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ON THE OPTIMALITY OF A NEW CLASS 
OF 2D RECURSIVE FILTERS1 

LEOPOLDO JETTO 

The purpose of this paper is to prove the minimum variance property of a new class of 
2D, recursive, finite-dimensional filters. The filtering algorithms are derived from general 
basic assumptions underlying the stochastic modelling of an image as a 2D gaussian random 
field. An appealing feature of the proposed algorithms is that the image pixels are estimated 
one at a time; this makes it possible to save computation time and memory requirement 
with respect to the filtering procedures based on strip processing. Experimental results 
show the effectiveness of the new filtering schemes. 

1. INTRODUCTION 

The considerable attention that the image restoration problem has been receiving in 
the literature has motivated the interest for extending optimal one-dimensional ( ID ) 
filtering procedures to two-dimensional (2D) data fields. In particular most authors 
investigated the applicability of Kalman filtering techniques to the restoration of 
images corrupted by additive noise. 

In [3, 11, 14, 21, 22, 23, 24, 26, 29, 32] a 2D image is transformed into ID scalar or 
vector stochastic process using a line-by-line scan or a vector scanning scheme. Other 
approaches that use a 2D model can be found in [1, 9, 10, 12, 15, 28]. All these papers 
are based on the common assumption that the image is the realization of a wide sense 
stationary random field. By this simplifying hypothesis an image model suitable to 
a state-space representation can be derived; nevertheless the corresponding space-
invariant filters are insensitive to abrupt changes in the image signal and give restored 
images with reduced contrast and blurred edges. Actually, a real image is composed 
of an ensemble of several different regions and, in general, no correlation among them 
may be assumed. Thus the stationarity assumption may fit for the statistics of each 
single region, but not for the whole image; consequently blurring and oversmoothing 
phenomena occur at edge locations. 

Adaptive space-variant filters based on identification-estimation algorithms have 
been proposed in [2, 13, 16, 17, 18, 30, 31, 33]. These methods allow the parameters 
describing the image model to vary inside the image itself according to the local 

1Th is work was supported by Ministero delPUniversita e della Ricerca Scientifica e Tecnologica. 
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statistics. The specific problem of reducing the numerical complexity involved in 
the adaptive parameter estimation procedures for a 2D image model is considered 
in [34]. 

All the above mentioned papers are based on a description of the image in terms of 
its statistical properties. The self-tuning methods attempt to draw this information 
starting from noisy data. Their main drawbacks are the computational cost, that in 
many cases may be unacceptable, and/or the increased structural complexity of the 
algorithm. Moreover it seems difficult to obtain a fast switching of the image model 
parameters in correspondence of a sudden change in the image statistics, such as at 
edge points. The other methods assume that the information on the image model 
is available a priori or that it can be obtained from the noisy free image or by a 
sample of similar pictures. In many practical situations it is unrealistic to assume 
that these data are available. 

Based on the results of [5] and [8], the method proposed in [7] starts from a 
completely different point of view. The image modelling proposed in [7] is based on 
the following assumptions. 

Smoothness assumption. The image is modelled as the union of open disjoint 
subregions whose interior is regular enough to be well described by a 2D surface of 
class Cn. 

Stochastic assumption. All the derivatives of order n + 1 of the 2D signal are 
modelled by means of zero-mean independent Gaussian random fields. 

Inhomogeneity assumption. The random fields representing the image process 
relative to different subregions are independent. 

As shown in [7], these hypotheses allow one to construct a space-variant image 
model where the problem of image parameter identification is greatly simplified and 
where the presence of image edges is intrinsically taken into account, so that edge 
oversmoothing is automatically avoided. 

