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OPTIMAL MULTIVARIABLE PID REGULÁTOR1 

J I Ř Í M O Š N A AND P A V E L P E Š E K 

A continuous version of optimal LQG design under presence of Wiener disturbances is 
solved for MIMO controlled plant. Traditional design tools fail to solve this problem due 
to unstability of the augmented plant. A class of all optimality criteria, which guarantee 
existence of an asymptotical solution, is defined using a plant deviation model. This class 
is utilized in design of an optimal state and an error feedback regulator which is presented 
here. The resultant optimal error regulator is interpreted as an optimal multivariable 
matrix PID regulator. 

1. I N T R O D U C T I O N 

This paper deals with s tructure design and parameter setting of an optimal multi-
variable matr ix P I D regulator using LQG optimization . This regulator is a general­
ization of a classical P I D regulator often used in industry control applications . 

According to alternative system theory [14], the optimization problem is described 
as a design of an autonomous causal control system composed from an augmented 
plant and a regulator . T h e augmented plant is a controlled system comprising all 
surroundings relevant to the given problem . Components of the control system are 
mutually connected only via informational relations and they are not influenced by 
the environment . 

There is a large range of l i terature about the output regulation problem, e. g. [4] 
for the latest one. However, they mostly deal with deterministic models. We consider 
a non-astatic stochastic linear /-invariant system, where the nominal output and 
external plant disturbances are modeled by Wiener process represented by a system 
of parallel integrators. According to internal model principle [5], an integration 
feedback must be included in the system in order to guarantee the error to be 
asymptotically zero. 

In this paper, we study a connection between the solution of LQ/LQG optimiza­
tion and design of P I D regulators. We use the results of [7, 13] to derivate a plant 
deviation model. This model is used for defining a class of such optimality criteria 
that allows to design a s tate space feedback regulators. Even if the augmented plant 
is unstable, the s tandard approach of LQG optimization can be used. 

a Th is work was partly supported by the Ministry of Education of Czech Republic under Project 
No. VS97159 and by Grant Agency of the Czech Republic through Grant No. A2147701. 
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In cases, where whole plant state is not measured, the optimal regulator uses its 
optimal estimation. However, this can be complicated by undetectability of some 
states of the augmented plant. Then the estimator is designed using a fact that the 
optimal control law is a specific combination of the linear state variables. 

The resultant optimal error feedback regulator can be interpreted as a matrix 
MIMO PID regulator. We would like to point out that the LQG optimization gives 
both optimal regulator structure and optimal parameter setup. 

2. PROBLEM FORMULATION 

Consider an augmented plant of the controlled plant and a Wiener model of the 
surroundings described by 

x = A x + B -u + G-w + r '£ (1) 

w = A - £ (2) 

y = Cx (3) 

yM = Cx + H-w, (4) 

where x £ IRn is state of the controlled plant (1) and u £ IRr y £ IRP are its control 
input and output, respectively. Further, w £ IRm is vector of Wiener disturbances, 
and £ £ JRq is an absolutely random fictitious process with zero mean and known 
covariance which models all randomness in the controlled plant. The additional 
variable yM £ 1RP represents a measured output available for control. Block scheme 
of the augmented plant is shown in Figure 1. 

It is supposed that the dimensions of control input and controlled output are 
equal. Furthermore, nonsingularity of the dynamic matrix A and full rank of the 
gain matrix CA"1B are assumed. 

The following text deals in detail with both the full information feedback design, 
where yM corresponds to the augmented state (x) w), and the error feedback design, 
where yM is the control error e* = y — y#. 

We look for such a controller that realizes a causal control law 

u(t) = tffrWfpMj-iiflM)) (5) 

and guarantees the best behavior of the control system for given conditions. Asymp­
totic solution of the LQG optimization is not feasible, because the controlled aug­
mented plant is not stabilizable due to presence of the generator of Wiener distur­
bance (2). In most cases variance of the error e grows to infinity and value of the 
standard quadratic optimality criteria becomes unlimited. 

