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A SIMPLEX TRAINED NEURAL NETWORK-BASED 
ARCHITECTURE FOR SENSOR FUSION AND 
TRACKING OF TARGET MANEUVERS1 

YEE CHIN WONG AND MALUR K. SUNDARESHAN 

One of the major applications for which neural network-based methods are being suc­
cessfully employed is in the design of intelligent integrated processing architectures that 
efficiently implement sensor fusion operations. In this paper we shall present a novel scheme 
for developing fused decisions for surveillance and tracking in typical multi-sensor environ­
ments characterized by the disparity in the data streams arriving from various sensors. 
This scheme employs an integration of a multilayer neural network trained with features 
extracted from the multi-sensor data and a Kalman filter in order to permit reliable track­
ing of maneuvering targets, and provides an intelligent way of implementing an overall 
nonlinear tracking filter without any attendant increases in computational complexity. A 
particular focus is given to optimizing the neural network architecture and the learning 
strategy which are particularly critical to develop the capabilities required for tracking of 
target maneuvers. Towards these goals, a network growing scheme and a simplex algorithm 
that seeks the global minimum of the training error are presented. To provide validation of 
these methods, results of several tracking experiments involving targets executing complex 
maneuvers in noisy and clutter environments are presented. 

1. INTRODUCTION 

A variety of sensing devices ranging from radar systems to lasers and optical imag­
ing systems are presently being developed for surveillance and tracking operations. 
The limitations of using a single sensor in these operations, such as limited accuracy 
and lack of robustness, have motivated the trend towards designing surveillance and 
tracking systems with multiple sensors deployed on the same platform (an airborne or 
spaceborne reconnaissance platform or a tactical missile seeker, for instance) which 
can provide large amounts of useful data to detect, track, and identify targets of 
interest. However, current surveillance and tracking algorithms usually use informa­
tion from only one sensor (such as Track-While-Scan (TWS) radar) or attempt to 
combine information from different sensors in an ad hoc manner. While it is intuitive 
that using additional data available can result in improved detection, classification 

1A version of this paper was presented at the 5th Mediterranean Conference on Control and 
Systems held in Paphos (Cyprus) on June 21-23, 1997. 



614 Y. C WONG AND M. SUNDARESHAN 

and track maintenance performance, attempting to include this data efficiently will 
require novel processing methods which need to be carefully tailored due to the 
disparate forms of data collected. A major limitation precluding the integration of 
additional data, perhaps of a disparate form from the main data form being used, 
is the resulting complexity of the needed processing. It is well known that while 
simple linear processing algorithms employing a Kalman filter for target state esti­
mation can be synthesized for processing radar data, inclusion of a different form of 
data (image or image-format data, for instance) will require a nonlinear processing 
method (such as an Extended Kalman filtering algorithm) [18]. The enormous pro­
cessing complexity this may introduce could render the implementation impractical 
due to the real-time processing requirements underlying the tracking function and 
the need to keep up with the rapid target motions during the maneuvers. Conse­
quently, an intelligent architecture that facilitates successful fusion of the diverse 
data forms to result in improved tracking performance in the face of complex target 
maneuvers is highly desirable. 

Our interest in this work centers on the development of fusion architectures that 
can integrate features extracted from sensor measurements and assist in efficiently 
performing target surveillance and tracking, since such architectures will not only 
permit fusion of data from sensors which could have diverse characteristics but also 
will present interesting and nontrivial questions to be investigated. The two major 
steps in the design of such architectures are, (i) feature extraction and (ii) feature 
integration. In particular, an architecture (as depicted in Figure 1) that subjects 
the data stream coming from each sensor to a feature extraction operation (per­
haps after some preprocessing to align, order and/or reformat the data as desired), 
which is in turn followed by a feature integration operation to arrive at a fused deci­
sion for surveillance and tracking, constitutes the backbone for intelligent integrated 
processing of multisensor data in these applications. 

SsnsoM I » Preprocessing 
Factura 
Extraction 

Sansor2 Preprocesslng Feature 
Extraction 

Ssnsor Preprocessing Feature 
ExtractJon 

Featura 
Integгaťon 

Fusep* Decision 
For Surveillance 
And Tracking 

Fig. 1. Backbone processing architecture for intelligent integrated processing of 
multisensor data in surveillance and tracking. 

