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BALANCED REDUCTION 
OF LINEAR PERIODIC SYSTEMS1 

SAURO LONGHI AND GIUSEPPE ORLANDO 

For linear periodic discrete-time systems the analysis of the model error introduced by 
a truncation on the balanced minimal realization is performed, and a bound for the infinity 
norm of the model error is introduced. The results represent an extension to the periodic 
systems of the well known results on the balanced truncation for time-invariant systems. 
The general case of periodically time-varying state-space dimension has been considered. 

1. INTRODUCTION 

The approximation of high-order plants and controllers models by models of lower-
order is a central suspect of control system design. There are many model reduction 
methods based on model analysis or frequency domain concepts (see, e.g., [9, 16]). 
Recently, methods based on the truncation of the balanced realization have been 
analyzed in the framework of linear continuous and discrete time-invariant systems 
[1, 10, 18, 20] and of linear continuous time-varying systems [22, 23]. 

On the other hand, a wide interest has been devoted to the analysis and design of 
periodic discrete-time systems (see e.g. [2, 12] and references therein). For this class 
of systems the model reduction has been analyzed using an Hankel-norm approxi­
mation and under the hypothesis of time-invariant dimension of the state-space and 
of time reversibility [25]. The aim of this paper is to provide a method for the model 
reduction of a periodic system without the assumption of time reversibility and with 
periodically time-varying dimensions of the state space. In fact, for the class of 
discrete-time periodic systems the minimal (reachable and observable) realization is 
generally described by periodic difference equations whose matrices have periodically 
time-varying dimensions [6, 11]. Therefore, the notion of balanced minimal realiza­
tion has to be necessarily introduced in the context of minimal periodic systems with 
time-varying dimensions, where the time reversibility is not guaranteed. 

The paper is organized as follows. In Section 2 some preliminaries about periodic 
systems will be recalled. The existence of the balanced minimal realization of an 
asymptotically stable periodic system with time-varying dimensions will be provided 

1 Work supported by the Ministero dell'Università e della Ricerca Scientifica and by Consiglio 
Nazionale delle Ricerche. 
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in Section 3. In the same section the analysis of the model error introduced by a 
truncation on the balanced realization will be performed. In particular, a bound 
for the infinity norm of the model error is found. Numerical examples and some 
concluding remarks end the paper. 

2. PRELIMINARIES 

Consider a linear periodic discrete-time system S described by the following equa­
tions: 

x(k+l) = A(k)x(k) + B(k)u(k) (1) 

y(k) = C(k)x(k) + D(k) u(k) (2) 

where k e Z, x(k) e IRn(A;) is the state, with n(k + u) = n(Ar), u(k) e IRP is the 
input, y(k) e JRq is the output and -4(-), -B(-), C(-),D(-) are periodic matrices of 
period u (briefly, cj-periodic). 

Denote by $(kyko) the transition matrix: 

* ( M o ) == A(k-l)A(k-2)---A(k0), k>k0, k,k0el, (3) 

* ( M ) := /n(*), ^ 2 , (4) 

where In(k) denotes the identity matrix of dimension n(k). Given a time instant /: 
and an m-dimensional discrete-time signal v() £ Hlm, denote with vL(h) e MmuJ 

the lifted discrete time signal associated to v() and defined by: 

v£(h):=[v'(hu> + k) v'(hu + k+l) ••• v'(hu +k + u-1)]', h e Z + . (5) 

In the following, two time-invariant representations of the a;-periodic system 5 
are recalled and some related results are analyzed. 

For an arbitrary integer k, let uL(h) and yL(h) the lifted signals associated to u(-) 
and y ( ) , respectively, ^jb(^) •= x(hu + k) and consider the time-invariant system 
SL(k) described by: 

6 ( / i + l ) = EkZk(h) + Jku
L(h) (6) 

yi(h) = LkCk(h) + Mku
L(h) (7) 

where 

Ek := «ř(w + k,k), (8) 

Jk := [$(u + k,k+l)B(k) $(u + k,k + 2)B(k + l) ••• B(*+w - 1)] , (9) 
C(k) 

