
Kybernetika

Paolo Alessandro; Elena de Santis
Scope and generalization of the theory of linearly constrained linear regulator

Kybernetika, Vol. 35 (1999), No. 6, [707]--720

Persistent URL: http://dml.cz/dmlcz/135320

Terms of use:
© Institute of Information Theory and Automation AS CR, 1999

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/135320
http://project.dml.cz


K Y B E R N E T I K A — VOLUME 3 5 ( 1 9 9 9 ) , NUMBER 6, P A G E S 70 7 - 7 2 0 

SCOPE AND GENERALIZATIONS OF THE THEORY 
OF LINEARLY CONSTRAINED LINEAR REGULATOR 

PAOLO D'ALESSANDRO AND ELENA D E SANTIS 

A previous paper by the same authors presented a general theory solving (finite hori­
zon) feasibility and optimization problems for linear dynamic discrete-time systems with 
polyhedral constraints. We derived necessary and sufficient conditions for the existence 
of solutions without assuming any restrictive hypothesis. For the solvable cases we also 
provided the inequative feedback dynamic system, that generates by forward recursion all 
and nothing but the feasible (or optimal, according to the cases) solutions. This is what we 
call a dynamic (or automatic) solution. The crucial tool for the development of the theory 
was the conical approach to linear programming, illustrated in detail in a recent book by 
the first author. Here we extend this theory in two different directions. The first consists 
in generalizations for more complex constraint structures. We carry out two cases of mixed 
input state constraints, yielding the dynamic solution for both of them. The second case is 
particularly interesting because it appears at first sight hopeless, but, again, resort to the 
conical approach provides the key to overcome the difficulty. The second direction consists 
in evaluating the possibility of obtaining at least one solution to problems in the present 
class, by means of linear, instead of inequative, feedback. We illustrate three mechanisms 
that exclude any linear solution. In the first the linear feedback cannot handle cases where 
the origin is in the constraining set for the state. In the second the linear feedback lacks the 
initial condition independence of the inequative solution. In the third the linear feedback 
cannot control the geometric multiplicity of eigenvalues of the system, and this prevents 
stabilization, when the constraint structure is such that we cannot allow the state to con­
verge to the origin. These results clearly strengthen the significance and relevance of the 
theory of linear (optimal) regulator. 

1. INTRODUCTION 

The literature on constrained systems is rather broad. We cite e.g. the papers [1] 
and the references therein and the paper [5], where the problem of stabilizing a lin­
ear discrete time system under combined input and state constraints was addressed. 
In [2] we presented a general theory solving (finite horizon) feasibility and optimiza­
tion problems for constrained linear dynamic discrete-time systems. The assumed 
constraints and functionals were linear. The general time-varying system and con­
straint case was dealt with. We derived necessary and sufficient conditions for the 
existence of solutions without assuming any restrictive hypotheses. For the solvable 
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case we also derived the structure of inequative feedback, which, coupled with the 
given system, generates all and nothing but the feasible (or optimal according to the 
cases) solutions. This is what we call a dynamic (and automatic) solution. 

This theory parallels that of the quadratic regulator and fills a gap in dynamic 
optimization, which in all textbooks starts from the quadratic instead of the linear 
case. Crucial to our results was the machinery of the conical approach to linear 
programming presented in [3]. 

In the present paper we make more definite the contours of the theory in terms of 
generalizations and significance. More specifically we address two important ques­
tions. Are those considered in [2] the only cases that can be solved providing at the 
same time a dynamic solution? Notice in this respect that the condition of providing 
a dynamic solution is essential, because we know that any formulable finite horizon 
linear case can be solved statically within the spaces of time-functions signals. This 
fact is trivial and we do not need to dwell on an illustration. 

The second question is: can we solve the problems addressed in [2], using a linear 
instead of inequative feedback? Notice that this approach necessarily implies to 
give up the set of all solutions because the solution of the feedback system becomes 
unique. Thus this drawback could be accepted only in trade of a numerically more 
simple solution. 

