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CONSTRAINED STABILIZATION 
OF A DYNAMIC SYSTEM: A CASE STUDY 

F . BLANCHINI1, S . COTTERLI, G. KORUZA, S. M1ANI, R. SlAGRI 

AND L. TUBARO 

In this work we consider the problem of determining and implementing a state feedback 
stabilizing control law for a laboratory two-tank dynamic system in the presence of state and 
control constraints. We do this by exploiting the properties of the polyhedral Lyapunov 
functions, i. e. Lyapunov functions whose level surfaces are polyhedra, in view of their 
capability of providing an arbitrarily good approximation of the maximal set of attraction, 
which is the largest set of initial states which can be brought to the origin with a guaranteed 
convergence speed. 

We will first recall the basic theoretical background necessary for the scope and then we 
will report and analyze the results of the practical implementation on a two-tank laboratory 
system of a linear variable-structure and a quantized control law proposed in literature. 
Finally an heuristic procedure for the determination of a static linear gain will be presented. 

1. INTRODUCTION % 

In the practical implementat ion of s tate feedback control laws there are normally 
several aspects which the designer has to keep in consideration and which impose 
restrictions on the allowable closed loop behavior. For instance a certain robustness 
of the closed loop system is desirable if not necessary to guarantee a stable func­
tioning under different operating conditions which might be for example caused by 
effectively different set points, component obsolescence, neglected nonlinearities or 
high frequencies modes. Another issue which has surely to be taken into account is 
most often the presence of constraints on the control values and on the s ta te vari­
ables. The former usually derives from saturat ion effects of the actuators whereas 
the latter normally comes from the necessity of keeping the states in a region in 
which the linearized model represents a good approximation of the real plant or 
might even be imposed by safety considerations . 

The constrained control stabilization is by itself a challenging mat te r and in this 
context the designer can either analyze the effects of saturat ing a stabilizing control 
law or he can include the constraints in the controller requirements. If stability is the 

1 Corresponding author. 
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only matter of concern then the first approach is indeed the easiest, although this 
advantage is balanced by the extremely restricted set of initial states which can be 
asymptotically driven to the origin [9, 10], say the attraction set. Moreover if state 
constraints and uncertainties have to be considered then the first approach shows up 
its deficiencies so that the second approach appears definitely as the most preferable 
one. In this second class there are several techniques which can be followed to purse 
the desired performance specification while satisfying the imposed constraints and 
among these one of the approaches which can be used to overcome these limitations 
is that based on invariant regions [1, 2, 7, 8, 11, 12, 13, 15]. 

The key idea which lies behind this approach is that of determining a set of initial 
conditions starting from which the state evolution can be brought to the origin while 
assuring that no control and state constraint violation occur. This is quite a standard 
approach and practically amounts to determining a candidate Lyapunov function for 
the constrained system which can be made decreasing along the system trajectories 
by a proper choice of the feedback control. Of course there is a certain freedom in 
the choice of such Lyapunov functions. From the existing literature it turns out that 
the class of quadratic functions has been the most investigated one mainly due to 
the elegant and powerful results existing in this area. Although this class is well 
established and capable of furnishing simple linear control laws, it is not perfectly 
suited for constrained control synthesis problem due to its conservativity. 

For this reason in the last years several authors [2, 5, 7, 12, 13, 15] have put their 
attention on the class of polyhedral functions (say functions whose level surfaces are 
polyhedrons in Mn) and the associated polyhedral invariant sets. These functions 
have their strength in their capability of well representing linear constraints on state 
and control variables while being representable by a finite number of parameters. 

In this work we will focus on the problem of determining a state feedback stabiliz­
ing control law for a constrained dynamic laboratory system affected by structured 
memoryless uncertainties. First the solution will be given in terms of polyhedral 
Lyapunov functions and then we will discuss the issues connected with the imple­
mentation of two nonlinear control laws already proposed in literature. 

In Section 2 we will report some preliminary definitions and in the following 
section we will briefly report some known results concerning the constrained sta­
bilization of dynamic systems by means of polyhedral Lyapunov functions. Then, 
based on these results, in Section 4 we will focus our attention on the determination 
of stabilizing control laws whose application to the system under consideration will 
be reported in Section 5. Finally in Section 6 we will report some final considerations 
and the directions for further research in this area. 