C(k+l)<íf(k + l,k) 
Lк := 

C(* + u;-l)Ф(Jb + w-l,Jb)J 

(10) 
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Mk := 

f D(k) O O 
H2i(k) D(k + 1) O 
H3i(k) H32(k) D(k + 2) 

L//_,i(*) //«,,_(*) B_,__i(ib) 

0 
0 
0 

D(k + u-l) 

( П ) 

with 

#y(JЬ) := C(к + i-l)Ф(к + i-ì,k + j)B(k + j - 1), 

ť = 2,3,...,w, j = 1,2,...,_»-1, i > j . 
(12) 

System SL(k) will be referred to as the lifted representation at time k of S (briefly, 
lifted system). Obviously, SL(k + u) = SL(k) for all integer k and system SL(k) is 
equivalent to the cj-periodic system S [17]. The time instant k can be considered as 
the initial time of u-rate sampling for the state of system 5. 

The transfer matrix VVjb(2r) := Lk(zln(k) — Ek)~~lJk + Mk associated to the lifted 
representation of S depends on the initial sampling time A: as is stated in the following 
result. 

Lemma 2.1. [13] For all the integer k, the transfer matrix Wk(z) satisfies the 
following relation: 

W_+i(*) = 
0 /9(_-i) 

0 
Lzlq 

Wк(z) 
0 z-Чp 

/p(ш-l) 0 
(13) 

The infinity norm of the associated transfer matrix Wk(z)> i.e. ||KVjb(2)||oo -= 
supfl <r(Wk(ei0)), is independent of the initial sampling instant as stated by the 
following lemma, whose proof is reported in the Appendix. 

Lemma 2.2. The infinity norm of the transfer matrix Wk(z) satisfies the following 
relation: 

||w*+i(-)||oo = ||w_(-)|U vfcez. (14) 

The notion of lifted system at time k allows to analyze structural and stability 
properties and pole-zero structures of periodic systems [2, 4, 13, 14]. For example, 
the subspace of reachable (unobservable) states of system S at time k is readily seen 
to coincide with that of system SL(k) if it is expressed in terms of matrices Ek> Jk> 
Lk and M*. Therefore, system 5 is reachable (observable) at time k if and only if 
system SL(k) is reachable (observable). 

Moreover, it is well known that the characteristic polynomial of Ek (the mon-
odromy matrix of A()) is independent of k, whence it characterizes the stability 
of S [7]. Also the solutions of o;-periodic Lyapunov equations can be found making 
use of the lifted representation of the cj-periodic system S. Computation algorithms 
and related applications of these equations can be also found in [24]. 
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Lemma 2.3. [25], [3] For an arbitrary integer k, let M* and IV* solutions of the 
following Lyapunov equations: 

EkMkE'k + JkJ'k = Mk, 

E'kNkEk + L'kLk = Nk. 

(15) 

(16) 

Let M(-) and N(-) w-periodic matrices satisfying the following u-periodic Lyapunov 
equations: 

A(k) M(k) A(k)' + B(k) B(k)' = M(k + 1) V k € Z 

A(k)'N(k + 1) A(k) + C(k)'C(k) = N(k) Vk <= Z. 

Then, M(k) = Mk and N(k) = Nk, for all the integer k. 

(17) 

(18) 

A similar set of results can be also stated by a different time-invariant repre­
sentation which is now recalled. Given a time instant k and an m-dimensional 
discrete-time signal v(-) E IRm, denote with vc(i) G IRma; the cyclic discrete time 
signal associated to v() and defined by: 

»ř(0 := k* , C(.)' v\<C(i)' ••• ^ O ' ] ' , .•>*, 

with: 
vk,c, •) ._ I v(i) i = k + j + 
V> W - \ * i^k + j + 

hш 
hш heZ+,j = 0,...,u-l, 

(19) 

(20) 

where * means that v^' (i) can be freely assigned for i ^ k + j + hu [8]. 

