖ,.nЯ(Sâ,So2)) 

with 

(Bm\nf)(z\,z2) (21) 

= i min min [ / ( ^ e ^ ) - fztf1 - p) - T 2 ^ 2 - p)] 
P e'GMi £2GM2 7 i = 7 f c i 7 2 = 7 A 2 

The corresponding minimal price of the option is 

Gmin = ((~?m i„)n /)(^,50
2)- (22) 

Supposing as in the previous section that one can estimate the probability p of the 
numbers £k to be near the boundaries of the corresponding sets M,- (the case when 
this probability is different for each type of common stocks can be evidently covered 
in the same way) one gets for the mean price of the option (corresponding to the 
mean income of the investor playing with his hedge strategy) is 

Cmean = ((#mean) / ) (-->o > -->o)> (23) 

where (when supposing K = 0 as above) (Smean/) (z1 > ^2) is equal to 

(24) 

The explicit formula for (23) is similar to (12). 

i i 

P j-f(u\z\, d2z2) + (1 - p)f(pz\, pz2) + p j-f(d\z\, u2z2) 
U\ — á\ u2 — a2 

3. CONTINUOUS-TIME LIMIT 

As was shown in [2], the binomial CRR formula for option prices (8) tends to the 
Black-Sholes formula under an appropriate limit procedure. We find similar limits 
for formulas of the previous section. Following our methodology we make it in a 
simplest way ruling out all probability theory. The only "trace" of the geometric 
Brownian motion model of Black-Sholes will be the assumption (which is clearly 
more rough than the usual assumptions of the standard Black-Sholes model) that 
the logarithm of the relative growth of the stock prices is proportional to yfr for 
small intervals of time r. More exactly, if r is the time between the successive 
evaluations of common stock prices, then the bounds dj,i/,- of M,- are given by the 
formulas logti,- = (Tiy/r + HiT and logd,- = —Viy/T + HiT, where the coefficients 
fii > 0 stand for the systematic growth and the coefficients <r,- (so called volatilities) 
stand for "random oscillations". Moreover, as usual, logp is proportional to r , i.e. 
logp = TT for some constant r > 1. Let B(T) denote the corresponding operator 
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(16). Under these assumptions, the calculation of the coefficient K from (17) and 
the strategies yh from the Lemma for small r yields 

K=l_^+^+t^yT+m 
7 " = ^ ( * i , * 2 ) ( l + 0(r) , i = l , 2 . 

Suppose that the coefficient at y/r in this formula is not negative and one can 
use formula (18) for B. (In fact, the opposite assumption would lead to the same 
resulting differential equation.) Calculating the coefficients of (18) for small times 
one obtains for (BTf) (zi, z2) the expression 

1 — rт 

1 — rт 
+—7Г-

xf (c—^+^zi, e-^Sř+^z2} 

( l-(т+й£-)^+<**">) 
xf (e°^+^Tzu e-*-^+"-Tz2) 

xf (e-°^+^Tzu e^^+^z^ . 

Due to the Taylor formula, one has for any <T\, <T2: 

f(e"^+^TzU€"^+^Tz2) = )^(ZUZ2)Z\O\T 

+7;-j-{(-ii Z2)Z\<7\T + f(zuz2) + j^(zuz2)zx(aXyf? + \IXT + <J\T/2) 

fS f 

+!h~^Zl' Z2)Z2(G2 ^ + V'2T + a 2 r / 2 ) - " 

Substituting these expansions in the previous formula one sees that all terms pro­
portional to y/r vanish and therefore one can write down a differential equation for 
the function 

Fh(t, zuz2) = lim (Bn(t/n)f) (zuz2), 
n—.00 

which actually has the form 
dF 1 2 2d

2F 1 2 2d
2F 8F OF 

-w = r^jzj+r^jzj+rzidT1
+ rz*dT2 -

rF (25) 

with initial condition F(0,z\,z2) = f(z\,z2). Rewriting equation (25) in terms of 
the function R defined by the formula 

F(t, zuz2) = e"rtR(ty rt + log zuvt + \ogz2) (26) 
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yields a linear diffusion equation with constant coefficients 

дR 
дt 

_ 1 2(d2R dR\ 1 2(d2R dR\ 

-2*1\dň dpl)
 + 2<T2\dpl dpj 

It allows to write the solution of the Cauchy problem for equation (25) explicitly, 
which yields the two-dimensional version of the Black-Sholes formula for hedging 
option price in continuous time 

/

OO i»00 

/ d U l d« 2 

•OO J—oo 

xf (Si exp{ui(T1 V 7 + (r - <r2/2)t), S% exp{u2a2y/i + (r - <rf/2)0) 

x exp{-(u\ + «i)/2}. 