Schematically, the outline of the present paper will be the following: 
- Definitions 
- Brief summary of theoretical results on constrained control via polyhedral 

invariant sets. 
- Description of the linear variable structure and discontinuous control. 
- Determination of a polyhedral Lyapunov function and implementation of the 

cited control laws on a two-tank laboratory system. 
- Analysis of the results and final considerations. 
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2. DEFINITIONS 

We will denote with conv(S) the convex hull of a set S C Rn. We will call C-set 
a closed and convex set containing the origin as an interior point. Given a C-set 
P C Rn we will denote with \P = {y = \x} x E P} and with dP its border. 
A C-set P will be said symmetric if x E P implies — x E P. In this work we will 
be dealing with symmetric polyhedral C-sets which can be represented in terms of 
their delimiting planes as 

P = {x E Rn : \F(x\ < 1, i = 1 , . . . , *}, 

(each Fi represents an n-dimensional row vector) as well as by their dual represen­
tation 

P = conv(^i , . . . , Vk) = conv(V), 

in terms of vertex set V = {v\ vn .. . t ; r }, which will be denoted by vert{P}. For 
these sets it is possible to introduce a compact notation using component-wise vector 
inequalities with which the set expression becomes 

P = {x : \Fx\< 1} 

or, using the dual notation, 

P = {x = Va, a E R\ a > 0, | |a||i < 1}, 

where F is an s x n full column rank matrix having rows Fi and V is the full row rank 
matrix having the vertices vi as column defined above, and I = [1 . . . 1]T represents 
an s-dirnensional unitary column vector. 

It is known that every symmetric C-set P induces a norm \-/p(-) on Rn defined 
as 

Vp(x) = min{A : x E AP}. 

For a polyhedral set P = {x : \Fx\ < 1} the above expression can be simplified as 

\&P(x) = max|Ft-a:| 
i 

and in this case we will denote by I(x) the set of indexes for which \Fix\ is maximum 

I(x) = {i: \Fix\ = 9P(x)}. (1) 

3. SET-INDUCED LYAPUNOV FUNCTIONS 

In this section we will recall some of the results concerning polyhedral Lyapunov 
functions and their use in the stabilization of uncertain linear dynamic time-invariant 
systems in the presence of control and, possibly, state constraints. Consider a 
continuous-time uncertain dynamic system of the form 

x(t) = A(w) x(t) + B(w) u(t) (2) 
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where the state and control values are constrained to belong to the C-sets X C Mn 

and U C 1RP for every t > 0 and the matrices A(w) and B(w) belong to the polytopes 
of matrices 

p p 
A(w) = YlwiA*> B(w) = Y^wiB{' 

» = 1 i = l 

The uncertainty w(t) is assumed to be piecewise continuous and such that 

w e W = < w : ^2 wi = 1. wi > 0 \ • (3) 

For this system we want to provide a stabilizing control law and a region of 
initial states starting from which the constraints are never violated for the closed 
loop system's motion for every possible uncertainty sequence, in other words we 
want to provide a domain of attraction whose definition is now reported. 

Definition 3.1. [4] The C-set S C X is a domain of attraction (with speed of 
convergence /3) for system (2) if there exists /? > 0 such that for all XQ E S there 
exists a piecewise continuous control function u(-) : HZ —* U such that the trajectory 
x(t) with initial condition x(0) = XQ corresponding to u(t) is such that 

*s(* (0)<*"^*s(* (0) ) (4) 

for every possible iv(t) as in (3). If we take /? = 0, the set S is simply said to be 
U-invariant [7]. 

If we temporarily assume that there is no uncertainty then it is immediate that 
a first solution can be obtained by selecting a stabilizing linear static state feedback 
control law u = Kx and then picking as set of initial states the ellipsoidal region 
XQ = {x : xTPx < d}} where P is the solution of the Lyapunov equation of the 
closed loop system and d > 0 is the maximal value such that XQ C (XK H X), 
being XK — {x : Kx £ U}. 'Unfortunately an inappropriate choice of the gain Ii 
might result in a very small or either empty if uncertainties are considered) set of 
attraction whereas we are normally interested in determining, given the constraint 
sets X and U, the maximal set of initial states which can be asymptotically taken 
to the origin. 

One of the possible ways to proceed is that of trying to maximize the set of 
attraction as done in [4]. The results contained in the above reference allow to 
provide an arbitrarily close approximation of the maximal domain of attraction by 
exploiting the relation existing between the original system (2) and its discrete-time 
approximating system, the Euler Approximating System (EAS), which is defined as 

x(k + 1) = [I + TA(W)] x(k) + TB(W) u(k), T > 0. (5) 

For this system, in the presence of control and state constraints, it is possible 
to give a definition of domain attraction which is almost identical to the one given 
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in the continuous-time case apart from the replacement of the constant /? > 0 with 
0 < A < 1 and the decreasing condition (4) which becomes 

* s (*(*)) <A** s ( . - (0 ) ) . (6) 

After these necessary definitions we are now able to summarize the main results 
concerning the constrained control of continuous-time dynamic systems. 