For an arbitrary integer k, let uc(i), y%(i) and xc(i) the cyclic signals associated 
to ti(-), y() and x ( ) , respectively, and consider the time-invariant system Sc(k) 
defined by 

xc(i + l) = Akx
c(i) + Bku

c(i) 

yc(i) = Ckx
c(í) + Vku

c(í) 

(21) 

(22) 

where 

Ak = 

Bk = 

• 0 

A(k) 
0 

. 0 

o 
B(k) 

0 

0 
0 
0 

A(u - 2 + jfc) 

0 
0 
0 

B(u - 2 + ifc) 

A(ш-l + k) 
0 
0 

0 

B(w-l + jfc) 
0 
0 

Ck = dЫg{C(k), C(k + 1), . . . , C(u»-l + jfc)}, 
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Vk = diag{ D(k), D(k + 1), ..., D(u-l + k)}. 

System Sc(k) will be referred to as the cyclic representation at time k of S (briefly, 
cyclic system) [8], [19]. 

With the cyclic representation Sc(k) the following transfer matrix can be asso­
ciated: 

Wk(z) = Ck(zI¥-Ak)-
lBk+Vh> (23) 

where v := Ylt^o n ( 0 -
The relationships between systems SL(k) and Sc(k) in terms of their transfer 

matrices Wk(z) and Wk(z) are precisely stated by the following lemma. 

Lemma 2.4. [5] For any integer k, the following relation is satisfied: 

Wk(z) = dizg{Iq,z-1Iq,...,z-"+1Iq}Wk(z")di*g{Ip,zIp,-..,z"-1Ip}. (24) 

The infinity norms of the transfer matrices Wk(z) and Wfc(z) coincides as stated 
in the following lemma whose proof is reported in the Appendix. 

Lemma 2.5. For an arbitrary integer k, the infinity norms of the transfer matrices 
VVib(̂ ) and Wk(z) satisfy the following relation: 

||W*(-)IU = HWktolloo. (25) 

Also the notion of cyclic system allows to analyze structural and stability proper­
ties of periodic systems. System S is reachable (observable) at time k if and only if 
system Sc(k) is reachable (observable) [5, 15, 19]. System S is asymptotically stable 
if and only if for an arbitrary integer k system Sc(k) is asymptotically stable [19]. 

3. BALANCED REALIZATION AND MODEL REDUCTION 

An w-periodic coordinate transformation on the state space is described by: 

x(k) = T(k)x(k), (26) 

where T(k) G IRn(fc)xn(*) is an w-periodic non singular matrix. In the new base 
the realization (A(-), B(-), C ( ) , D(-)) of the cj-periodic system S has the following 
form: 

A(k) = T(k+l)A(k)T(k)"\ VJbEZ (27) 

B(k) = T(k+l)B(k-)} VJbGZ (28) 

C(k) = C(k)T(k)-\ VJbeZ. (29) 

Assume system S to be reachable and observable at all times (the u;-periodic 
realization (A(), B()y C(-), D(-)) is minimal) and asymptotically stable (the eigen­
values of the monodromy matrix Ek lie inside the open unit disk). Under these 
assumptions it is possible to show the following result whose proof is given in the 
Appendix. 
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Lemma 3.1. Assume that system S is reachable and observable at all times and 
asymptotically stable. Then, for all the integer k, there exists an w-periodic coor­
dinate transformation on the state-space described by (26) such that the following 
relations hold: 

Â(k) E(fc)i(fc)' + B(k)B(k)' = Ľ(k + 1), 
i(fc)'£(fc + l)i(fc) + C(fc)'Č(fc) = Ľ(k), 

where 
E(fc) = diag{(7i(A;), <r2(k), • • •, an(k)(k)}, 

with <T{(k + u) = <T{(k) > 0, i = 1 . . . n(k). 

(30) 
(31) 

(32) 

Analogously to the time-invariant case an u;-periodic asymptotically stable mini­
mal realization (-4(), £(•), C ( ) , D(-)) which satisfies relations (30), (31) with A(-), 
#(•), C(-) substituted with -4(), -B(-), C(-) is called balanced realization. 

Lemma 3.2. For any integer k, the lifted representation SL(k) and the cyclic 
representation Sc (k) of the u;-periodic S with balanced realization are characterized 
by time-invariant balanced realizations. 

Also the proof of this lemma is given in the Appendix. 