While there exist a number of mathematical tools to perform feature extraction 
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(such as vector quantization, Karhunen- Loeve expansion, and wavelet decomposi­
tion), for addressing the second issue, viz. integration of features extracted from 
diverse data forms, an attractive framework is provided by neural networks. The 
ability to efficiently fuse information of different forms is one of the major capa­
bilities of trained neural networks that is being recognized only in recent times. 
While development of innovative adaptive control algorithms for nonlinear dynami­
cal plants which attempt to exploit these capabilities [11, 17] seems to be more pop­
ular, a corresponding development of nonlinear signal processing algorithms using 
these approaches, particularly for applications in target surveillance and guidance 
operations, does not appear to have received a similar level of attention. Princi­
pal requirements in these applications are real-time processing capability to deal 
with the high rate data streams coming in and the ability to rapidly develop ap­
propriate outputs for target detection, recognition and tracking with high degree 
of accuracy and reliability. Since neural networks with appropriate training can be 
endowed with the abilities to identify simultaneously multiple correspondences ex­
isting between presented data elements and further to utilize these correspondences 
to produce good global solutions, they seem quite attractive in the development of 
architectures that meet the requirements stated above. In particular, the primary 
motivation for employing neural networks in these applications comes from the ef­
ficiency with which features extracted from different sensor measurements can be 
utilized as inputs for developing the needed estimates on target location and target 
motion. For implementation in maneuver tracking applications, the pattern clas­
sification capability of a neural network can hence be used to process the features 
extracted from different data streams (from diverse sensors), and hence provides a 
mechanism to simply integrate new and additional data to a tracking filter originally 
designed to process data from a primary tracking sensor as shown in Figure 2. 
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Fig. 2. Feature integration by neural network for sensor fusion in maneuver tracking 
applications. 

Some of our recent studies [1, 15, 16] have helped obtaining an understanding 
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of the ability of neural networks to fuse information from different sensors to assist 
in simple implementations of target detection and tracking algorithms. The pri­
mary focus in this paper is on developing an optimized neural network architecture 
and an efficient training scheme that endows the neural network the capability to 
perform fusion of target measurements in order to reliably track target maneuvers 
executed in severe clutter and noise environments. Towards these goals, we shall 
introduce a network growing scheme and implementation of a simplex optimization 
algorithm for training a multilayer neural network. Unlike the more commonly used 
approach of error backpropagation [9], the simplex optimization approach enables 
one to more efficiently seek the global optimum in the training task, and conse­
quently permits the trained network to process a set of features extracted from the 
sensor measurements in order to rapidly make the necessary association with cer­
tain critical parameters representative of the target maneuver. A target tracking 
system architecture is developed by integrating the trained neural network with a 
Kalman filter that performs the target state estimation function. An illustration of 
the performance of the tracking scheme is given by conducting a few simulation ex­
periments involving representative target tracking scenarios with target maneuvers 
executed in noise and clutter environments. Since at the most fundamental level the 
operation of a multilayer neural network can be explained in terms of approximating 
a nonlinear input-output map, the present tracking architecture that comprises of 
an integration of a Kalman filter with a trained neural network in essence provides 
an intelligent way of implementing an overall/nonlinear tracking filter without any 
increases in computational complexities. 

2. NEURAL NETWORK-BASED ARCHITECTURE FOR SENSOR FUSION 
AND TARGET TRACKING 

The basic building blocks of the tracking scheme shown in Figure 3 are the neural 
network and the Kalman filter. The neural network accepts as inputs a set of features 
extracted from the sensor data and is trained to output estimates of a set of maneuver 
parameters characterizing the target maneuver that is represented in the feature set. 
Since features abstracted from the measurements obtained from dissimilar sensors 
are typically used as inputs to the neural network, the processing of data by the 
network implements a feature integration process and thus performs sensor fusion. 
The neural network outputs are fed to a Kalman filter which implements a recursive 
state estimation algorithm based on a linear model of the target dynamics. For the 
sake of illustration of specific details regarding the features extracted and the training 
conducted with these features, Figure 3 depicts a fusion environment comprising of 
a range radar and a Doppler radar. It is to be emphasized that this is only for 
simplicity in discussing the details and will not limit the type of sensor that may be 
brought in to provide target measurements. 