The same procedure for the one-dimensional model from Section 2 gives for the 
continuous version of (8) the standard Black-Sholes formula 

/

OO 

/(So exp{ucry/i + (r - <r2/2)t}) exp{-u2/2} d«, 
•OO 

which for the function / of the form (1.5) reduces (after simple manipulations) to a 
more explicit form 

Ch=So*(u1)-Ke-rt$(u2), 

where 
log(So/K) 

Wl-2 = * ( ; - * ) (Ty/t 

In its turn, formula (27) can also be rewritten in a more explicit way for the function 
/ of form (15) (with I = 2). Namely, in that case, 

Ch = ± f [ (sle-^-'^'l2 + Kxe-^e-^'2) e^'2 duxdu2 
2* J JAX{X) V ' 

+JL / / (52e-(«--*2Vt)3/2 + K2e-rte-»*l2) e-<>2 duxdu2, (28) 
2 ? r J JA2(t) V ' 

where the sets Ai(t),A2(t) are defined by the following formulae 

Ai(t) = {(111,112) : S*e*"^+< r-*' ?/ 2>* - Ki > max ( O - S g e ' ^ ^ + ^ - ' i / 2 ) 1 - Kj)} 

with j being equal to 2 for i = 1 and conversely. 
The continuous limit of the estimates (12), (14) or (23) of the option prices for 

corresponding discrete models can be found in the same way as above. For instance, 
in two dimensional case, for the function 

Fme*n(i, *l, Z2) = (tfLan/) (*11 **) = JKm (^^(t/Tl) f) (z) 



Nonexpansive Maps and Option Pricing Theory 723 

one obtains the same equation (25) but with volatilities y/p<r\, y/p<r2 instead of <T\ 
and <r2 respectively. For the continuous limit of the minimal price 

Fmn(t,zuz2) = (Bi
miJ)(zuz2) = limQ(B^n(t/n)f)(z) 

(which is therefore equal to the difference between the hedge price F^ and the maxi­
mal unpredictable surplus of an investor) one obtains by the same procedure a more 
difficult, essentially nonlinear, equation 

9F 1 2 2d
2F , 1 2 26

2F , 3F x OF _ ,onX -r- = - max s\z{-TT-s- + - max sizi-zrr + r*i * h rz2* rF. (29) 
dt 2,l€[o,(T1]

 l l bz\ 2,2e[of<73]
 2 2 dz£ 0*i dz2

 K J 

Under transformation (26) this reduces to 

dR i (d2R dR\ i /a2/? d/ev 
-T- = - max ( --r-rr - -— J + - max —r- - -r— ) , (30) 
8t 2 Meio-od \ dp\ dpi J 2 52e[o,<73] \ dp2

2 dp2J
 v ' 

which is a two-dimensional version of the equation obtained in [6] by means of 
stochastic analysis and under certain probabilistic assumptions on the evolution of 
the underlying common stocks. 

4. CONCLUSION 

Let C(X) be the space of continuous functions on some metric space X, and let D 
be a subspace of C(X). A mapping B : D i-> C(X) is said to be nonexpansive and 
homogeneous, if sup^ \Bf(x) — Bg(x)\ < supr | /(x) — g(x)\ whenever Bf and Bg are 
defined, and B(a + / ) = a + Bf for any constant a. The theory of such mappings 
in the case of finite set X, ie when C(X) = 7Zn, has natural applications in the 
study of games, discrete event systems and timed event graphs (see e.g. [1,3,5], 
since it was shown that any such mapping in TZn can be presented as the Bellman 
operator of some (stochastic) game with a value. The main problem in the study of 
nonexpansive maps is the study of the iterations Bh and its asymptotic behaviour 
as k —> oo. In the case of the mappings in 1Zn a big progress in these studies was 
achieved by means of the investigation of the corresponding "generalised eigenvalue 
problem" Bf = a + / , / G 7£n,a G 11. One sees that all three types of prices, 
C/j, Cmin, Cmean, are expressed in terms of the iterations of some nonexpansive maps, 
which act not in a finite dimensional space but in the space of continuous functions 
on the real line or on the plane. Other reasonable generalisations lead to the same 
result. For example, it was supposed above (which is a commonly used assumption) 
that the number of stock units 7, which an investor chooses in every moment of 
time, is arbitrary (no restrictions are posed, this number can even be negative). 
However, in reality, the boundaries on possible values of 7 seem to exist either due 
to the general boundary on the existing common stock units (one should suppose 
then that 7 < 7o for some fixed 70), or due to the bounds on the possibilities of an 
investor to make (friction-free) borrowing (one should suppose then the restrictions 
of the type 7* < Xk/Sk, say, when no borrowing is allowed). On the other hand, 



724 V. N. KOLOKOLTSOV 

one can omit the assumption of the friction-free exchange of the market securities. 
In all cases, one proves the existence of hedge strategies and the formula of type 
(19), (22) for the hedging or minimal price by the same arguments, and in all cases, 
the Bellman operator B is a nonexpansive homogeneous mapping on the space of 
continuous functions on some metric space. However, the formula for this B would 
be more complicated. Therefore, in order to be able to find the asymptotic formulas 
for hedging or minimal prices in various situations one needs to expand the theory 
of nonexpansive maps iterations to the infinite dimensional case. 

Concluding remarks. This paper is an improved version of the author's preprint 
[4]. As the author learried from a referee report, a deterministic deduction of the 
standard Cox-Ross-Rubinstein formula (similar to that given in Section 1) appeared 
recently in [7]. 

(Received April 8, 1998.) 
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