Now assume that the ^-periodic asymptotically stable minimal realization of S is 
in the balanced form and consider the following compatible partition with o;-periodic 
time-varying dimensions: 

A(к) = 

C(к) = 

E(fc) = 

'Aн(fc) A12(к)' 
A21(к) A22(к) 

[d(fc) O2(fc)], 

'Si(fc) 0 " 
0 £2(fc) ) 

B(к) = 

x(к) = 

5i(fc) 
[B2(k)\ ' 

*i(k) 
x2(к) 

(33) 

(34) 

(35) 

where the dimensions of all the blocks are suitably chosen, in particular 
An(fc)€lRni(fc+1)xni(fc), ^i2(fc)GlRn i ( f c+1)xn2( fc )

)A2i(fc)GlRn2( fc+1)xn i ( f c ) , 

A22(fc)eiRn2(fc+1)xn2(fc), fli(fc)enri(fc+1)xp, £2(fc)eiRn2(fc+1)xp, d(fc)eiR«xni(fc), 
C2(fc) G lR'xn2(fc), Ei(fc) = diag{<r1(fc), <r2(k),..., *Bl(t)(fc)} G !Rn'(fc)xn'(fc), 
E2(fc) = diag{<rni(fc)+1(fc), <rniW+2(k), ..., <rn(lc)(k)} G ]Rn=(fc)x">(fc), x,(fc) G Hn ' ( f c ) , 
x2(k) G lRn2(fc), and nx(fc) < n(fc), ni(fc + w) = m(fc) and n2(fc) := n(fc) - nx(k) for 
all ke Z. 

If the truncation operation is applied to the w-periodic minimal balanced realiza­
tion (A(-), B(), C(), D(-)) of the system 5, the following reduced order w-periodic 
model Sr is obtained: 

x i ( f c+ l ) = 

У(к) = 
Лц(fc)xi(fc) + Bi(fc)«(fc) 

Ci(k)Xl(k) + D(k)ti(k) 

(36) 

(37) 
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whose time-invariant cyclic representation at time it has (A\l
)B\)C\^k) as real­

ization, where A\l E nt"1*"1, vx := YTiZl n1(0> and B\ E JR."1*"' have the same 
cyclic structure of Ak and Bk with the cj-periodic matrix A(-) and B(-) substituted 
by -4n( ) and £ i ( ) , respectively, and C\ E IRwpXi/1 has the same diagonal structure 
of Ck with the u;-periodic matrix C(-) substituted by C i ( ) . Denote by W^(-r) the 
transfer matrix of the cyclic representation at time k of the reduced order cj-periodic 
model Sr: 

wíw-cti^-AVr^i+vt (38) 

Theorem 3.1 . Assume that system S is reachable and observable at all times and 
asymptotically stable. Let (-4(-). B(-), C(-), D(-)) an u;-periodic balanced realization 
of system S. Let (An(), -Bi(-), C'i(-), D()) the cj-periodic realization of the reduced 
order cj-periodic model Sr, whose state-space dimension is n\(k) < n(Ar), with n\(k+ 
CJ) = n\(k). Let W[(z) the transfer matrix of the cyclic representation at time A: of 
the reduced model ST. Then, the cj-periodic model Sr is asymptotically stable and 
for an arbitrary integer k: 

||Wfc(г)-WtҶг)||oo<2]Г £ ot(ï), 
» = 0 l=Пl(i)+l 

(39) 

where cri(i) > 0 are the entries of the diagonal matrix E2(0> for i = 0 , 1 , . . . ,o; — 1. 

P r o o f . Consider the following orthogonal matrix: 

Uk~\Ul u\\m&vx\ 

where 

(40) 

Ul := diag 

Uk := diag 

a 7n.(~) I 
0Пз(к),Пl(k) \ 

{[*• 
i ( * W * ) 

In2(к) 

ïn^k + 1) 

0 n 2 ( * + l ) , щ ( * + l) 

0 щ ( * + l ) , n 2 ( * + l ) 
Jn2(к + 1) 