The tracking scheme integrates the trained neural network with a Kalman filter 
designed based on the target dynamical model 

x(k + 1) = Fx(k) + Gu(k) + v(k) (1) 
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where xT(k) = [x(k) x(k) y(k) y(k)] is the state vector, ^lT(k) = [ux(k)uy(k)] is the 
input vector consisting of the acceleration components in the x and y directions, and 
v(k) is the process noise. The matrices F and G are given by 

ғ = 

and where T is the time interval between two consecutive measurements. Assuming 
that the measurement provides the position of the target along the two coordinates 
(obtained from using a range radar, for instance), we have the observation sequence 

z(k) = H x(k) + u(k) (2) 

where z(k) is the measurement vector, u(k) is the measurement noise and 
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Both v(k) and u(k) are assumed to be white Gaussian noise sequences with zero 
means and covariances Q and R respectively. The two processes v(k) and uj(k) are 
assumed to be uncorrected. 
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F i g . 3 . A neural network-based fusion architecture for tracking target maneuvers. 

The received measurements u(k), k = 1,2,..., are processed by a Kalman filter 
to generate the minimum MSE estimates by implementing the recursive algorithm 
briefly described in the following steps: 

(i) One-step Prediction 

x(ib|fc - 1) = Fx(k - l|fc - 1) + Gu(k - 1). (3) 
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(ii) Filtering 
x(k\k) = x(k\k -1) + K(k) [z(k) - Hx(k\k - 1)]. (4) 

(iii) Gain Computation 

K(k) = P(k\k - 1) HT[H P(k\k - 1) HT + R]-\ (5) 

(iv) Covariance Updating 

P(k\k-1) = FP(k-l\k-l)FT + GQGT (6) 

P(k\k) = [I-K(k)H]P(k\k- 1). (7) 

It may be noted from step (ii) that the filter processes the innovation sequence 
{z( l) , .5(2) , . . . ,z(*) , . . .} where 

z(k) = z(k) - H x(k\k - 1), 4 = 1 , 2 , . . . (8) 

Thus, with a primary tracking sensor (such as a TWS radar, as shown in Figure 3) 
providing the required data, the Kalman filter will satisfactorily filter out the noise 
and permits a reliable tracking of target. 

When the target is not maneuvering (i.e., when u(k) = 0), the mean of the 
innovation sequence is zero. However, when the target begins to maneuver (i.e., 
when u(k) ^ (0), the mean of tildez(k) is no longer zero and can be utilized to 
detect maneuver. Appropriate features extracted from the sensor data can hence 
be processed to obtain estimates of the maneuver to facilitate the Kalman filter to 
continue to track the target reliably even when it is maneuvering. In the architecture 
depicted in Figure 3, this function is implemented by a multilayer feedforward neural 
network. 

Training of the neural network for providing maneuver estimates is implemented 
with three features extracted from the measured data. Two of these features v\(k) 
and v2(k) are obtained from the measurements of the range radar (a TWS radar, for 
illustration) and the other feature v$(k) is obtained from the measurements from the 
Doppler radar (as shown in Figure 3). More specifically, the signal is constructed by 
normalizing the two components of the innovation data with respect to the covariance 
as 

Vl(k) = Zx^ + Zx^ (9) 

where z(k) = [zx(k) zy(k)]T defined in (8), and Sxx(k) and Syy(k) are the diagonal 
elements of the covariance matrix 

S(k) = H P(k\k - 1) HT + R 

which is used for the Kalman filter gain computation in (5). Since the generation 
of innovation process requires both the measured data from TWS radar and the 
state estimate developed from Kalman filter, the box entitled "Feature Extraction" 
in Figure 3 has two input lines - one from the radar and the other from the output 



A Simplex Trained Neural Network-Based Architecture... 619 

of the Kalman filter. Signal V2(k) is the change in the heading estimate computed 
as 

v2(k) + avr(k) - aLT(k - 1) (10) 

where ajjr(k) and aur(k — 1) are the heading estimates computed by the method of 
least triangles [8] from using three past data points. Finally, the third input feature 
V3(k) is extracted from Doppler radar and is computed as the change is variance, 
i.e., 

«3(*)=4-[ /d(*)- /d(t- l ) ] (11) 
Id 

where fd(i) = L.. provides a measure of the radial velocity, R(i)) at instant i (A 

denotes the wavelength of the transmitted wave) and <r? , variance of the Doppler 
shift. 

