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A CONSERVATIVE SPECTRAL ELEMENT METHOD 
FOR THE APPROXIMATION OF COMPRESSIBLE 
FLUID FLOW 

KELLY BLACK 

A method to approximate the Euler equations is presented. The method is a multi-
domain approximation, and a variational form of the Euler equations is found by making 
use of the divergence theorem. The method is similar to that of the Discontinuous-Galerkin 
method of Cockburn and Shu, but the implementation is constructed through a spectral, 
multi-domain approach. The method is introduced and is shown to be a conservative 
scheme. A numerical example is given for the expanding flow around a point source as a 
comparison with the method proposed by Kopriva. 

1. INTRODUCTION 

4 multi-domain, spectral method is used to approximate a variational form of the 
Euler equations. The computational domain is first subdivided into non-overlapping 
subdomains. By making use of the divergence theorem, the divergence of the flux 
terms are not calculated. Instead, an area integral of the flux terms is approximated 
and the boundary integral of the flux approximated making use of upwinding and 
Gauss quadratures. The method presented here is similar to that of Cockburn and 
Shu [2, 3, 4]. (The scheme has also been extended to the viscous case [1].) 

A relatively small number of multi-domain high-order spectral approximations 
have been developed to approximate compressible flow. Among them are the those 
proposed by Hesthaven [8, 9, 10] and Kopriva [11, 12]. The method proposed by Hes-
thaven is a penalty method employing a Chebychev collocation scheme. A penalty 
method is employed in which the penalty is enforced on either the viscous or the 
convective terms depending on the characteristics of the convective operator. 

The method proposed by Kopriva [11, 12] is also a Chebychev collocation scheme. 
Rather than make use of a penalty method, the approximation is constructed on 
the Chebychev-Gauss abscissa, and the fluxes on the interior are determined by 
converting between three different grids. In one step, the fluxes are converted to a 
Gauss/Gauss-Lobatto grid in the x and {/-directions and the flux in one direction is 
averaged across the interface of adjacent subdomains. In the following step, the flux 
on the remaining faces is approximated in a similar manner. 
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The scheme proposed here is constructed from a variational method. It has many 
of the advantages of the other methods, and like the method proposed by Kopriva, 
the subdomain interfaces are calculated on the Gauss abscissa which effectively ig­
nores the corners of the subdomains and offers more flexibility in how the domain is 
decomposed into its subdomains. The principle advantage of the method proposed 
here is the relative simplicity of the algorithm. Their is no grid conversion, and the 
fluxes at the interfaces are treated like Riemann problems and standard flux splitting 
schemes can be used to approximate the interface fluxes. 

To introduce the method, a brief overview of the discontinuous Galerkin method 
is presented followed by an introduction into the spectral element implementation of 
the method. The method is shown to be conservative, and two numerical examples 
are given. The first is for the flow in an expanding nozzle which is given for a 
comparison to the method proposed by Kopriva [11]. The second is for flow around 
a circular cylinder. 

2. DISCONTINUOUS GALERKIN METHOD 

The basic idea is to express the equation to be approximated as the divergence of 
fluxes and make use of the divergence theorem to express the discretization with area 
integrals and surface integrals. We will take advantage of the scheme to approximate 
the Euler equations of gas dynamics, 

щ + V-{F,G)=0, (1) 

U = 

P 
pu 
pv 
pe 

pu pv 
p + pu2 

puv 
G = 

puv 
p + pv2 

u(pe + p) _ v(pe + p) 
ғ = 

where p is the density, u is the velocity in the ^-direction, v is the velocity in the 
y-direction, and e is the specific energy. The pressure, p, is related by the specific 
and kinetic energy, p = (7 — 1) (pe — | (r/ 2 + v2)), and 7 = 1.4 (a perfect gas is 
assumed). 

The computational domain is separated into subdomains, f2fc. The union of 
the subdomains, Ufcfifc, is the full computational domain, and the subdomains only 
overlap on their boundaries. The approximation of the state is found through a linear 
combination of basis functions, $ij(x,y), within each subdomain. For example, the 
approximation for the density, 

Nx Ny 

PN(X,У) = J21Ľ P Ф ( x ' y ) ' (2) 
i = 0 j = 0 
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is determined by finding the coefficients, pij. The approximation of the state is 
denoted uN. Since a collocation type spectral element method is implemented, 
the approximation of the flux is found on the collocation points and is denoted 
(FN, GN). 