We solve here these two problems in a significant, albeit not systematic, manner. 
For the first question we show that we are able to derive dynamic and complete 
solutions for two cases of mixed constraints. For the second question we produce 
three examples that show that the linear feedback solution does not exist in general. 

The significance of the results we presents goes way beyond answering the above 
two questions. In the first case we show that the machinery in [3] is powerful 
enough to generate dynamic solutions for mixed constraints, where they look at first 
sight impossible. Moreover the structure of these dynamic solutions contains some 
novelties with respect to the case of separate input and state constraints. In the 
second case we show that the power of the inequative feedback goes way beyond 
that of linear feedback to solve cases that are precluded this latter. Thus it is 
not a simple matter of one solution versus all the solutions. In fact, to cite just a 
relevant example, we propose important control problems, that cannot be solved via 
eigenvalue assignment by linear feedback, because linear feedback has no control on 
multiplicity of eigenvalues. We show that these same problems are easily solved by 
inequative feedback. 

The paper is organized as follows: in the first part of Section 2 we recall and 
generalize to the case of input constraints the results in [2]. The main new results 
which answer our first question are in Subsection 2.1. In Section 3, examples are 
offered to answer our second question. We will expand a little on the conceptual 
content of our results in the conclusion. 

2. GENERALIZATIONS PRESERVING DYNAMIC SOLUTIONS 

In this session we will explore more general regulator problems, that still allow to 
derive a dynamical solution like those introduced in [2]. 
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For simplicity we will consider the only feasibility. The extension to optimiza­
tion follows easily along the lines illustrated in [2], We initiate recalling briefly the 
derivation and structure of the regulator, but, unlike [2], we make reference to time 
invariant systems and constraints. This hypothesis simplifies to some extent no­
tations and, at the same time evidences where, how and what time-variances are 
generated by the solution mechanism. Our exposition goes as directly as possible to 
the point, since formal statements in theorem-proof paradigm can be found in [2]. 

Thus consider the time invariant dynamic system 

x(t + l) = Ax(t) + Bu(t) (1) 

y(t + l) = Cx(t + \), t>0 

with time-invariant state constraints 

Wx(t) < M, 0 < t < T or x(t) G D. (2) 

We assume for the present purposes a given initial state x(0) = x. In [2] we 
defined St, 0 < / < T (the set of admissible states at time t) to be the set of all 
states x, for which there exists at least one input steering the system from x at time t 
to states at t +1, t + 2,..., T, that satisfy the constraint at the corresponding instant 
of time. The system is feasible if and only if So is non-void and x(0) = x € So. 

At each time t, St is the set of states x that satisfy the constraint: 

Ax + Bue St+i r\D = Et+i 

which defines the backward in time recursion for the sets of admissible states, with 
initial (or final, if we look to time orientation) condition ET = D = {x : W x < 
M}. Notice that, although we considered an entirely stationary case (both system's 
equation and constraints are stationary), the actual nature of the problem is time-
varying since the Et's pose a time-varying constraint. For reasons that will be 
evident shortly, it is convenient to write W = WT and M = MT. Substituting for 
x(T) in the expression of ET: 

WT(Ax(T - 1) + Bu(T - 1)) < MT 

whence: 
WTBu(T - 1) < MT - WTAx(T - 1). 

This is a first instance of the inequative feedback equation. At this point we 
apply to the feedback equation the dual conical feasibility condition in its matrix 
form, stated in [3]. Thus, if QT is a matrix whose rows are the generators of the 
pointed polyhedral cone ^WTB^HP, where the symbol P denotes the nonnegative 
orthant of the suitable Euclidean space, the equation is feasible if and only if 

QT(MT - WTAx(T - 1)) > 0 

oг 
QTWTAx(T- 1) < QTMT 
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which defines S r - i and shows that it is a polyhedron. Therefore ET-\ is a polyhe­
dron too and we can write £ r - i = {x : WT-\ X < MT-I} with: 

Wт-г = ( ^ W т A ] and MT-г = 
( QTMT \ 

{M )• 
Now, in view of the backward recursion, it is clear that all the Et are polyhedra 

and we can write Et = {x : Wt x < Mt} with the above final conditions WT = W 
and MT = M. Thus it is obvious that to solve completely the problem it only 
remains to rewrite the above formulas for the generic t. 