°n2(к + 
IПl(k+u>-l) 1 1 
+u>-l)fПl(к+u>-l)\ j 

6 E 1 í /XJ/i 

0щ(*+w- l ) ,n 2 (Å:+u-
ln2(k+ш-l) •»]} 

ЄІR' l/Xl/2 

0n,m is the zero matrix of dimension n x m, i/-_ = 2̂̂ -To1 rci(i), v2 = Yl^Zo n 2 ( 0 
and v\ + i/2 = *A Moreover, define E* := diag{E(Jb), E(fc + 1), • •, E(ifc + u> - 1)}. 
Taking into account the structure of the orthogonal matrix Uk and the partition of 
the balanced realization (A(), £(•), C ( ) , £>(•)) and of E(Jfc) described by (33)-(35), 
the following relations can be derived: 

Лк ~ и'клкик = 
л\l 

л? 
л? 
л? (41) 
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Bk := U'kBk = 

Ě t := U'kY.kUk = 

вl 
Ej 0 
0 Ľl 

Čk:=CkUk = [C\ Cl\ (42) 

(43) 

where A\l G H T 1 ^ 1 , B\ G I R " 1 ^ and C\ G IR w p X i / 1 have been above introduced 
and *4£2 G nT l X I / 2 , . 4 ^ G .TO,"2*1'1 and Af G H T 2 ^ 2 have the same cyclic structure 
of Ak with the a;-periodic matrix A(-) substituted by _4i2(), -42i() and -A22(-)> 
respectively; #£ G IR/'aXa'p has the same cyclic structure of Bk with the u;-periodic 
matrix B(-) substituted by i ^ O i C\ G JR??*"2 has the same diagonal structure of Ck 

with the cj-periodic matrix C(-) substituted by C 2 ( ) ; Ej G IRl/lXl/1 and E^ G IR"2^2 

have the same diagonal structure of .£& with the a;-periodic matrix £(•) substituted 
by -Ci(-) and X^O), respectively. 

The orthogonal matrix Uk describes a state-space transformation of the time-
invariant cyclic representation Sc(k). Under the assumption of system S in a bal­
anced realization, by Lemma 3.2, the cyclic representation Sc(k) is balanced. Then, 
it is easy to see that also in the new base the time-invariant cyclic representation 
Sc(k) with realization (Ak)BkiCk)Bk) is balanced. 

Now, by well known results on the balanced realization (Theorem 4.2 in [20]) 
and on the balanced truncation of discrete-time time-invariant system (Theorem 
2 in [1]) applied to the time-invariant cyclic representation Sc(k) with realization 
(Ak ,Bk,Ck)Vk)tYie asymptotic stability of the cyclic representation of Sr (equivalent 
to the asymptotic stability of Sr [19]) and the relation (39) are derived. The double 
summation in the right hand side of (39) is a consequence of the structure of T,\ = 
diag{E2(*), E2(A: + 1 ) , . . . , S2(A: + UJ- 1)}. • 

This result introduces an upper bound on the approximation error measured by 
||Wjb(z) — VV[(z)||oo- Note that, the approximation error can be also expressed 
by 11Wi^) ~~ WjbC-Olloo where Wk(z) is the transfer matrix of the lifted system 
at time k and W£(z) = L\(zlni{k) - E\l)"lJl + Mk where E\l, J\ and L\ are 
defined as Ek, Jk and Lk with matrices -4(), B() and C() substituted by -Aii(-). 
.Bi(-) and Ci(-), respectively. In fact, a relation similar to (24) holds for Wk(z) 
and W{(zu) and arguing as in the proof of Lemma 2.5 it is possible to show that 
\\Wk(z) - Wr

k(z)\\oo = \\m(z) - Wftz)||oo. 
Note that, if u = 1 (the time-invariant case) the upper bound of the model error 

stated in the Theorem 3.1 reduces to the well-known time-invariant upper bound [1]. 

A model reduction of a periodic system with the desired accuracy can be obtained 
by the following algorithm. 

Algorithm 3.1. 

Step 0. An o;-periodic system S of the form (1), (2) is given. Verify that 5 is 
reachable and observable at all times and asymptotically stable. Set a thresh­
old positive value 7. 
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Step 1. By Lemma 2.3, compute the cj-periodic solution M(k) and N(k) of the 
u;-periodic Lyapunov equations (17) and (18) respectively. Then, compute a 
Cholesky factorization of M(k) = R(k)R(k)' and a singular value decomposi­
tion of R(k)'Q(k)R(k) = U(k)X(k)2U(k)' where E(*)=diag{<n(fc), <r2(k), • • • 
• • • i an(k)(k)} with <Ti(k) > <Tt+i(Ar), for all k G Z. 