The approximation for the Euler equations is enforced through a variational 
method, and on each individual subdomain, £}*., a variational form is defined: 

-uN <j)mn(x,y)dxdy (3) 
J Jл nkdt 

- / / (FN,GN) • V<f)mn(x,y)dxdy 
J Jnk 

+ / (FN,GN) n <f)mn(x,y)ds = 0. 
JdCtk 

The area integrals are approximated by making use of the Legendre-Gauss quadra­
ture, and the approximation of each integral only requires interior points from within 
each subdomain. The surface integral is approximated by finding the state on either 
side of each subdomain and making use of a van Leer splitting scheme to approximate 
the flux for the corresponding Riemann problem. 

2.1. Spectral elements 

The method proposed is essentially a spectral-element approximation using the dis­
continuous Galerkin method. The basis functions are found from the Lagrange poly­
nomial interpolating the abscissa of the Legendre-Gauss quadrature. The method 
does not make use of the Legendre-Gauss-Lobatto quadrature. Unlike other spec­
tral-element methods, it is a disadvantage to use points on the boundaries of the 
subdomains to approximate the area integral in equation (3). 

The Legendre-Gauss quadrature includes the abscissa, r\i, and the weights, W{, 
for i = 0 . . . N and can be used to calculate the integral of a polynomial up to a 
given degree, 2N, 

Ĺ 
N 

П2/v(rç)dт7 = ^2П2N(VІ)WІ. (4) 
i=Ö '-1 

The basis functions are defined to be the Lagrange interpolants on the abscissa, 

ipm(rji) = 6mi, 0 < i, m < N, (5) 

and each basis function is a polynomial of a given degree, N. An important identity 
which will be used later is that the Lagrange polynomials satisfy 

Iv 

X>m(*) = 1- (6) 
m=0 

The basis functions for the two dimensional approximation are found from a 
tensor product of the interpolants: 

4>mn(x,y) = 1pm(x)\pn(y). (7) 
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The approximation is constructed from a linear combination of the Lagrange inter-
polants. For example, the approximation of the density is 

Nx Ny 

pN = ^^PijУifàУjІУ)* 
i=0j=0 

(8) 

where the unknowns are the coefficients pij. Because the basis functions are the 
Lagrange interpolants, the problem is the same as finding the value of the approxi­
mation on the grid points. 

2.2. I m p l e m e n t a t i o n 

The approximation space within a given subdomain is the space of polynomials up to 
a given degree, and the approximation space is the space of piecewise polynomials. 
However, the basis functions defined in equation (7) are inadequate for anything 
other than the square (77, £) G [— 1,1] x [— 1,1]. 

To overcome this restriction each subdomain is mapped to a square domain, and 
the approximation is found using the mapping (see Figure 1). Each subdomain must 
be constructed so that it can be smoothly mapped to a square. The numerical map­
ping is found using a Gordon-Hall transformation [6]. In particular, each subdomain 
is mapped to the square via the transformation 

x = x(Z,r}), y = y(Z,rj)-

Q, 

Çi 1 

11 

Fig. 

x=x(Ç,Г|) 

1. Curvilinear mapping from a computational subdomain to a square, 
(*,?)€ [-1,1] x [-1,1]. 

The variational form of the equation, equation (3), is defined on the original 
subdomain, f2fc, and the numerical approximation is found on the transformed sub-
domain, fifc, and the Jacobian of the transformation, 

JN 
дx дx 

oy дy 
дrj дţ 

(9) 

is required. It is assumed that the mapping is a polynomial of the same degree as the 
approximation, and the Jacobian evaluated at a specific point, (r]i,€j), is denoted 
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(J/v)-.. The discrete divergence operator, V/v, must also be defined with respect to 
the coordinate transformation where 