The inequative feedback equation is given by: 

WtBu(t -\)<Mt- WtAx(t - 1), t = 1, . . . , T 

Thus, provided the constrained dynamical system is feasible, the set of all and 
nothing but the admissible solutions is given by the closed loop system: 

x(t + l) = Ax(t) + Bu(t) 

Wt+xBu(t) < M,+i - Wt+lAx(t) 

with x(0) = x and t = 0 , . . . , T— 1. Notice that this system is time-varying although 
the original system was stationary. 

The polyhedra St are defined by: 

Q, + iKV t + i -4x(0<Qt + iM, + i 

where Q*+i is a matrix whose rows are the generators of the pointed polyhedral cone 
R(Wt+iB)LnP. Thus 

w<=(w*lWt*lA) and M ^ ( ? r M t + 1 ) -
This equation defines a backward recursion for the coefficient matrices Wt and 

vectors Mt with initial conditions WT = W and MT = M. The recursion allows us 
to compute all such matrices and vectors and hence also the sequence of polyhedra 
{St} and {Et}. Finally the system is feasible if and only if So is non-void and 
x(0) = xeSo. 

We claimed in [2], without expanding on this point for the sake of brevity, that 
it is easy to generalize this theory to the case in which there is also a (pointwise in 
time) constraint for the input. We carry on this exercise for the present stationary 
case. Thus consider the problem obtained from the previous one just adding the 
further constraint: 

Zu(t) < N. (3) 

To get to the solution, it suffices to couple this equation with the feedback equa­
tion. Maintaining the same symbols as before, in particular for the new coefficient 
and vectors for the sets Et, the new feedback equation becomes: 

Z / к ' - V N / 0 
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If now Qt+i is a matrix, whose rows are the generators of R I * + J fl P, 

the new sets St will be defined by: 

0,+1 ( n»A ) x(«) < Q,+1 ( * + • ) 

and the new matrices and vectors defining the polyhedra Et are given by 

Wt = 

Mt = 

A complete statement for the solution of the problem follows by a verbatim 
repetition of the one for the previous cases substituting these new formulas wherever 
it applies. This is omitted for the sake of brevity. 

2.1. The case of mixed input and s ta te constra ints 

From now on we drop the additional input constraint, to avoid more cumbersome 
notation, but it will be clear from the present analysis how it is possible to extend 
our results to incorporate such constraints. 

Next we turn to addressing the following question. Can we still obtain a dynamic 
solution in presence of mixed input-state constraints? 

Actually there are various possible structures for mixed constraints, according to 
the role played by the time variable. The easiest case to handle arises when the 
constraints reflect the way time appears in the constraint given by the dynamical 
equation. This corresponds to coupling to the dynamic system (1) the following 
time-invariant constraints: 

Wx(t + 1) + Zu(t) < M, t = 0 , . . . , T - 1. (4) 

This case is new with respect to the theory in [2]. As first move, inspired by the 
previous cases we pose: 

WT = W, ZT = Z and MT = M. 

Next we substitute for x(T) the expression given by the dynamic system (1) in the 
constraint at time (T — 1) and obtain: 

(WTB + ZT) U(T - 1) < MT - WTAx(T - 1) 

which has the form of a particular instance of the feedback equation. Applying 
the cited dual conical feasibility condition, if QT is a matrix, whose rows are the 
generators of R(WTB + ZT)L H P , this equation is feasible if and only if: 

QTWTAx(T - 1) < QTMT 
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which defines for the present case the polyhedron of admissible states ST-I- Next 
we couple this inequality with the constraint at time T — 2. In this way we obtain 
a new constraint: 

WT-ix(T - 1) + ZT-iu(T - 2) < MT-i 

where: 

«*-. = {TтA) 
Zт~ 

o 
z 

мт., = (*-v). 