The space-variant Kalman filter derived from the previous assumptions is imple
mented in [7] by partitioning the image into parallel strips according to the proce
dure described in [32]. Strip filtering may be computationally attractive because it 
does not require the definition of a state vector of dimension equal to that resulting 
from considering the whole image and allows one to embed a 2D filtering problem 
into a ID algorithm, moreover it does not have some of the undesirable nonstation-
ary characteristics of line scanning. Nevertheless, strip filtering suffers from some 
inconveniences. First, filtered estimates of each strip are obtained neglecting the in
formation carried by the pixels lying on the other strips; second, the computational 
cost may still be high. For example, the state vector defined in [5, 7, 8] associated 
with each pixel is composed of the image signal and its partial spatial derivatives up 
to the order n, hence it is composed of IV = (h + l)(n + 2)/2 elements. Therefore, 
if the image is partitioned into strips of width L, the state vector involved in the 
strip Kalman filtering has dimensions LN. Taking into account that only the LR 
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middle points are retained as final estimates to avoid edge effects, this implies a 
number of computation per points 0((LN)3 / LR) [32], that in some cases may be 
unacceptable. This computational burden can not be reduced exploiting the sim
plifying assumption of a spatial invariant structure of the signal process, as in [32], 
because the image model proposed in [7] is space-varying. 

In this paper, two point-to-point recursive filtering algorithms are proposed and 
their optimality (in the minimum variance sense) is proved. Both algorithms are 
finite dimensional and hence exactly implementable. The first one is a causal filter 
given by an optimal combination of a ID Kalman predictor and of a ID Kalman 
filter, the second one is a semicausal filter obtained by optimally combining a ID 
Kalman predictor with a fixed-interval smoother. No partition of the image into 
strips is needed; image pixels are estimated one at a time so that the dimension of 
the state vector is IV and the number of computation per pixel is 0(N3) with a 
reduction of a factor 0(L3/LR) with respect to the strip filtering procedure. The 
overall saving of computation time derives not only from the filter equations but even 
from the computation needed to construct the image model. In fact, to compute 
the dynamical matrix of the image model, the method described in [7] requires, at 
each iteration, the inversion of a (NL) x (N L) space-varying three-band matrix; this 
inversion is avoided here. 

Other 2D recursive filtering algorithms paralleling the ID Kalman filter and not 
requiring strip processing have been proposed in [6, 9, 15, 25]. These filters are based 
on the quarter-plane system, first introduced in [9], and their non optimality was 
proved in [27] and [20]. As shown in [4] there is no optimal finite-dimensional causal 
filter for the quarter-plane system, while a finite dimensional approximation to the 
optimal half-plane filter has been presented in [1]. Moreover, the edge problem is 
not considered in the above papers. 

The paper is structured in the following way. Some preliminaries are stated in 
Section 2; the discrete state-space realization of the image is obtained in Section 3; 
the recursive filtering algorithms are given in Section 4 and numerical results are 
reported in Section 5. 

2. PRELIMINARIES 

Let x(r, s) be the value of the original monochromatic image at spatial coordinates 
(r, s)y where the continuous variables r and s denote the vertical and horizontal 
position respectively. For simplicity, but without loss of generality, it is assumed 
that (r, s) E [0, l ] 2 . Because of the smoothness assumption it is possible to define 
a state vector composed of the signal and its partial derivatives with respect to r 
and s 

X(r,s) = 
дnx(r,s) 

•, n = 0,1, •. .,n; а = 0,1,. дrn-адsа 
(2.1) 

If n is the maximum order of derivatives taken into account, the dimension of 

X(r, s) is IV = (h + l)(h + 2)/2. If r = r(u) = r 0 + yuy s = s(u) = s0 + (3u, the 

following equation can be written 
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X(r(u), .s(u)) = (J;X(r(u), s(u)))y + (§;X(r(u), -(«)))/?, (2.2) 

the dot denoting the derivative with respect to u. Moreover, by direct computa
tion 

—X(r(u), s(u)) = ArX(r(u), s(u)) + BWr(r(u), s(u)), 
ür 

үX(r(u), s(u)) = AsX(r(u), s(u)) + BWs(r(u), s(u)), 

(2.3) 

(2.4) 

where: 

As = 
0 

Ar = к 
0 в = 

matrices Ar and As have dimensions IV x IV, blocks Ar and A's have dimensions 
(IV — (n + 1)) x IV and are composed of 0 and 1 elements in a suitable position, 
matrix B has dimensions IV x (n + 1), the dimension of the null block and of 
the identity matrix are (N — (n + l))x(n-f 1) and (h + 1) x (h + 1) respectively. 