Step 2. For k = 0 , 1 , . . . ,CJ, find the positive integer ni(Ar) such that (Tni(k)(k) > 7. 

Step 3. Compute the upper bound of the truncation error c7 := 2 £^_~0 ]C/=n m+i 
(Tt(i). If the upper bound 67 is acceptable go to Step 4, else set a lower threshold 
positive value 7 and go to Step 2. 

Step 4. Apply to system S an cj-periodic state-space transformation described by 
(26) with T(k) = X(k)iU(k)'R(k)~l where E(fc)* = diag{v^iW> N / ^ ! * ) -

• * *» \/^Vi(Jb)(^I} • I n the new base deduce the block partition of the balanced 
realization of 5 as described by (33), (34) with n\(k) specified at the Step 2. 
The corresponding matrices -4n(-), J5i() and Ci(-) are a realization of the 
reduced order model 5 r described by (36), (37) and the upper bound of the 
infinity norm of the model error is lower or equal to e7. 

4. NUMERICAL EXAMPLES 

Example 4 .1 . Consider the 2-periodic asymptotically stable, reachable and ob­
servable system S described by the following matrices: 

-4(0) = 
0 

0.5 B(0) = O j ' O(0)=1, 

.4(1) = [ 0 0.5 V 5(1) = 1, O(l) = [ 1 0 ] . 
where the state-space dimension is n(0) = 1, n(l) = 2. The lifted representation 
SL(k) has the following transfer matrix: 

W0(z) = 2-0.25 
0 

Wг(z) = 
z-0.25 

It can be verified by means of Lemma 3.1 that the system S is in balanced form, 
with: 

.p(o) = g(o) = E(o) = j | , E(i) = Q(i) = E ( i ) = [ J I 

and the Step 1 of the Algorithm 3.1 can be omitted. Choosing a positive threshold 

value 7 = 0.3, the positive integer n\(k) at the Step 2 is equal to one for each 

integer k, and the upper bound e 7 = 2 £ - = 0 ^ " . i ^ w + i ^ ( 0 = iV 
The state-space transformation at the Step 4 is not necessary and a realization 

of the reduced order model has the following form: 

Лii(0) = Л u ( l ) = 0. Bi(0) = Bi(l) = l, Ci(0) = Oi(l) = 1, 
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with the following transfer matrix : 

WS(z) = W[{z) = 
1 o 

Note that the infinity norm of the model errors is ||VVo(^)- WJ (*)||oo = I I W I ^ ) -

WTCOIloo = \ and it verifies Theorem 3.1, where the upper bound given by (39) 
1S 15* 

Example 4.2. Consider the 2-periodic asymptotically stable, reachable and ob­
servable system S described by the following matrices: 

A(0) = 
0.6 0.19 -0 . 7 0.54 
0.72 0.91 - 1 . 1 7 0.68 
0.29 0.56 -0 .56 0.28 

, Ð(0) = 
0.17 
0.46 
0.28 

C(0) = [1.13 -1 .67 Ю"1 -1 .07 1.01], 

Л(l) = 

4.28 0.46 5.28" ' - 0 . 1 9 
3.16 
5.66 

- 2 
-3.53 

6.71 
12 

>B(1) = 
-0.07 
-0 .96 

5.22 -3.38 11.2 -0.24 

C(l) = [ -2.8 10~2 7.73 10"3 3.12 10"2 ] , 

where the state-space dimension is n(0) = 4, n(l) = 3. At the Step 1 the 2-periodic 

diagonal matrix £(&) has the following form: 

E(0) = diag{1.38,0.75,1.61 10"3,4.16 10~9}, 

E(l) = diag{1.31,7.54 1 0 - \ 6 . 9 10~5}. 