Vjv (rpm(v)MO) = j -
ć_/_ _____ 

дx дx [ Ůn(r))tn(t)*m(TlWn(S) ] • (™) JAT 

On a given subdomain, Q*, the inner product defined in equation (3) is 

/ / Í:UN rPm(r))4>n(0JN dr,dt (11) 
Jf=-l jn=-l dt 

= 1 1 (FN,GN)-VNtym(ri)ii>n(Z))jNdTidZ 

- I (FN,GN) n i>m(x)tpn(y)ds. 
Jdnk 

The left hand side of this equation is approximated using the quadrature which 
yields 

Nx Ny d 

Yl!L,~Qi (U")ij Mm) ^ntf^JijWiWj, (12) 
i=0 >=0 

where J,j is the Jacobian evaluated at (r]i,^j). The basis functions are the Lagrange 
interpolants, and the left hand side reduces to 

r\ 

fc(UN)mnJmnWmWn ( 1 3 ) 

(the mass matrix is diagonal). Likewise, the area integral on the right hand side of 
equation (11) is found through the use of equation (10) and the quadrature. 

The surface integral in equation (11) is approximated by finding the values of 
the numerical flux on the boundaries, which coincide with the abscissa from the 
Legendre-Gauss quadrature. The flux is calculated on the interior points of a given 
domain, the state at the boundaries is found. For example, the density on the 
bottom boundary, £ = — 1, is calculated via 

NX Ny Ny 

PN(sm,-l) = 2 _ > ^ P y ^ » ' ( 5 m ) ^ i ( - l ) = ^2Pmj1>j(-l)' 
i = 0 j = 0 j=0 

Once the state on the boundaries is defined, the flux is calculated using a flux-
splitting method [13, 7]. The flux is defined on the abscissa of the Legendre-Gauss 
quadrature on the boundaries, and the boundary integral can be easily approxi­
mated. The abscissa do not include the corners which reduces the constraints on 
the decomposition into the subdomains. For example, there are no restrictions on 
having more than four subdomains meet at one corner. 

The fluxes are calculated at the boundaries are the same on either side of a 
subdomain interface, and the resulting scheme is conservative. In particular, the rate 
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of change of the conserved variable in one domain, £2* can be found by integrating 
over the whole subdomain, 

/ / Q7UNdxdy = ~ QluNJNdr)dC 

This can be expressed as a sum of the basis functions since the Lagrange interpolants 
are used (from equation (6), 

Nx Ny 

E E j У QÏ»NФmШП(OJN dndÇ. (14) 
Hx ^y 

zzjJn 
m=0n=0J Jilk 

The integral is approximated by making use of the quadrature which is 

Nx Ny Nx Ny , Q V 

J2 J2Y11L [diUN) $mto)$n(ti)(jN)iiwiwi' (15) 
m=0-n=0 t=0 j=0 ^ ' 

Equation (14) is the left hand side of equation (11) and is the sum over all of 
the basis functions and represents the rate of change of the conserved quantities. It 
will be shown that this sum is zero by examining the area integral given in the right 
hand side of equation (11). The corresponding sum of the discrete approximations 
on the right hand side of equation (11) is 

Nx Ny Nx Ni 

m = 0 n = 0 t = 0 ; = 0 """" %~U 

The sum can be broken into one part that only includes the flux in the ^-direction, 
Fjsr, and a part that only includes the flux in the y-direction, G/y. We will concen­
trate on the flux in the x-direction and show that its contribution sums to zero: 

£ £ £ £ ( * > ) . ; (#.foO&to) (T£) -*«>{*)%>&) (T£) ) "i»i, 
m = 0 n = 0 t = 0 j = 0 \ \UC> / ij \ u I/ ij) 

where f^M is the derivative of the mapping evaluated at the point (fy-.fj). 