Performance evaluation studies conducted earlier [15, 16] provide ample evidence 
that the three features contain adequate information to train the network to provide 
reasonably accurate maneuver estimates when the target maneuvers involve longi­
tudinal accelerations of arbitrary magnitudes. This performance has been tested in 
several tracking scenarios comprising of various degrees of clutter and noise. Fur­
thermore, the resulting performance levels have been shown to compare favorably 
with some classical maneuver tracking schemes [16]. 

3. OPTIMIZATION OF NEURAL NETWORK ARCHITECTURE 
AND TRAINING 

3.1. Neural network training by Simplex algorithm 

Perhaps the most significant characteristic that enables a neural network to serve 
as a useful computational device is its learning capability. Implementation of an 
appropriately tailored learning algorithm, i.e. a rule for adjustment of the network 
parameters (specifically the interconnection weights) can endow the network the 
ability to develop the needed structure to result in a corresponding desired compu­
tation. 

A number of alternate procedures exist for training a neural network with the 
available data and different training algorithms usually yield different sets of inter­
connection weights. While the error back-propagation approach is perhaps the most 
popular approach [9] for training multilayer neural networks, it has a few shortcom­
ings as well. The backpropagation approach, being a gradient-based search algo­
rithm, is sensitive to the initial starting point (i.e. preliminary selection of weights 
to start the algorithm) and has the tendency to converge to a local minimum. This 
is generally undesirable since it implies that the knowledge acquired by the network 
is not optimal. To counter this problem, modified backpropagation algorithms have 
been developed which include a momentum term that can kick the parameters out 
of sub-optimal solutions. However, with these algorithms one has to fiddle around 
with the momentum term and hope that, with the selected starting point, a globally 
optimal solution can be reached. In general, there is no guarantee of achieving a 
global optimum. 
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In our quest to improve the efficiency of the neural network learning, which we 
believe is critical in equipping the network with the knowledge required for reli­
ably recognizing complex target maneuvers, we employ a training scheme based on 
classical simplex optimization approach [14]. For achieving some reduction in the 
overall training complexity, the algorithm is executed by splitting the 3-layer neural 
network into two portions - a linear portion and a nonlinear portion. The connec­
tions between the input layer and the hidden layer form the nonlinear portion, while 
the connections between the hidden layer and the output layer constitute the linear 
portion. The simplex optimization method is used to find the optimal weights in the 
nonlinear portion, while a linear least squares minimization is used to determine the 
optimal weights in the linear portion of the network [10]. For implementation in the 
present context, the algorithm can be designed with two distinct stopping criteria. 
The search for the weights in a specified network structure can be terminated either 
when the size of the simplex is smaller than a prespecified threshold or the number 
of iterations performed exceeds a preset threshold. 

Figure 4 illustrates how the simplex algorithm converges to an optimal solution. 
The simplex is initialized by selecting a set of N + 1 points in the TV-dimensional 
weight vector of dimension IV). This selection is made by randomly assigning all 
weight values within the bounds VVmax and Wm\n. In Figure 4 is shown an illustrative 
case of 4 simplex points (for a problem with 3 dimensional vectors). The well known 
simplex evolution strategy [14] is then executed, which involves determining the 
point where the mean square error (MSE) (for optimization of an error functional 
formulated as the criterion for training) is the largest and computing the centroid of 
the remaining simplex points. A new simplex point is then created by an expansion 
or contraction operation which involves joining the centroid computed to the simplex 
point with the highest MSE by an invisible line and locating an expansion point or a 
contraction point on this line as shown in Figure 5. The highest MSE point is then 
replaced by the newly generated point to form the new simplex on which the set of 
operations is repeated. This strategy of evolving the simplex is repeated until one 
of the termination criteria stated earlier is reached. 