vectors Wr(r(u), s(u)) and Ws(r(u), s(u)) have dimension n-f-1 and are given 
by 

Wr(r(u), s(u)) = 

W,(r(u), s(u)) = 

, a = 0,1,...,n\ , 
Qrň-a+lQsa 

dň+1*(r, s) 
dr f t-"<9s«+ 1 ' ' ' ' 

Each row of blocks A'r and A's contains only one element equal to 1 whose position 
follows from the order of the elements of X(r, s) as stated by (2.1). For example 
consider A'r and denote by X,(r, 5, i), i = 1 . . . , 1V, a generic element of X(r, s). By 

definition of state vector one has that if 1 < i < (N — (h + 1)), then -^-Xi(r, s) = 
K/(r, s) is still an element of X(r, s) and by (2.3), K/(r, s) is given by the product 
of the ith row of A'r with X(r, s). This means that the 1 element on the ith row of 
Ar lies on the /th column. Fully analogous considerations hold for A's. The following 
Lemma holds. 

L e m m a 1. Matrices Ar and As commute. 

P r o o f . By the way Ar and As are defined, one has that both ArAs and AsAr 

are composed of 0 and 1 elements and that each non null row of ArAs and AsAr 

contains only one element equal to 1. If the ith row, i = 1,. . . , TV, of ArAs is not 
null, then the product of the zth row of ArAs with X(r, s,t) gives the /th component 
Xi(r, 5,0, 3 < / <IV,ofX(r, s) withX/(r, s) = £ (£X t-(r , 5)). If the value of row 
index i is so high that ^ : ( ^ - ^ i ( r , s)) i -^( r , 5 ) , then the ith row of ArAs is null. 
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Analogously, if the ith row, i = 1 , . . . , N, of AsAr is not null, then the product of this 

row with X(r, s,t) gives Xh(r, s,t), 3 < h < N, with K,.(r, s) = f-s(^Xi(r, s)). 

If the value of row index i is so high tha t js-(jr'Xi(r, s)) £ X(r, s), then the ith row 

of AsAr is null. As £ (jjjX^r, s)) = £ ( £ X.-(r, s ) ) , it follows / = ^ This means 

that for each i, either the i th rows of ATAS and AsAr are both null, or both contain 

the 1 element on the same column; hence ArAs = AsAr. D 

Using (2.3) and (2.4), equation (2.2) can be written in the following form 

X(r(u), s(u)) = (7A + /3A')X(r(u), s(u)) + B[jWr(r(u), s(u)) + pWs(r(u), s(u))]. 

Lemma 1 implies eAreA* = e(
Ar+At\ so tha t formal integration of (2.5) with respect 

to u between u0 and u\ results in the following relation between the s tate vector 
evaluated at two generic points (r0 + C^o, $o + 0u0) and (To + ( t i i , s0 + 9u\) 

X(r0 + (UUS0 + eUl) = eiCAr-rBA.)(u^u0)X^Q + ^ SQ + ^ Q ) ( 2 g) 

+ / \«A*+9A'Hu*-r)B[CWr(r0 + CT,s0 + OT) + OW,(r0^ 
Juo 

By the stochastic assumption, the integral term in (2.7) is intended as a stochastic 
Wiener integral . 

3 . DISCRETE STATE SPACE REALIZATION 

Denote by (i,j) the pixel of the sampled image with vertical coordinate iAr and 
horizontal coordinate jAs, where A r and As denote the distance between two adja
cent pixels on a same column or on a same row respectively. If the image is sampled 
with an equal number TTI of pixels on each row and on each column, the normalized 
values of A r and As are both equal to l / ( m — 1). The true value of the sampled 
image at pixel (i,j) is denoted by Xij and the state vector evaluated at the same 
pixel is denoted by X{j. 

Provided tha t the pixels (i,j), (i— 1, j ) and (i,j — 1) are not separated by edges, 
the relations between Xij, -Yt-i,j and ^ i , j - i c a n be obtained from equation (2.7) 
putting u0 = 0, u\ = 1 and with a suitable choice of 7 and f3. 