With a positive threshold value 7 = 10~"4, at the Step 2 the dimension ni(k) of the 
reduced model is ni(0) = 3, n i ( l ) = 2, and the upper bound e7 is 

1 n ( i ) 
€-r = 2 _E J2 a ^ = 2(^(0) + ^a(l)) = 1.38 10~4. 

t = 0 / = n i ( i ) + l 

Applying the state-space transformation at the Step 4, a balanced realization of 
system S is obtained and the reduced model 5 r of dimension n\(k) described by 
(36), (37) has the following form: 

-11 <•>-[:. 
-1 .03 Ю-4 -7.58 Ю-1 -9 .07 10" 

40 10" -1.62 10" 3.86 10 - 2 

2*1(0) = 
9.38 Ю"1 

-2.10 10~4 ' ' 
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Ci(0) = [9.82 Ю"1 -1.96 Ю"4 2.2 Ю " 2 ] , 

Л ц ( l ) = 
9.77 Ю"1 2.96 10" 5 п 

5.27 10"5 
- 1 

Ll.05 10"2 7.49 10" 6. 
, A(l) = 

-3.52 10" 
1.29 10 

3.83 10 

- 4 

- 2 

Ci(l ) = [8.08 10"3 - 8 A 3 1 0 " 6 ] , 

and the infinity norm of the model error is ||Wfc(2) — W Ĉ-Olloo = ||VVjb(z) — 

>V[(2r)||oo = 6.9 10~5 and it satisfies Theorem 3.1, where the upper bound c1 is 
equal to 1.38 10" 4. 

With a different choice for the positive threshold value 7 = 2 10~3, at the Step 2 
the dimension n\(k) of the reduced model is ni(0) = ni(l) = 2, and the upper 
bound 67 has the following value: 

i n(i) 

^ = 2 _ E £ ^ ( 0 = 2(^3(0)+ ^4(0) + IT3(l)) 
i=0^=ni(«)+l 

= 3.36 10~3. 

In this second case the reduced model Sr described by (36), (37) has a constant 
state-space dimension ni(A;) = 2 and 

Лц(0) = 
-1 .03 10" 
-7.40 10 - i 

-7.58 10 

-1.62 10 - 4 

Bi(0) = 
- 1 9.38 10 

-2.10 10_ 

Ci(0) = [9.82 Ю"1 -1.96 1 0 " 4 ] , 

Л ц ( l ) = 
9.77 10" 
5.27 10 - 5 

2.96 10" 5 

-1.0000 . A(i) = 
-3.52 10 
1.29 10" 

- ì 

Ci(l) = [8.08 1 0 - 3 -8.13 1 0 - 6 ] . 

The infinity norm of the model error is ||»Vlb(-)-lVJ(-)||co = l|Wfc(-)-Wr(z)||oo = 
1.61 10~3 and it satisfies Theorem 3.1, where the upper bound e7 is equal to 
3.36 10-3 . 
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5. CONCLUDING REMARKS 

An analysis of model error introduced by a simple truncation of a periodic system 
in a balanced realization is performed. The general case of periodically time-varying 
dimension of the state-space is considered. The results represent an extension to 
the periodic systems of the well known results on the balanced truncation for time-
invariant systems. When the period CJ is equal to one (the time-invariant case), the 
introduced bound for the infinity norm of the model error reduces to the one of 
time-invariant systems. 

For time-invariant systems with no poles on the imaginary axis the balanced 
reduction has been solved also for unstable systems [21], The possible extension of 
this result also to the class of discrete-time periodic systems is under investigation. 

APPENDIX A 

P r o o f of t h e L e m m a 2.2. The infinity norm of T

 q^~^ and , u * *p 

J Yzlq 0 J LIp(u,_l) o . 
are equal to one. Then, by Lemma 2.1 and the submultiplicative property of the 
infinity norm the following relation holds: 

||»Vfc+1(2r)||oo < ||W*(*)||oo v * e z . (44) 

Moreover, by Lemma 2.1 it easy to verify the following relation: 

Wk(z) = 
0 z~Чq 

Iq(ш-l) 0 
Wk+l(z) 0 Ip(ш-l) 

zlp 0 
VJkez. 

This relation together with the submultiplicative property of the infinity norm im­
plies: 

IIWi.(*)lloo < HWifc+iOOiloo v i e z . (45) 

Relations (44) and (45) prove the lemma. • 

P r o o f of t h e L e m m a 2.5. The infinity norm of diag{Ig, z~~lIq, • • • ,z " w + 1 I f ? } 
and of diag{Ip, zlp) • • • ,zu,"mlIp} are equal to one. Then, by Lemma 2.4 and the 
submultiplicative property of the infinity norm the following relation holds: 

llw^WHoo < 11^(^)1100 V*EZ. (46) 

Moreover, by Lemma 2.4 it easy to verify the following relation: 

KVit^^diagtI^ v*ez. 