As described by Hsu et al [10], implementing the simplex algorithm described 
above with multiple restart operation (i.e. reinitializing the simplex and executing 
the algorithm on the new simplex points) has global search property and hence 
prevents the training procedure to be trapped by local minima of the error function. 
Furthermore, as discussed in [7], multiple restarts of the simplex search each time a 
convergence to a small cluster is attained, guarantees that the procedure will find a 
globally optimal solution with probability approaching 1.0. 

As noted before, the efficiency of the neural network learning depends critically 
on the generation of training vectors used as inputs to the neural network. In the 
present application of training the network to recognize target maneuvers, two of 
the three input features are developed from the innovation data, which is in turn 
constructed from the TWS radar measurements and the Kalman filter outputs. Con­
sequently, network training cannot be conducted in isolation and must be performed 
in conjunction with the Kalman filter in an architectural arrangement shown in Fig­
ure 3. A difficulty in the training vector generation however comes from observing 
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that the neural network needs the target s ta te estimation from the Kalman filter in 
order to be trained, whereas in order to generate a correct target state est imate the 
Kalman filter needs the maneuver parameters to be estimated by the neural network. 
To overcome this problem and to execute an implementable training procedure, an 
iterative scheme shown in Figure 6a can be used for generation of training da ta . In 
this scheme, the Kalman filter first provides a s ta te estimate without including the 
maneuver made by the target ( i .e . by setting u = 0 in the target dynamical model 
given by equation (1)). This s ta te est imate, which is evidently inaccurate, is used 
to generate the feature vectors needed by the neural network to train. The Kalman 
filter is next updated with the true maneuver parameters so tha t an accurate s tate 
estimate can be obtained. This process is repeated iteratively until all the training 
data are generated. 

> \ = > New simplex point 

O => Simplex points 

H => Simplex point with highest RMSE 

^ => Centroid of remaining simplex points (blue) 

$ => Local minimal 

\ => Global minimal 

i => Invisible line 

Fig. 4 . Convergence of Simplex algorithm to a global solution. 
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Fig. 5. Illustration of expansion and contraction in the Simplex algorithm. 
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3.2. Network growing for optimal size 

The accuracy with which a neural network models a certain process characterized by 
an input-output mapping or recognizes a set of input patterns depends on a number 
factors, the principal one being the size of the hidden layer (or layers in a network 
which is configured with more than three layers). Only general guidelines however 
exist for arriving at the optimal architecture to be used in a given application. The 
more complex the input-output mapping to be approximated, the larger is the set 
of hidden nodes required, which determines the network size. Employing a larger 
sized network than necessary has its own drawbacks in that while such a network 
can learn the input-output mapping presented in the training data, it will attempt 
to memorize the training patterns used and has poor generalization abilities, i.e. 
provide the correct functional representation for input-output data not included in 
the training pattern set [9]. 

In arriving at a network architecture of optimal size for a given application, two 
approaches are generally possible. One is to start with a larger number of hidden 
nodes than necessary and later prune the network by removing redundant nodes. 
The other is to start with a small sized network initially (with the least number 
of hidden nodes, for instance) and to progressively grow until a desired degree of 
accuracy in modeling is achieved. Both of these approaches have been used by 
various groups of researchers in tailoring an optimal sized network for the specific 
application at hand. 

In our present application in training the network to recognize target maneuvers, 
we have chosen to use the latter approach for a number of reasons, the principal 
ones being the following. First of all, the task of training here is a significant one 
due to the number of feature vectors that may be used for obtaining an adequate 
representation of complex maneuvers. Consequently, the former approach of starting 
with a network size larger than required can result in unnecessary increased training 
complexity, with increased learning times and cost particularly at the initial stages. 
Secondly, and more importantly, a systematic network growing approach can be 
built into the overall training algorithm with a convergence condition (stopping rule) 
being declared when the optimal values of the weights in the correct sized network 
are obtained. 