The sums can be divided into two parts which expand to 

Hx ^У Nx Ny 

É á É á (-**)« *»(•») UM (%£) «.«* 
m=0 n=0 ť=0 j = 0 \ U S / tj 

Nx Ny Nx Ny / ň v 

m = 0 n = 0 ť = 0 j = 0 ^ '' *J 
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and the sums can be rearranged, 

E E E ((-^y&to) (U) »**>i (E*»(•»))) (17) 
n=0i=0i=0 \ \U(*/ij \ m = 0 / / 

- E E E ((̂ x-i *»(*) (S) ^ ( E fcto) 
m=0 t = O j = 0 \ \ u l / i j \n=0 j 

The derivative within the inner sums can be factored to give 

^v Nx Ny / 

ĚEÉÍ(^).i^(^)(|) ^ f r E ^ ) ) ) (18) 
n=0i=0i=0 \ \ui>'ii \ / m = 0 / V=t,i/ 

Nx Nx Ny ( I Ny \ 

E E E (*»«*.(•) ( ! ) «»-. 5E*»«> 
m=0 :=0 i=0 \ \u'l/ ij l ^ n=0 / 

£=£; 

The inner sum is a sum of the Lagrange polynomials and can be reduced to 

Nv Nx Ny 

ІШF"ҺШШM>)) 
-ЩHM£),,Ч>))-

which is zero (from equation (6)). The sums for the flux in the y-direction also sum 
to zero which can be shown in the same manner. 

An upwinding scheme is used to calculate the fluxes at the boundaries, and the 
flux on either side of a subdomain interface is identical. The only difference be­
tween the surface integrals on the interface between two adjacent subdomains is the 
sign of the normal vector. When the contributions from the boundary integrals are 
added up over the computational domain, the result sums to zero over the subdo­
main interfaces leaving only the boundary integrals. The change in the conserved 
variables given in equation (15) depends only on the boundaries, and the scheme is 
conservative. 

3. NUMERICS 

Two numerical trials are examined. The first is the flow within an expanding nozzle 
and the second is for the flow around a circular cylinder. The first example, the 
nozzle flow, is used as a comparison to the numerical trials of Kopriva [11, 12]. 
The second flow is used to demonstrate the method in a domain that is not simply 
connected. 
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3.1. Nozzle flow 

The domain for the first flow, the nozzle flow, is taken to coincide with an expanding 
flow from a point source (see Figure 4). The top and bottom sides of the domain are 
constructed to coincide with streamlines of the flow. The level curves of the density, 
mach number, and pressure are circles centered at the origin. The true solution for 
the steady, irrotational flow can be calculated through a Hodograph transformation 
[5]. 

L2 Errors - Steady Stat Nozzl 

8 9 10 11 12 
Polynomials Degree Withing Each Subdomain 

Fig . 2. L2 errors for the flow within an expanding nozzle. The regular grid is denoted 
with x, the bulged grid a -+-. and the wedged grid an o. 

The flow for the nozzle is chosen so that it offers a direct comparison to the 
example given by Kopriva [11]. The velocity field is chosen so that the mach number 
at the lower left hand corner is 0.6. The numerical trials, including the geometry, 
domain decomposition, and boundaries, were chosen based on the trials presented 
by Kopriva [11], and the domain is subdivided into four curvilinear subdomains. 
The steady state solution was found using a second order Runga-Kutta method and 
time marching until the approximation reached a steady state. 

Numerical trials were run for three different domain partitions (see Figure 4). 
The partitions were chosen to be the same as those chosen by Kopriva [12]. The L2-
errors for the approximation are shown in Figures 2 and 3. The rates of convergence 
are slightly better than that reported by Kopriva [11] using a staggered grid (see 
Figure 3). However, a larger reduction in accuracy for the deformed grids was found 
(see Figure 2). Like the results of Kopriva, the rate of convergence for the "Bulged" 
grid is higher than for the "Regular" grid. 
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Fig. 3. Comparison between I? accuracies of the staggered grid approximation and the 

discontinuous-Galerkin approximation. (Staggered grid results provided by David 

Kopriva.) 

91 
Regular Gr id Bulging Grid Wedged Grid 

Fig. 4. Mesh used for approximation of flow in an expanding nozzle. The mesh shown is 

for the Legendre-Gauss abscissa on four subdomains. 
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3.2. Cylinder Flow 

The second set of trials is for the approximation of a flow around a circular cylinder. 
The parameters used for all of these trials is given in Table 1. Here two different 
trials were run. A view of the mesh is given in Figure 4. (This is not the view of 
the whole mesh but of only part of the mesh.) A close-up view of the mesh is given 
in Figure 6. Because the Gauss quadrature is used rather than the Gauss-Lobatto, 
the close-up view demonstrates how the grid points do not extend to the edge of the 
subdomains. 