(Г-

X .. , (s) 
s.J-1 C j 

• • • X 

Fig. 1. Spatial structure of the dependence scheme. 
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The following equations are obtained 

Xij = H.Xij-i + wft, (3.1) 

Xij = HrXi-u + W$, (3.2) 

where: H. = e^A'A-\ Hr = e<*A'>. and 

W ^ = / e A ' A ' ( 1 - T ) A 5 B W . ( i A r , ( j - l ) A , + A, r )d r 1 (3.3) 
JO 

W& = / e A A ^ 1 - T ) A r J B W r ( ( i - l ) A r + r A r , j A s ) d r . (3.4) 
JO 

From the stochastic assumption and using (3.3) and (3.4), it can be shown that 
Wii and Wii are zero mean white gaussian random fields with the following prop-
erties 

£[w$wQT] = M J imQ., £ [ < r ) < f ] = k>tj,mQr, £[w$wlf] = o, 
(3.5) 

with 

Q, = [l J*'*•«-•'))BV.BTe^^-^dr, 
JO 

Q r = / ' C M A ' ( 1 - T ) ) j 3 * r B T c M T A r ( l - r ) ) d r > 

JO 

where ^ r and ^ 5 are diagonal matrices such that 

£[W.(r,s)Wj(rs)} = <M(||(r, s) - (f,s)\\), 

S[Wr(r, s)Wj(fs)} = * r t f ( | | ( r , « ) - ( r > *) | | ) l 

where £[•] denotes the expected value, <5() is the Dirac delta ^ 5 ( t ) , ^ r ( f ) and ̂ t(i) 
are diagonal matrices that can be estimated as functions of the image spectrum [8]. 
Hence {W-• *• } and {W^j } are mutually uncorrelated 2D white noise sequences. 

If an edge occurs between pixels (i,j) and (i — 1, j ) and/or between pixels (i, j) 
and (i, j — 1), equation (2.5) can not be integrated along the corresponding horizontal 
and/or vertical direction because, as a consequence of the inhomogeneity assump
tion, no relation exists between Xij and Xi-ij and/or between Xij a n d A ^ - i . 
Equations (3.1) and (3.2) are then modified as 

Xij = H.(^JXij., + (1 - CW) *JW ) + c< j w # + (1 - #J)W%\ (3.6) 

X., = HMJX^j + (1 - c< j ) x£\) + <# W# + (1 " c&>)<jp), (3.7) 

where c ; j and cjy are coefficients that may be zero or one. According to the 

inhomogeneity assumption, c^s) is one if pixels (ij) and ( i , j - l ) are not separated by 
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an edge and zero otherwise, analogously c\r- is one if pixels (i, j) and (i— 1, j) are not 

separated by an edge and zero otherwise; -Yt-j_i and W{ j are the initial state and 

the initial value of {W{ . } respectively, corresponding to each edge crossed during 

the horizontal scanning along a line and X^ • and VV:j are the initial state and 

the initial value of {W \̂- } respectively, corresponding to each edge crossed during 
the vertical scanning along a column. 

Equations (3.6) and (3.7) work like equations (3.1) and (3.2) respectively, as long 

as c\Sj and cfj are one, namely inside each smooth subregion. If for some pixel 

(i,j) one has c\aJ = 0 (and/or cfj = 0) this means that an edge occurs between 
pixels (i , i) and [i,j — 1) (and/or between pixels (iyj) and (i — 1, j)) , namely that a 
transition occurs between two contiguous smooth subregions; hence, in the light of 
the inhomogeneity assumption, no relation exists between Xij and Xij-\ (and/or 
between Xij and Xi-\j), then a state resetting is performed in equations (3.6), 
(and/or (3.7) ) by expressing Xij as a function of the initial conditions X%: y_i, 

Wi j (and/or X{_\ •, W^j) relative to the stochastic process describing the image 
inside the new smooth subregion. 

Taking into account that the only observed component of the state vector is the 
image signal, the following measure equation can be associated with equations (3.6) 
and (3.7) 

yij = CXij + Vij, (3.8) 

where C is the 1 x IV row vector [1,0,. . . ,0] and Vij is a discrete white gaussian 
noise ~ JV(0,cr^) uncorrelated both with {W{• •'} and {W \̂J- }. System composed of 
equation (3.6), (3.7) and (3.8) constitutes the 2D discrete space-variant state-space 
representation of the image. 