1. If there exists a C-set S which is a domain of attraction for (2) with a speed 
of convergence /? > 0 then for all / ? '< /? there exists r > 0 such that the set S 
is contractive for the EAS with A' = 1 — r/3f. 

2. If, for some 0 < A < 1, there exists a A-contractive C-set P for the EAS (5) 
then P is a domain of attraction for (2) with /? = ^-^. Moreover, there exists 
a Lipschitz feedback control function <J> : P —• U assuring condition (4). 

3. For every ei, €2 > 0 the set Sp (the largest domain of attraction in X for 
(2) with speed of convergence /? > 0) can always be approximated with a 
polyhedral C-set P such that (1 — €\)Sp C P C X and such that P is a 
domain of attraction for (2) with speed of convergence /?, with (3 — €2 < /? < /?. 
Moreover the control can be expressed in a feedback form u = <$(#) where $ 
is a Lipschitz function on P. 

4. It is possible to determine such polyhedral functions by means of a numerical 
procedure which can be applied to the EAS of (2). 

In simpler words the meaning of the above results is the following: for a given 
/? > 0 we can get an arbitrarily close approximation of the largest domain of attraction 
(with speed of convergence /?) for (2) by applying the numerical procedure suggested 
in [4] to the EAS (5) for an appropriate choice of the parameter r which finally 
depends mainly on how close we want this approximation to be. 

4. LINEAR VARIABLE STRUCTURE AND DISCONTINUOUS CONTROL 
LAW 

Once a polyhedral approximation of the domain of attraction for (2) with a certain 
speed of convergence has been found, a feedback control law has to be provided. In 
this section we focus our attention on the determination of two stabilizing control 
laws whose practical implementation will be presented in the next section. Let then 

P={x:\Fix\<\, t = l , . . . , s } 

be the contractive set which resulted from applying the mentioned procedure to the 
EAS of (2). To each vertex V{ of P remains associated a control value U( (actually 
provided by the procedure itself). The set P can be naturally partitioned in sim-
plicial sectors Sh each delimited by the origin and n vertices Vhx .. .Vhn which lay 
on the same face ex = 1 delimiting the set P (hence the row vector c is either F, 
or —Fi, for some i) [7]. The partition can be made in such a way that two of these 
sectors have intersection with empty interior and the union of all the sectors is P. 
Thus every x G P belongs necessarily to at least one of these sectors so that it is 
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possible to define a mapping h = h(x) from the state space to the set of the sectors 
indexes, where h(x) is the index of a sector containing x. Now, if to each of these 
sectors we associate the gain Kh defined as 

Kh = [uhl ...uhn][vhl ...VhJ-1 

where the matrix [vhx • • -Vhn] is invertible by construction, we have that the linear 
variable structure control law defined as 

uvs(x) = Kh^x 

stabilizes the system and guarantees condition (4) for every initial state x(0) £ P. 
Moreover it can be shown [3] that this control law is continuous. 

It is quite obvious that such partition, to reduce the computational load of the 
proposed control law, should be computed offline so that on-line the algorithm has 
just to check to which sector the state belongs. If the contractive set under consid­
eration is simplicial, say every face contains exactly n vertices, the determination of 
the partition is immediate and the required map is indeed h(x) = I(x) as defined 
in (1). Unfortunately the construction of the maximal A-contractive set most often 
generates a non-simplicial set P C JRn (say a set whose delimiting planes contain 
more than n vertices, see [6]) hence such a partition results in being an essential 
point for the practical implementation of the controller (apart obviously from the 
two dimensional case where every polyhedron is simplicial). One possible way to de­
rive the proceeding partition is by means of a 'stretching' procedure which, starting 
from the original polyhedron P generates a supporting polyhedron P [6] which is 
nothing but a polyhedral representation of the mentioned partition. We skip the de­
scription of such procedure for the sake of brevity (the interested readers can contact 
the corresponding author for the Fortran code almost in its final form). 

The major drawback of computing the auxiliary polytope and using its expression 
in the on-line implementation of the control law is unfortunately given by the high 
number of simplicial sectors of the supporting polyhedron. To avoid the burdens 
deriving from this the authors have recently proposed a discontinuous control law 
applicable to single input continuous-time systems (the extension to the multi-input 
case is under development) and which relies solely on the contractive region P and 
which is now reported. 