Table 1. Parameters used in the numerical simulation 

of flow around a circular cylinder. 

Inlet Height: 

Cylinder Radius: 

Mach # : 

Temperature: 

Density: 

Polynomial Degree: 

Scheme: 

1 m 

0.05 m 

0.2 

300 K 

1.2 kg/m3 

12 

Second Order Runga-Kutta, 

At= 10" 4 . 

Illllllł HIIIIIIIII 
l l l l l l l l l l l l l l l l l l l l 
l l l l l l l l l l l l l l l l l l l l 

l l l l l l l l llllllllllllllllllllll I IIIПII l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l I l l l l l l l l l l 
llllllll llllllllllllllllllllll lllllllll llllllllll llllllllll lllllllllll IIIIIIIIІIIHIIIIIIIII llllllllll 
••••••IIiiiiвiaiiiiiiiiшiiиiiiiiiiii шiiaiiii шiaiiiii iiiaiвмiiiiiiiмiaiiiiiiiiaiiiiiii !•••••••«• 

Fig. 5. Partial view of the mesh for flow around a circular cylinder. 

The first trial was started using a symmetric initial condition. The initial con­
dition that was used came from steady-state incompressible flow around a cylinder. 
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This trial was used to insure that the implementation was consistent with other re­

sults and to check that the flow remained symmetric. The level curves of the density 

and mach numbers can be found in Figures 7 and 8. 

Fig. 6. Close-up view of the mesh for flow around a circular cylinder. 

Fig. 7. Density after 5,000 time steps for symmetric initial condition. 

/ 

) / O ) 
ґ ҐTW^ 

( I < (77?. '^\\ 

VV 
\ V ^ 

s^l^УÍl 
JJ J 

ШУ))X\^ 

f \ 
Fig. 8. Mach number after 5,000 time steps for symmetric initial condition. 



144 K. BLACK 

The second trial was run for a nonsymmetric initial condition. In this second 
trial the initial condition was based on the steady-state incompressible flow around 
a circular cylinder. However, the velocity in the y direction in the first quadrant 
(with respect to the center of the cylinder) was taken to be the negative of the true 
velocity. The numerical trial was then run to examine the steady state of this new 
flow. 

Fig. 9. Density after 200,000 time steps for non-symmetric initial condition. 

/ \ 

Fig. 10. Mach number after 200,000 time steps for non-symmetric initial condition. 

The small value for the time step used in these problems was chosen to reduce 
errors associated with the time stepping. This was done in order to more closely 
examine the properties of the spatial approximation. Numerical experiments have 
been conducted with varying time steps. No theoretical results have been found yet, 
but the CFL condition of the scheme appears to be consistent with those given by 
Hesthaven [10, 8]. 
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4. 'CONCLUSIONS 

A spectral element approximation for the Euler equations describing inviscid com­
pressible flow is given. The method is similar to the discontinuous Galerkin method. 
The computat ional domain is subdivided into separate subdomains, and a high-order 
polynomial approximation is constructed within each subdomain. 

The variational form and the use of the Legendre-Gauss quadrature allow for an 
high-order approximation, and the influence between subdomains is accomplished 
through a flux splitting scheme on the subdomain interfaces. The scheme is con­
servative. Moreover, the numerical results are similar to thos presented by Kopriva 
[11, 12]. The convergence rates are slightly faster, but the accuracy of the method 
is reduced for deformed subdomains. 

The principal advantage of the scheme is in its simplicity. While Kopriva's scheme 
requires the translation of the conserved variables over three different grids, only 
one grid is used for the discontinuous-Galerkin scheme, and the scheme is easier 
to implement . Moreover, the use of only one grid reduces the operation count. 
The 0(N3) operation of translating to the different grids is not required for the 
discontinuous-Galerkin scheme. 
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