4. THE RECURSIVE FILTERING ALGORITHMS 

4.1. The causal filter 

Given pixel (i, j) on the ith row, let Yij and Y£. be the sets of all the observations 
yij relative to pixels lying on the ith row which are not separated from pixel ( i , i ) 
by an edge and with the additional requirement / < j as for Yij. Denoting by £(./.) 
the conditional expectation, let £(Xij/Yij-\) = X\j and £(Xij/Y{j) = X\j , 
1 < j < m, be the predicted and filtered estimates respectively of Xijy 1 < j < m, 
obtained by applying, on the ith row, the ID Kalman filter to the image ID submodel 
given by equations (3.6) and (3.8); moreover denote by Pij anc- P{j the error 
covariance matrices of X\*J~~ and X\sj respectively. According to (3.6), (3.8) one 
has 

Xt)+ = X%- + K?J(jHj-CXl'J-), (4.1) 

X%~ = BMPSPi + V-tyxftlx), (4-2) 
A'(;.) = P$-CT(CP$-CT + <T2

V)-\ (4.3) 
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It>- = -W.C-^}--! + (1 - c{i>) .Pfj!?,) AfJ- + ci^Q. + (1 - cjj)0?y>, (4.4) 

P$+ = (I-KJ'jQP}}-, (4.5) 

where X{ J^ is the estimate of ^ t j _ i , Pij ls the error covariance matrix of Xij_l} 

and Qij is the covariance matrix of W{j. 

Assuming that -X'i-i.j and P t _ i j , 1 < j < m, have already been computed, their 
optimal previsions to the zth row can be obtained by the prediction equations of the 
ID Kalman filter deriving from (3.7), obtaining 

*lj~ = H^JX^J + (1 " #J)X«$j), (4.6) 
Pij' = MtiJPi-U + (- - <#) PH$J)

 Hr + tfQr + (1 " c\J) Q%\ (4.7) 

where Xi_l • is the estimate of A^_i • , Pi_x ,• is the error covariance matrix of 

Kt_ij. and Qij is the covariance matrix of W{j\ The final 2D estimates XtJ 

and Pj j can be obtained through an optimal combination of X\] , P±j , X\j 

and P f y " . To this purpose let (ijiti)jitt = j . - f i , . . . , j t > / - , with it>i = 0, i = 1 , . . . , m, 
be the coordinates of discontinuity points on the ith row, namely the coordinates of 
those pixels for which X.; ,• is defined and denote by i?,-,• = X: *\ — X{ ,*\ the 1

 # *»j __ *)ji,i *)ji,i i\ji,t 

corresponding initial estimation error. The following Assumption is made. 

Assumpt ion 4 .1 . Each initial estimation error Eijit, jiti = ii,i, • • • , j t ) ^ , is un-
(r) -

correlated with I^i-i ,j and with W± • , j = 1 , . . . , m. 
This assumption is not restrictive, it simply means that at each edge point the 

available estimate X{jf of the initial value X{jf is independent of the way the final 
estimates on the previous row have been computed and of the stochastic terms of 
state equation (3.7). Assumption 4.1 allows us to show that each estimation error 
§ff]+ = Xij - X ^ is uncorrected with iff]' = X{j - x\r]', j = l , . . . , m . 
This can be proved in the following way. For simplicity, but without any loss of 
generality, reference is made to a single smooth subregion starting at the first pixel 
of the generic ith row, hence in the following it is assumed that cf! = cfj = 1. 

From (3.6), (3.7), (3.8), (4.1) and (4.6) it follows J 

iff]- = HrEi-ij + W$, (4.8) 

^J)+ = rt]^ + <j}<j}-^^ (4-9) 

where 
H. - K\'JCHt i L%, I - K\JC = MJ'J. 

Equation (4.9) gives 

$T = * i2o,^ } + 1 ( * & > < ? - e-2fc,«-.*), (4-io) 
fc=l 
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where: 
, _ r / if i = o, 
9t™-\ LiJ^- i -4 :? if i>0, 

•O'.M «>* »0'.*) '(>.*) »•* '0'.*) 

By Assumption 4.1 one has £[E^)(EJJ~)T) = 0, moreover W$ is in the "future" 

with respect to Ei-\j so that -7._i,j is a linear function of quantities independent 

of W$, hence, taking also into account (3.5) one has £[W$(EJJ~)T] = 0. Analo-
(r) 

gously Vitk is in the "future" with respect to -E't-i.j and is uncorrelated with W{• • 
by assumption, so that £[*.•.*(££J~)T] = 0. It follows ^ [ ^ + ( ^ K ) T ] = 0. 