This relation together with the submultiplicative property of the infinity norm im­
plies: 

l|Wlb(-w)||oo < limOOHco V * € Z . (47) 

Being | |PVit(-2r<-')| |oo = ||Wfc(-0||oo, relations (46) and (47) prove the lemma. D 
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P r o o f of t h e L e m m a 3.1. The stability assumption on the minimal real­
ization (A(-)j -B(-), C(-), D(-)) implies for any arbitrary integer k the asymptotic 
stability of the reachable and observable time-invariant lifted system SL(k). This 
fact implies that the reachability and observability gramians of SL(k)y expressed by 
Pk = TT=o(EkyJkJ'k(E'ky and Qk = Y£o(EkY ^(Ek)', satisfy the following 
Lyapunov equations [20]: 

EkPkE'k + JkJ'k = Pk (48) 

E'kQkEk + L'kLk = Qk. (49) 

By Lemma 2.3 the above relations imply the existence of w-periodic matrices P(k) 
= Pk and Q(k) = Qk which satisfies the following w-periodic Lyapunov equations: 

A(k)P(k)A(k)' + B(k)B(k)'= P(k + l), VibeZ, (50) 

A(k)'Q(k + l)A(k) + C(k)'B(k) = Q(k), VlbeZ. (51) 

Consider a Cholesky factorization of P(k) = R(k)R(k)' and a singular value de­
composition of R(k)'Q(k)R(k) = U(k)T,(k)2U(k)' where Z(k)=diag{(Ti(k), <r2(k), 
• • • . <Tn(t)(^)}- Introduce an w-periodic state-space transformation described by 
(26) with T(k) = ^(k)^U(k)'R(k)-1 where Z(k)$ = d i a g { v / ? ^ ) , yftijkj, •••, 
v/cr„(jfc)(Ar)}. By relations (27) - (29), the equations (50) and (51) imply: 

A(k) T(k)P(k) T(k)'A(k)' + B(k)B(k)' (52) 

= T ^ + n P O b + l j T ^ + l ) ' , 

A(k)'(T(k + l ) ' ) " 1 ^ * + 1) T(k + l ) _ 1 i ( ib) + C(k)'C(k) (53) 

= (rwr'Qwn*)-1, 
that are equivalent to the relations (30) and (31). • 

P r o o f of t h e L e m m a 3.2. For any integer k} the asymptotic stability and 
minimality of S implies the asymptotic stability and minimality of the lifted rep­
resentation SL(k) and of the cyclic representation Sc(k). Moreover, relation (30) 
implies that: 

A(k + l)A(k)i:(k)A(k)'A(k + 1)' + A(k + l)B(k)B(k)'A(k + 1)' (54) 

+B(k + l)B(k+l)' = X(k + 2), 

and by induction it follows: 

EkZ(k)E'k + JkJ'k = Z(k), (55) 

where Ek and Jk are defined as Ek and J* with matrices A() and B() substituted 
by A(-) and B(-), respectively. 

In the same way, relation (31) implies that: 

E'kX(k)Ek + L'kLk = i:(k), (56) 
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where Lk is defined as L* with matrices A(-) and C ( ) substituted by A(-) and C ( ) , 
respectively. 

Denoting with Ak, Bk and Ck matrices defined as matrices Ak, Bk and Ck with 
A(-), B() and C ( ) substituted by A(-), B() and C ( ) , respectively, and with £* = 
diag{E(Jb), £(Jk + 1), • • •, X.(Jfc + u - 1)}, relations (30) and(31) imply that: 

AkVkA'k + BkB'k = Vk> (57) 

A'kXkAk + C'kCk = Xk. (58) 

Then, relations (55)-(58) prove that (£*, j * , L*, M*) and (^fc,-5*,(?*,!>*) are 
time-invariant balanced realizations of SL(k) and Sc(k)} respectively [20]. • 
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