At this point we can carry on the backward recursion, which obviously leads to 
identical formulas except that the generic time t substitutes the specific time index. 

The polyhedra St are defined, for / = 0, . . . , T — 1, by the inequalities: 

Qt+iWt+iAx(t) < Qt+iMt+i 

where Qt+i is a matrix whose rows are the generators of the pointed polyhedral 
cone R(Wt+iB + Zt+i)L DP. The backward recursion is regulated by the equations 
(valid for* = 0 , . . . , T - l ) : 

Wi = ( * + . ^ ) 

zt 

мt 

0 

z 
Qt+\Mt+i 
M 

with final (or initial) conditions WT = W, ZT = Z and MT = M. The constrained 
system is feasible if and only if So is non-void and x(0) = x G So. If that is the case, 
then all and nothing but the solutions of the constrained system are given by the 
solutions of the inequative feedback system: 

x(t + l) = Ax(t) + Bu(t) 

(Wt+iB + Zt+i) u(t) < Mt+i - Wt+iAx(t) 

with initial condition x(0) = x and defined in the time interval [0,T— 1]. Notice 
that in this case there is no definition of the Et's. Also it is needless to say that the 
feedback system becomes time-varying although we started from a time invariant 
constrained system. 

The analysis of the present case seems to suggest that, if we had specified a dif­
ferent kind of mixed constraints, we would not have succeeded in deriving a dynamic 
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solution. To some surprise a more careful examination shows that is not so. In fact 
we will now provide a dynamical solution for the case where the input and state 
variable, appearing in the constraints, are evaluated at the same instant of time. 
The key argument relates to the constraining mechanism at the end of the temporal 
span of the problem, which we assumed finite. 

To be more precise we assume that the dynamic system (1) is coupled with the 
following constraints: 

Wx(t) + Zu(t) < M t = 1, . . . , T (5) 

Let us look at the way the constraint acts at time T. Because u(T) influences the 
state at time T + 1, its value is immaterial, provided we can select a state satisfying 
the inequality. In other words we need to find the set of all x(T) for which there 
exists an w(T), that satisfies Wx(T) + Zu(T) < M. This is but one of the problems 
to which the dual conical theory developed in [3] gives a complete solution. First we 
rewrite the inequality as: 

Zu(T) <M -Wx(T). 

From [3] we know that, if Q is a matrix whose rows are the generators of the 
pointed polyhedral cone IZ(.Z)-LnP the set of all and nothing but the bound vectors, 
that make this inequality feasible, are those satisfying: 

Q(M - Wx(T)) > 0 

OГ 

QWx(T) < QM. (6) 

The polyhedron defined by this latter inequality is the sought set of states. In 
this way we substitute to the final constraint another constraint, that bounds the 
state alone. That substitution is what makes the dynamic solution possible. What 
we have done is nothing but to project the polyhedron, defined by the constraint 
in the input-state product space, on the only state space. As already explained, 
this is justified by the fact that for each state in the projection*, there is an input 
that, paired with the state, satisfies the original constraint. Who is such an input 
is irrelevant because our horizon terminates at time T. Notice that, consequently, 
we have to deal with a time-variant constraint system from scratch. The constraint 
coincides with the given one for t = 1, . . . , T — 1, and is given by (6) for t = T. 

Let us now investigate whether there exists a dynamic solution for this constrained 
system. 