This implies that the estimates Xy} and XY}~ and the relative error covariance 

matrices P\*] and P^- respectively, can be optimally combined to obtain Xij 
and Pi j according to 

&j = PiAiPft-)-1*?]- + ( ^ • ) + ) - 1 A S ) + ] . (4-H) 

Pij = [(pth-1 + (Pi!j)+r1]-1- (4-i2) 

The proposed causal filtering algorithm is given by equations (4.1)-(4.7), (4.11), (4.12) 
applied to each row; it is referred to as the Causal Space-Variant Filter (CSVF). 

4.2. T h e semicausal filter 

Denote by Kt-* the smoothed estimates £{Xij /Y*A on the generic ith row and by 

Pij the relative error covariance matrices corresponding to the image ID submodel 
(3.6), (3.8). The semicausal filter is obtained by replacing the filtered estimates 
X # + with X$')* and i £ . ) + with ./£>. The smoothed estimates X$8)* and the 

- j - j *jj i>j - j 
(s)* -

relative error covariance matrices P^ • , 1 < j < m, can be obtained through the 
ID fixed-interval smoother equations associated with equations (4.1)-(4.5), 

Xtf = X^ + Aij^-X^,), (4.13) 

Pi'/ = P^ + Aij^-P^Af,, (4.14) 

Aij = ̂ hiP^HTiP^-1- (4-15) 

Denote by X*j the final 2D semicausal estimates obtained by also exploiting equation 
(3.7) and by P*j the relative error covariance matrices and, as for the CSVF, assume 

that X*_Xj and P / _ i j , 1 < j < fh have already been computed equations (4.6) and 
(4.7) are then replaced by 

Mp-= HM'JXUJ + (i-c<r])x!Lr}j), (4.16) 
PiP~= nM'JPUj + (l-cfyFMj) HT + c\"]Qr + (\-c$)Q%\ (4.17) 
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Analogously to the CSVF, the final semicausal estimates Xt* • and P*- can be 

obtained through an optimal combination of X\r*' and P\rJ with Xt- • and Pf *• . 

To this purpose, defining the final semicausal estimation error as E*j = Xij — X*j , 
Assumption 4.1 is reformulated as: 

Assumption 4.2. Each initial estimation error -£; ; , , , ji,i = ji,i,- •• >Jiti> is u n " 

correlated with -£,*_. i j and with W^v (or W,-j ), j = 1 , . . . , m. 

Assumption 4.2 allows us to show that also _?x- • = Xi j — Xa- • and E\r*'~~ — 

X t j — Xt- • , j = 1 , . . . , m, are uncorrelated. For simplicity, but without any loss 
of generality, reference is again made to a single smooth subregion starting at the 
first pixel of the generic ith row. 
From (3.7) and (4.16) it readily follows 

Ei'p-^HrEZ^j + wft. (4.18) 

To show that E^* is uncorrelated with E\8J*, consider equation (4.13) and replace 

Xij+i w- t-1 -^s expression deriving from (4.13) written for j + 1; in the equation so 
" (s)* 

obtained repeat the same procedure for X\ -+2 and so on till j = fh. Taking into 

account that (4.13) is started with Xt-m* = X t-m
+ , one has 

m - j - l 

X ( f = Xf*)+ + ">_ ( A ; A . , i + 1 • ••Aij+t).[X^t+1 - XW-+1]. (4.19) 

1=0 

Using (4.1), (4.2) and (4.10), it is found that 

3+1 

Y(*)+ V ( 5 ) - — r w F 0 ( a ) -L W r ( ' ) w/(*) n(5) ,, ^ 
Jfcrrl 

'(5) (r*uAя) + Ч>+l+í(CW!.+t+l + ViJ+t+í), (4.20) 

where: 

K(a) cH*W - r(,) 