Such a network growing approach can be integrated with the simplex algorithm 
described in the last section resulting in an overall training scheme depicted by 
the flow-chart shown in Figure 6b. For implementation in estimation of maneuver 
parameters, one starts with the simplest network architecture with one node in the 
hidden layer, while the input layer comprises of a number of nodes equal to the 
number of features used for training and the output layer comprises of a number of 
nodes equal to the number of maneuver parameters to be estimated (which are in 
turn input to the Kalman filter algorithm). The simplex algorithm is then executed 
to find the best weights for this structure. Once the weights are found, the MSE 
for this structure is computed and stored together with its weights. The network is 
then allowed to grow its hidden layer by adding one node and the simplex algorithm 
is executed once again with the same training data as before. Once the weights for 
the new structure are found, the MSE for this structure is computed and compared 
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to the stored MSE for the previous structure. If the new MSE is smaller than the 
previously stored MSE by a preset value, the new structure together with its weights 
and MSE are stored replacing the previous values. The network is then grown by 
an additional hidden node and the entire process is repeated. If at any stage of this 
process, the new MSE is worse than the previously stored MSE or is not better by 
a preset value, then an optimal structure is claimed to have been found and the 
training is terminated. 

A multiple restart of the simplex search can be executed as a part of the overall 
training process in order to ensure attaining a global minimum of the objective 
function and hence optimize the training efficiently. The various steps underlying 
the training process are depicted in the flow-chart given in Figure 6b. 
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Fig. 6b. Flow-chart depicting the training scheme. 
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4. TRACKING PERFORMANCE OF NEURAL NETWORK-BASED SCHEME 

To perform validation studies that confirm the efficiency of the training scheme used, 
several tracking experiments were conducted. The following parameter values were 
employed for the simulations: 

(i) Radar scan period = 10 seconds; 

(ii) Standard deviation of range = 100 meters; 

(iii) Standard deviation of angle = 0.0003 radian; 

(iv) Doppler radar wavelength = 8.57x 10""3 meter. 

In order to evaluate any possible degradation in tracking performance due to clutter, 
simulations of both clutterless and clutter environments were made. The primary 
difference between the two cases is the use of a standard Kalman filter for the 
clutterless environment, whereas a Probabilistic Data Association Filter (PDAF) is 
used to replace this in scenarios that include clutter [2]. For simulations of tracking 
experiments in clutter environments, the following parameter values were used: 

(i) Spatial clutter density = 0.0009; 

(ii) Validation gate size = 16 (Chi-square distribution); 

(iii) Probability of detection = 0.9; 

(iv) Probability of target inside gate = 0.9997. 

It may be noted that the choice of the validation gate corresponds to a rather heavy 
clutter environment. 

Exper iment 1. In this experiment, the target is initially detected at the location 
(1.5xl03m, 1.5xl03m) in cartesian coordinates and its flight path is at an angle 
45° with respect to the x-axis. The target travels at a constant velocity of 250 m/sec 
during the first three scans and is radially moving away from the radar. The ma­
neuver consists of a sharp acceleration of 5m/sec2 performed at the 4th scan (i.e. 
t = 40sec) and lasting for 1 scan period (i.e. 10sec), after which esumed until the 
20th scan. 

The tracking performance under these conditions is shown in Figures 7a-c. The 
plots of the position errors in the x- and y- directions shown in Figure 7a indicate 
that the corrected state estimates are fairly accurate and the rather large error 
at the onset of the maneuver (at the 4th scan) is well corrected. Although the 
position error plots show a trend for increasing error, it must be noted that the 
target is moving away form the radar. Thus, although the absolute value of the 
error appears to increase, the relative error is quite small. For instance, at the end 
of the trajectory (20th scan) the target is at the location (2.18xl03m, 2.18xl03m) 
and the relative error at this instant is only 0.01%. The apparent divergence in the 
position is also partly due to the occurrence of a false alarm as can be seen from 
the acceleration plots in Figure 7c. The true prediction of the target acceleration 
during the maneuver by the neural network deserves a particular note. 
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Experiment 2. This experiment is similar to Experiment 1 except that the tar­
get now moves in a clutter region which extends between the 10th and the 20th 
scans. The target flying with an initial velocity of 250m/sec executes at the 4th 
scan a maneuver comprising of 5m/sec2 acceleration for 1 scan period, as before. 
The tracking performance delivered by the neural network-based tracking scheme is 
shown in Figures 8a -c The position error and velocity error, shown in Figures 8a 
and 8b, indicate a very satisfactory tracking performance and the acceleration plots 
in Figure 8c indicate that the target maneuver is estimated very accurately. 