To the purpose of developing the backward recursion that coupled with the in-
equative feedback dynamic system solves the problem. It is convenient to state the 
following positions: 

WT = W 

ZT = Z 

MT = M 

Q T + I = Q. 
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Notice that now QT+I is a matrix whose rows are the generators of R(ZT)L H P. 
Next we substitute for x(T) in the final constraint 

QT+iWTx(T) < QT+IMT 

to obtain: 
QT+iWTBu(T - 1) < QT+iMT - QT+xWTx(T- 1). (7) 

Notice that this equation (which is the counterpart of the last step feedback 
equation of the first problem we examined) has the form of a mixed constraint. 
Because at T — 1 we are given a mixed constraint, we pair the two constraint to 
obtain the present form of the last step feedback equation. Thus the latter inequality, 
paired with: 

Zu(T-\)< M -Wx(T-\) 

yields the inequative feedback equation: 

( QT^WTB ) u ( T _ 1 } < ( QT+IMT ) _ ( Q^T+IWTA N X ( T _ 1 } 

Using self-evident positions, we rewrite this as: 

ZT__u(T - 1) < MT_i - WT-ix(T - 1). 

Next let QT be a matrix, whose rows are the generators of the (pointed polyhe­
dral) cone R(ZT-I)L H P , then, applying the cited dual conical feasibility condition 
[3], we obtain the inequality defining £ T - I * 

QTWT^x(T- 1) < QrVVT-i. 

Notice that this inequality corresponds precisely to the final constraint. Thus, 
substituting the value of x(T — 1), given by the system's dynamic equation, the 
recursion may start all over again. Consequently the dynamic solution exists and 
has the structure appended below. 

The inequative feedback system has the form: 

Ztu(t) < Mt - Wtx(t) 

x(* + l) = Ax(t) + Bu(t). 

The polyhedra Et are defined by: 

Qt+iWtx(i) < Qt+iMt 

where Qt+i is a matrix whose rows are the generators of the pointed polyhedral cone 
R(Zi)

± HP. Moreover: 

Z, = ( * + J W + I B ) 

M, = ( * « M ' + ' ) 

w, = ( Q^W"A ) 
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with initial conditions: 

ZT
 = Z 

MT = M 

WT = W. 

Finally notice that E\ is defined by 

Q2W1x(l)<Q2Ml. 

Substituting for x(l) 

Q2WiBu(0) < Q2MX - Q2WxAx. 

If Q\ is the matrix whose rows are the generators of the pointed polyhedral cone 
R(Q2WXB)L fl P , then S0 is defined by 

Q\Q2WlAx<QlQ2Ml. 

The constrained system is feasible if and only if So is non-void and x(0) = XESQ. 

If this is the case the above inequative feedback system yields all and nothing but 
the feasible solutions of the constrained dynamic system. 

We could carry on the study of generalizations along these lines. However we stop 
here for space reasons: it is enough here to have made the point that the approach 
introduced in [2] can applied to a much larger span of problems than those studied 
therein. 

In the final paragraph we turn to examine a question in a sense dual to the 
previous one. Instead of studying generalization we would like to see whether other 
approaches can overlap to that of [2], producing in certain cases special solutions (i. e. 
not capable of yielding all the admissible trajectories) enjoying a simpler feedback 
structure. 

3. EXAMPLES 

In [2] we have shewed that in the case of time invariant systems with time variant or 
time invariant state constraints the admissible inputs at some time t are described in 
general by linear inequalities, with coefficients dependent on time but independent 
of the initial state. In the following examples we show that in general a linear 
state feedback control law solving the feasibility problem does not exist. In the first 
example we consider the case of time variant constraints, with the origin belonging 
to some of the constraining sets. In the second we study the case of time variant 
constraints, where the origin belongs to no one of the constraining sets. In the last 
example the constraints and the inequalities describing the admissible input are time 
invariant: this because the state constraining set is invariant controllable. We recall 
that given a set E and a system x(t +1) = Ax(t) + Bu(t), we say that £ is invariant 
controllable if Vx e £ , 3 u : Ax + Bu e E. 
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3.1. Example 1 

Let us consider the time invariant discrete time system 

* ( * + i ) = ( o i ) x w + ( l)u(<) 
with time variant state constraints: 

* (0 > M } ) , * > 0 or x(t) eDt) t> 0. 