A » J + < + l O W » * . W + . . o ) - X .o+1+i.o)' 
A ( , ) (7W * ( , ) - T ( ' ) 
A .J+<+i0 7 1»*»-(i+«.,) - 1.-0+«+i.,)' 

A < J + / + l ° i i « U i ( i + « . , ) - 11«0+<+l.D-

From (4.19) and (4.20), the following expression for E^s)* is found 

fh—j — l 

£<*)• _ £•(».)+_ " p A r ( s ) P 0 ( I ) 
^ ' - J _ a*J 2 _ ,/1,(i.O1»(i+«+,,o)/!'i,0 

£=0 
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m-j-lj+l 

1=0 k = l 

rfx—j — l 

- E ^ .o^w+i^wSUi+^+^i ) ] . (4-21) 

where yl t | i i4 t j+ i • • •i4i|J-+/=f>4i(ii0-

Replacing E\j into (4.21) with its expression given by (4.10), using Assumption 4.2 

and arguing as for the CSVF, it is straightforward to see that £[E\j (E\J )T) = 0. 

Assumption 4.2 also implies £[E^/\E\p')T] = 0. Moreover W$ and W^\l+l 

are in the "future" with respect to E*_x • , so that Ef_i ,• is a linear function of 

quantities independent of W*>k and W^^l.l) hence, taking also into account (3.5) 

one has £[W$(E\p~)T] = 0 , £[W^l+l{^p')T] = 0. Analogously viyk is in 

the "future" with respect to E^_x- and is uncorrelated with W\r- and H^*-+^+1 by 

assumption, so that S[viyk(E\p")T] = 0. It follows ^[^J|
5/*(^Sj

r/)"")T] = 0. 

Hence, the final semicausal estimates X$j and P*j can be obtained with formulas 
analogous to (4.11), (4.12): 

xtj = E.:i[(^-*)")-i^s*)"+(^>)-i4f]. (4-22) 
Kj = [ ( ^ p T ' + ^ f ) - 1 ] - 1 - (4-23) 

The proposed semicausal filtering algorithm is given by equations (4.1) - (4.5), (4.13) -
(4.17), (4.22), (4.23) applied to each row; it is referred to as the SemiCausal Space-
Variant Filter (SCSVF). 

Foregoing calculations show that the state estimates provided by the CSVF and 
SCSVF are really minimum variance estimates, namely Xij = £(Xij/Yij) and 
X?j = £(Xij/Yij), where Yij and Y}j are suitably defined linear observation 
spaces that can be determined from the filter equations ELS follows. 

Consider at first Yij. The CSVF is such that, at each pixel ( i , j ) , the estimate 
Xij may get information on previous rows only from Xi-ij through equations (4.6), 
(4.7). In turn, Xi-\j may get information on previous rows only through Xi-2j 
and so on backward, till an image edge is met. Further, on any row, each estimate 
X\j is computed exploiting the information carried by all the pixels (i, k) with 
k < j which are not separated from pixel (i,j) by an edge. Therefore, it follows that 
for each pixel ( i , j ) , the associated Yij is generated by the observations relative to 
the ensemble of segments with end-pixels [(i — /, j — ki)1 (i — /, j)], / = 0 , 1 , . . . , Uj, for 
some ki and Uj _! 0, where each segment is composed of pixels not separated from 
pixel (i — l,j) by an image edge. The value Uj is the largest value such that no edge 
is met scanning the j th column from pixel (i,j) to pixel (i — Uj,j)- An example of 
pixels corresponding to observations generating Yij is reported in Figure 2a. In the 
case of images coinciding with a unique smooth subregion, Yij is the linear space 
spanned by all the observations yi}Tn with 1 < / < i, 1 < m < j . Analogously, for 
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each pixel (i, j), the associated Y^j is generated by the observations relative to the 
ensemble of segments with end-pixels [(i — /, j — ki),(i — /,j + mj)],/ = 0,1, . . . , /,-.;, 
for some it/, m/ and /,j > 0, where each segment is composed of pixels not separated 
from pixel (i — /, j) by an image edge. The value Uj is the largest value such that no 
edge is met scanning the jth column from pixel (z, j) to pixel (i — /»,j,j) . Figure 2b 
shows the ensemble of pixels corresponding to observations generating Y*{j, with 
reference to the same situation of Figure 2a. In the case of images coinciding with 
a unique smooth subregion, Y] ,• is the linear space spanned by all the observations 
yi,m with 1 < / < i, 1 < m < m. 