Suppose a /^-contractive symmetric region P = {x : IF^I < 1} for a single input 
continuous-time system has been found and that the control constraint C-set can 
be written as U = [wmin>wmax]' To derive this new control law we rewrite the 
symmetric polyhedron P = \x : \Fx\ < 1} in its unsymmetric form, say P = {x : 
[FT — FT]Tx < l j = {x : Fx < 1} and, in analogy with the symmetric case, we 
define I(x) = {i : F^x = max, FJX}. We now define the mapping 

I(x) = min i (7) 

which associates (arbitrarily) to every x 6 P a single index corresponding to a sector 
of P and for every x we consider the following min-max problem: 

v = min max Fт(x\(A(w) X + B(w) u) 
uЄUwЄW ПX)K V У V / / 
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and let uj<x\ be the control value for which the minimum is reached. The right hand 
side of the last equation is the derivative of the given polyhedral function along the 
system trajectories (apart from proper subspaces of Mn) and, being linear in all its 
terms, it is clear that Uj^ is either umin or Umax (or the value 0 if there is more 
than one minimizer). In this way the control law u(x) = w/(x) remains defined on 
the whole state space (this is actually the main reason for the introduction of the 
mapping I(x)) and can be proved [4] to be such that 

* P ( * ) < e-piVP(x(0)) 

for every initial state x(0) € P. 
As a final comment we point out that the cited control law is suitable to handle 

the case of quantized control devices (see [4]). 

5. APPLICATION OF THE CONTROL TO THE TWO TANK SYSTEM 

The system we considered is a laboratory two-tank plant whose structure is that 
reported in the scheme in Figure 1. 

PI 

-ll 
гO VID2 

P2 
Tl P12 

fO 

T2 
< > <н 0 E V2 

VIDI 

F i g . 1. Plant schematic representation. 

It is formed by the electric pump EP whose job is that of supplying water to the 
two parallel pipes P I and P2 whose flow can be either 0 or Umax and is regulated by 
two on-off electro-valves EV1 and EV2 which are commanded by the signals coming 
from the digital board BRD1 (not reported in Figure 1). The two parallel pipes 
bring water to the first tank T l which is connected, through P12, to an identical 
tank T2 positioned at a lower level. From T2 the water flows out to the recirculation 
basin BA. The two identical variable inductance devices VID1 and VID2, together 
with a demodulating circuit in BRD1, allow the computer to acquire the water levels 
of the two tanks. These levels are the state variables of the system. 
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If we denote by h\ and /12 the water levels of the two tanks and we choose as 
linearization point the steady state value [h\o ^2o]T corresponding to the constant 
input UQ = .02985 and we set x\(t) = h\(t) — hio(t) and X2(t) = /i2(0 — ^2o(0> w e 

get a linearized time-invariant system whose state and input matrix A and B are 

2\jhio —h2 

Ot 

2V hl0"~h20 

2\jhio — h20 
q £ _ 

2vhio —h20 2vh20 .1 
я = 

and the parameters entering the above matrix are a = .08409, /? = .04711, /iio = 
.5274, /120 = .4014. To keep into account the effects due to 1 lie non linear part of 
the system we considered the uncertain system described by 

A(t,v) = - Í 
Í •it + v) 

B{t,n) = 

with f = .118 ± .05 and r] = .038 ± .01. The state and control constraint sets 
we considered are respectively given by X = {[x\ x-^ : |a?i| < .1,1-E2I < -1} and 
U = {—Umax, {/max}, where Umax = .02985. Starting from X we computed the 
maximal .2-contractive region, by using the corresponding EAS with r = 1 and 
A = .8. The region representation in terms of planes is given by P = {x : \Fx\ < 1} 
where 

Fig. 2. The maximal ^-contractive region, with /?=0.2. 
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ғ = 

1.000 0.000 

-0.1299 -1.727 

-0.2842 -1.871 

-0.4429 -1.932 

-0.5833 -1.905 

-0.6903 -1.806 

-0.8258 -1.671 

-0.8716 -1.557 

-0.9236 -1.414 

-0.9295 -1.317 

and it is ordered in a way such that each row i of F delimits the sector i according 
to Figure 2. 

This region is formed by 20 symmetric sectors and (as it is always the case in two 
dimensions) is simplicial. Hence the computation of the sector gains is immediate 
and results in 10 different gains which are reported in the matrix K 

к = 

0.2839 -0.3003 

-1.035 -1.449 

0.0855 -0.5613 

0.1329 -0.5796 

0.1750 -0.5713 

0.2071 -0.5419 

0.2477 -0.5012 

0.2614 -0.4672 

0.2771 -0.4243 

0.2788 -0.3964 

which again is ordered in a way such that the zth row of K corresponds to the fth 
sector of P. The result of the implementation of the variable structure control law 
u(x) = KJ(x^x is reported in Figure 3. 