It is trivial to see that in this special case 

Et = Dti t>0. 

In fact for a given T, 

DT = {x(T):-ar(T)<-r( J ) } . 
Substituting for x(T) we have 

-AX(T-\)-BU(T-\)<-T( } J 

or also 

-Bu(t)<-T( J )+Ar(*). 

The matrix Q whose rows are the generators of R(B)L C\ P is 

Q = ( 0 0 ) 

(because R(B) + P = Rn) and hence ST-I = Rn and £ T - I = - D T - I - If we perform 
another step, we have J^T-2 = -^T-2, and generalizing Et = Dt, t > 0. 

Therefore the set of all admissible solutions is given by the solutions of the closed 
loop system: 

*(* + l ) = ( J ? )* ( ' )+( })«(<) 

- ( } )u (0<-* ( })+*(*) 
*(0) e P. 

The provided state feedback control law is non stationary and it does not depend 
on x(0). The question is if it exists a state feedback non stationary linear control 
law, not depending on the initial state, solving the same feasibility problem: i. e. the 
question is if matrices Ft exist such that the solutions of the closed loop system 

*(«+D=((; ; ) + ( ! ) « ) * « ) 
are admissible, starting from any nonnegative initial state. We can immediately say 
that such matrices do not exist, because if x(0) = 0, it follows that x(l) = 0, for 
every value of Fo, and therefore the constraint x(l) £ D\, cannot be satisfied. 
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3.2. Example 2 

Let us consider the time invariant discrete time system 

* < ( + 1>=U5 OJO'W+O)"* 0 

with time variant state constraints: 

x(t)eDt, . = 0,1,2 

where the sets D are described as follows: 

Do = {x: ( - 1 - 1 ) * < - l } 

[ / 0.5 -1.0 \ / 0.75 \ ] 
Dt = \x:[ -0.4 0.8 « < < 1.20 V t > 1. 

[ \ -1.0 -1.0 / \ -2.00 / J 

Let us consider the constraint at time t = 2. Substituting for x(2), we have 

0.5 -1.0 \ / 0.75 
-0.4 0.8 (Ai(l) + Bu(l))<2 1.20 

, -1.0 -1.0 / \ -2.00 

and hence: 

-1 .5 \ / 0.75 \ / 0.25 -0.80 \ 
1.2 u ( l ) < 2 1.20 - -0.20 0.64 «(1). 

-9.0 / \ -2.00 / \ -0.50 -0.80 / 

/ - 1 . 5 \ x 

The matrix Q whose rows are the generators of R I 1.2 1 fl P is 
V -9.0 / 

/ 1.0 1.25 0.00000 \ 
^ ~ v 0.0 1.00 0.13333 ) 

and hence 
Si = {x:(-1 2 )x<7} , Ei = Dt. 

Performing another backward step, we obtain that 

S0 = {x: ( - 1 2 ) i < 3 . 5 } 

*-H:!-?)•-(-")}• 
From the above computations, we see that the admissible control law is 

-1 .5 \ / 0.75 \ / .25 - . 8 
1.2 ] « ( . ) < ( - + - ) [ 1-20 - - . 2 .64 ]x(t) 

-9.0 / V -2.00 / V - . 5 - . 8 
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* ( o ) e £ o , . = 0 ,1 . 

The question is now if matrices To, Ti exist such that 

(A + BF0) xЄEy 

(A + BF^xЄE^ 

V i 6 £ 0 

V i G £ i . 

Let us now assume that a matrix FQ = (/1 IT) of the above sort exists. The vector 

v=( ~Qf£+a ) b e l o n S s t o ^o, Va > 0. 