2a 

Fig. 2. Ensembles of pixels corresponding to observations concurring to determine the 
state estimate at pixels A (dotted area) and B (dashed area) for the CSVF (2a) and for 

the SCSVF (2b). 

5. NUMERICAL RESULTS 

The 256 x 256 pixels eight-bit image shown in Figure 3 has been used to test the 
performance of the proposed CSVF and SCSVF. The original has been corrupted by 
zero-mean white gaussian noise with a variance such that the SNR (signal variance/ 
noise variance) resulted to be 8. The noisy picture is reported in Figure 4. The 
procedure for detecting image edges, thus determining the coefficients c\rJ ,and c\*J 

associated with each pixel, has been implemented using the gradient method, as 
described in [7]. In correspondence of each pixel for which cfj and/or q • = 0, the 
following X^j, X^8lXi P°<$j, P^8}1} Q g r ) and Q^ 5 ) have been assumed: 

X^^X^l^lyij 0 ^ f, 
N-l elements 

•Po 0 0 . . . 0 
pO(-) _ p o ( » ) _ 0 Л 0 0 

•• PЯJ 
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Pk = 

m 
2k 

0 

0 

m2k 

0 m 
2k 

<T<V, k = 0 , . . . .». tff^OnOfJ^Q., 

has dimensions where each block Pk, k = 0 , . . . , n , of matrices P^ij and P° j l \ 
(fc + 1) x (k + 1) and represents the initial error covariance matrix of the (k + 1) 
partial derivatives of order k. 

The image has been processed with a model order corresponding to the choice 
h = 1. The numerical simulations have been implemented on an Alpha AXP 3500 
under Open VMS 1.5 Operating System. The Signal-to-Noise Ratio Improvement 
SNRIdb introduced by the filters has been estimated as 

SNRIdb = 101og10 

where £ij is the first component of the estimated state vector (Xij or ^ j ) , namely 
the estimate of the true image signal Xij. 

Filtered images obtained with the CSVF and with the SCSVF are reported in 
Figures 5 and 6 respectively, the values of the SNRI and CPU times are reported 
in Table 1. The first term in the column of CPU times in Tables 1-4 refers to the 
filtering procedure, the second term is the time elapsed for the preliminary processing 
of image edges. 

Fig. 3. Original image. Fig. 4. Noisy image. 

Fig. 5. CSVF restored image. Fig. 6. SCSVF restored image. 
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Table 1, SNRI and CPU Times. 

csvғ scsv 
SNRI d 6 CPU Tirne SNRIdь CPU Time 

4.64 45.20s + 2.16s 5.30 11 m 12.74s + 2.16s 

Table 2. SNRIdb and CPU Times. 

csvғ scsv 
SNRIdь CPU Time SNRIdь CPU Time 

4.64 45.20s + 2.16s 5.30 11 m 12.74s + 2.16s 

Filtered images appear to be very satisfactory. Figures 5 and 6 reveal an effective 
reduction of the observation noise and a good preservation of image edges. Also the 
computat ion t ime results to be modest for both the algorithms . 

6. CONCLUSIONS 

In this paper it has been shown that , s tart ing from general basic modelling assump
tions, two finite-dimensional, minimum variance 2D filters can be defined. The key 
points implying optimali ty are the following. First, the 2D state space represen
tat ion of the image is given by two dynamical equations with independent white 
noise inputs . This allows us to define two ID optimal estimates of the same pixel 
characterized by independent estimation errors . Hence the ID estimates can be op
timally combined according to (4.11), (4.12), or (4.22), (4.23), to yield the final 2D 
minimum variance est imate. The space variant behaviour of the proposed filters is 
obtained by including a s t ructural information about edge locations in the image 
model. In this way, the filter transit ions in correspondence of edge locations are not 
the result of heuristic procedures, but are justified on a theoretical basis in tha t they 
are strictly related to the image model. 

(Received December 11, 1998.) 
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