Experiment 3. The primary goal in this experiment was to evaluate the tracking 
performance under a combination of maneuvers executed by the target in quick 
succession. With the target initially located at (1 .5xl03m, 1 .5xl03m) and moving 
at a constant velocity of 250 m/sec while maintaining 45° heading, a combination 
of two maneuvers were executed. The first maneuver occurs at the 6th scan (i.e. 
t = 60 sec) and consists of a 5m/sec2 acceleration which lasts for 1 scan period. 
The second maneuver consisting of a 10m/sec2 acceleration occurs at the 9th scan 
(i.e. t = 90sec) and lasts for 2 scan periods. After the second maneuver, the target 
resumes a constant velocity flight. To further provide a challenging envir 09 was 
added at the on set of the set maneuver and was maintained until the end of the 
experiment. 

The plots depicting the resulting performance are given in Figures 9a-c It can 
be seen from Figure 9c that the maneuvers executed by the target are detected and 
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estimated accurately within one sampling period . The position and velocity error 
plots in Figures 9a and 9b indicate tha t the corrected position and velocity esti­
mates are very close to the true target position and velocity, while significant errors 
can result due to the maneuvers when left uncorrected (see the "uncorrected error" 
entries in Figures 9a and 9b) . It is rather well known tha t when a combination 
of different maneuvers as in the present experiment takes place, classical tracking 
methods (such as those based on an Input Estimation Approach [5] deliver accept­
able performance due to the fact tha t compensation for the first maneuver may not 
be completed before the second maneuver gets initiated [16]. The reason for this 
shortcoming is tha t these methods require one to go back a certain number of sam­
pling periods (depending on the window length selected for the computat ion of the 
so called "propagation mat r ix" [3]) in order to compute the correction amounts to 
be applied . 

E x p e r i m e n t 4 . To evaluate the tracking performance when the target executes a 
combination of different maneuvers with negligible time interval separation between 
them, in this experiment we let the target perform a 10m/sec 2 acceleration at the 
beginning of the 5th scan and lasting only half a scan period. This was then followed 
by a 2 0 m / s e c 2 acceleration during the 6th scan and lasting for one scan period. 
The target then resumes a constant velocity flight after the s erformance under 
these conditions is shown in Figures lOa-c, which demonstrate the capability of the 
neural network to est imate reliably the different maneuvers even in this exceedingly 
challenging scenario. 
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5. CONCLUSIONS 

The details of a neural network-based tracking architecture, which successfully inte­
grates a neural network trained with feature vectors derived from sensor measure­
ments with a simple Kalman filter algorithm, have been presented in this paper. 
The performance evaluation studies, some of which are reported here, have indi­
cated that this architecture is capable of yielding specific tracking algorithms that 
deliver a reliable tracking performance despite the complexity of the environments 
(complex maneuvers, high degree of noise and clutter, etc.) in which tracking is 
required. A principal advantage of the present approach that should be underscored 
is its capability to utilize measurements from a diverse set of sensors for improved 
tracking. This function of sensor fusion is accomplished by the feature integration 
performed by the neural network which efficiently combines the different sets of 
features extracted from the data streams coming from the various sensors. 

Since the features extracted from measured data are used for training the neural 
network to estimate the parameters characterizing the target maneuver, the perfor­
mance of the target tracking scheme critically depe vectors. If a more complete set 
of features that efficiently code the relevant information about the maneuver can 
be abstracted from the measurements, a better learning of the maneuver character­
istics can be obtained by the neural network. In particular, a more mathematical 
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approach for feature extraction can result in a systematic development of the feature 
vectors from data collected by different types of sensors deployed in the surveillance 
and tracking environment. Our continuing work is hence focussing on the task of 
improved feature extraction process. 

(Received April 8, 1998.) 
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