We have that (A + BF0)v 6 E\ if and only if, for some value of the parameters 
/ i and / 2 , the following inequalities are satisfied for every a greater or equal to zero 

0.5 -1 .0 
-0 .4 0.8 ] (A + BF0)v< 
-1 .0 -1 .0 

or also, substituting for A, B and Fb 

- . 3a + (. 75 - 3a) ft - (2.25 + 1. 5a) / 2 

. 2 4 a - ( . 6 - 2 . 4 a ) / 1 + ( 1 . 8 + 1 . 2 a ) / 2 | < 
- 1 . 8a + (4. 5 - 18a) / , - (13. 5 + 9a) / 2 

We see that the above inequalities cannot be satisfied for every nonnegative a. 
Therefore we can conclude that our assumption is false, and hence we can say that 
in general does not exist a linear state feedback control law solving a finite horizon 
feasibility problem. 

3.3. Example 3 

Let us consider the time invariant discrete time system 

*« + Ч - ( S Л lл)'M+{l)"U 
with time invariant state constraints: 

x(t) e D t>0 

D= lx: 

/ l 0 \ 
0 1 

- 1 0 
V 0 -l) 

x< 

í 2 \ ) 
2 

- 1 

V-WJ 
> . 

The set D is invariant controllable. In fact, if we consider the constraint 

x ( T ) < 

/ 1 0 \ 
0 1 

- 1 0 
\ o -\ ) 

l 2\ 
2 

- 1 

V-i/" 
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for some T > 2, substituting for -c(T), we have 

/ 

(__x(T-l) + B_(T-l))< 

1 0 \ 
0 1 

- 1 0 
\ 0 - 1 / 

/ 2 \ 
2 

- 1 

V - 1 1 
or also 

/ i 
0 

o\ 
1 

- 1 o 
\ 0 -1 / 

Bu(T-l))< 

( 2 \ 
2 

- 1 

V - i / 

/ l 0 \ 
0 1 

- 1 o 
\ 0 - 1 / 

Ax(T-l) 

and substituting for _4, B: 

u(T-l))< 

( 5 \ 
4 

- 5 

/ 0.5 0.0 
0.0 0.8 

-0.5 0 
\ 0.0 -0.8 

The matrix Q whose rows are the generators of R 

( 5 \ X 

4 
- 5 

\ - 4 / 

x ( T - l ) . 

f l P i s : 

Q = 

( 1.00 0.00 1.00 0.00 \ 
1.00 0.00 0.00 1.25 
0.00 1.00 0.80 0.00 

\ 0.00 1.00 0.00 1.00 / 

and hence 

5т-i = {x : (_^ J ' . 8 ) ^ ( L ' _ O ) } -

We can verify that DT-\ C Sr- i , and ET-i = DT-\. Therefore £ t = D V / > 0 . 
The set of all admissible solutions is given by the solutions of the closed loop 

system: 

*< i+ i>=(2:o 2 ; ° ) * w + ( 4 ) ° ( , > 

_(<) 

x(0) e D. 

It is trivial to see that a matrix F such that the solutions of the closed loop system 

x(t + l) = (A + BF)x(t), x ( 0 ) e D 

( 5 \ ( M ( 0.5 0.0 
4 

-5 «(0 < 
2 

- 1 - 0.0 
-0.5 

0.8 
0.0 

\-ч \-ч l, 0.0 -0.8 
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satisfy the given state constraints does not exist. In fact, because of the structure 
of the constraining set, it should be true that: 

i) A + BF is stable 

ii) VA G <r(A + BF), A is real and |A| = 1. 

Therefore necessarily (A + BF) = ( 0 ) • But we can immediately see that a 

matrix F such that this last condition is true does not exist. 
It is easy to prove that in this example the problem of making invariant the 

given polytope can be solved applying an affine state feedback control law, i .e. 
u(t) = Fx(t) + u, but this is not true in general, as we have shown in [4]. 

(Received December 11, 1998.) 
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