We let the reader note that in this simple experiment we didn't force the initial 
state to belong to the set P. This can be immediately seen from the fact that the 
control saturates for the first 20 seconds. After this period the system is maintained 
inside the region and converges asymptotically to the steady state value (the origin 
of the linearized system) with the assigned contractivity speed. 

For this same plant we also implemented the discontinuous control law but, as one 
can see from the experimental results in Figure 4, due to the extremely low sampling 
frequency (1 Hz) the system exhibits a limit cycle thus not converging to the origin 
(this is anyway in accordance with the theory of sliding modes, see [14]). Although 
for two dimensional systems the computational load associated to the discontinuous 
control law is essentially the same of the linear variable structure control and is given 
by the on-line determination of the sector to which the state belongs through (7), we 
stress once again that for systems of higher dimensions this is not the case since the 
ratio between the number of facets delimiting the auxiliary simplicial polyhedron 
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and that of the "natural" contractive polyhedron grows exponentially. 

SYSTEM CONTROL 
0 . 7 - -

O.C-

O.S-

0.4 

o.з 

0.2 

O o
o o o o o o o o o o o o o 

On On On 

Off Off Off 

Pump Ul U2 

f f f I I • > •—I t t t I — 1 ) 1 1 — . . . . . . I—I t t t • I 
Manual 

Auto 

l . ^ . . > . . f . . . ) . . . ) . . 4 . . > . . < . . ^ . . > . . | . . . > . . t . . ^ . 4 . . . t . . 4 - - - ) > ) > < < > | | ) > <-

Reci Stop 

o h l = 0.563 

x Һ 2 * = 0.442 

Fig. 3. Variable structure control. 

SYSTEM CONTROL 
0 . 7 -

O.б 

O .S 

0 . 4 -

O.З 

'"Ó o- ö Ű" 

On On On 

Off Off Off 
Pump U l U2 

. 2 T f f f н — I I I t—I I I I I t I t I I I I—I—I—(—I—I I I I—I—I 
Manual 

Auto 

J..4-4-4-4 -ł--4-4-Ч--4--ł -4-4-Ч--4"ł"H"4--4--4-4--4-4 -.-4-4--. -4-4 -4-4--. 
Rec| Stop 

h l = 0.522 

Һ 2 * = 0.440 

Fig. 4. Bang-Bang control system evolution. 

Thus on one side we have an efficient control law whose implementation might 
be unrealistic for high dimensional systems whereas the discontinuous one provides 
reasonably good results if the sampling time is short enough. To try to reduce 
the control complexity while maintaining a sufficiently large domain of attraction 
the authors have considered an heuristic procedure which consists in considering 
a simple linear control law whose gain is obtained by averaging the gains of the 
previously reported variable structure control law. Although not yet supported 
by any theoretical interpretation (currently under research), in most of the cases 
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this way of proceeding seems to furnish a good compromise between the controller 
complexity and the dimension of the domain of attraction. 

In our case the average gain is given by k = [ — .2984 — .5792 ] and the maximal 
/5-contractive region, with /? -= .2, of the closed loop system included in the non-
saturation set X fl Xu, where Xu = {x : \kx\ < .3}, resulted in the internal region 
in Figure 5. This set is obviously smaller than the largest 0.2-contractive domain of 
attraction reported in Figure 2 and its existence assures a speed of convergence )3 -=-
0.2 for the closed-loop system with the obtained linear control. We also computed 
the largest invariant set of the closed loop system when the above linear control is 
applied (to this aim it is sufficient to apply the cited Fortran code to the system 
without input and Ac\(w) -= A(w) + B */v), which resulted in the external region in 
Figure 5. This set represents the set of all the initial states starting from which the 
closed-loop system trajectories will never get out of the state and control constraints 
sets (i.e. outside the set X D Xu)-

Fig. 5. The largest /^-contractive and invariant sets with u = kx. 

6. CONCLUDING REMARKS 

In this work we have considered an experimental laboratory plant on which two set 
induced nonlinear control laws have been implemented. First we have recalled some 
known results concerning the constrained stabilization of the class of systems under 
consideration. Then the application of the proposed techniques to the laboratory 
control system has been presented together with some heuristic considerations re­
garding the possibility of deriving a simple linear control law. This gain can be 
obtained by averaging those of the various sectors concurring in the determination 
of the nonlinear control law and in most of the case the authors have seen that this 
results in a quite good closed loop behavior. 
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Some directions for further research in this area concern the possibility of reducing 
the complexity of the proposed controllers as well as that of solving output feedback 
stabilization. 

(Received April 8, 1998.) 
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