The need to define another class of quadratic optimality criteria which removes 
this unpleasant property is simplified by definition of a deviation model of the aug­
mented plant [13]. The deviation model is obtained by the following transformation 
of the plant state 

xE = x + A " 1 • (G - B • L) • w3 (6) 
where . , 

L = - (C • A " 1 • JB) • (JET - C • A " 1 . G). (7) 
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Fig . 1. Block scheme of the augmented plant. 

Then the plant deviation model is given as 

xE = A xE + B -uE + TE • £ 

e = C-xE. 

The input uE is defined as deviation 

uE = u — UN 

of input u from its nominal trajectory 

UN = —L - w. 

(8) 
(9) 

(Ю) 

( H ) 

An optimal state feedback regulator for the plant deviation model can be obtained 
by applying standard tools of LQG optimization for optimality criterion 

J= lim E í j j í" (x'E-Q-xE + u'E.R-uE)dt\, (12) 

where Q > 0 and R > 0. 
A class of quadratic optimality criteria which guarantee existence of a solution of 

the LQG problem for the augmented plant (1)~(4) is defined by utilizing equivalence 
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of the plant deviation model and the augmented plant. This class is obtained by 
substitution of the transformations (6) and (10) to the criterion (12). Then the 
criterion evaluating performance of the augmented plant can be expressed in a form 

J = lim E 
tp—•Foo 

{— í " (e' Qee + (u + Lw)' R(u + Lw)dt\ , (13) 

where Qe = C'QC. Since we have assumed controllability and observability of 
the controlled plant, providing Qe > 0 the solution of the optimization for the 
criterion (13) yields an optimal state feedback regulator. Note that a similar way of 
the selection optimally criterion was used for solving SISO deterministic tracking 
problem, see e.g. [12], 

3. OPTIMAL LQG REGULATOR 

Due to unstability of the augmented plant, the standard design tools can not be used 
directly. However, the solution can be obtained using equivalence of the deviation 
model and the augmented plant. 

Assume that solution of the algebraic Riccati equation relevant to optimality 
criterion (12) exists. Then the optimal state feedback regulator for deviation model 
(8) - (9) is obtained using standard tools [3] as 

u*E = -LE -xE. (14) 

Design of the optimal feedback regulator for measured output T/M = (x,w) follows 
from transformations (10) and (6) and has a form 

u* = - (L + LE • A " 1 (G-BL)) W-LE-X. (15) 

Now, we discuss the error feedback regulator in detail. From the separation 
theorem, the optimal error feedback regulator for measured output T/M = e is given 
as 

u* = uN - LE -xE, (16) 

where 

uN(t) = E{t i^(0 |e(0 , / ) ,w(0,0} (17) 

£E(t) = E {^(016(0 ,0 ,^(0 ,*)} (18) 

are estimations of uN and XE produced by an optimal estimator. This design of 
an estimator removes the problem of nondetectability of some states of the aug­
mented plant. The estimator produces estimations of the nominal output uN and 
the deviation state XE which are observable through error e. 

Since we assume (CA~lB) to be nonsingular, the output matrix C must be of 
full row rank. This allows us to find such a regular transformation that the output 
matrix of the system has a form 

C = [IP 0] , (19) 
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where Ip is an identity matrix with dimension p. 
Hence we can rewrite the plant deviation model (8) for UE = u — uN as 

è 
x e 

= 
. A 2 , l 

A i , 2 

A2,2 . 
e + B i 

. ß 2 

B i 

в2 

líjV + 
Г E д 

ГE,2 
i. (20) 

The dynamic model of the nominal control uN is obtained by differentiation of 
equation (11). After substitution (2) into (11), the behavior of the nominal control 
can be described as 

uN = -L- A-i. (21) 

Equations (20) and (21) represent a suitable model for estimation of xe and uN. 
From the assumption of observability of (C, A) and nonsingularity of matrix A, it 
can be concluded that the state of the estimation model is observable. 

Using the estimation model, we define a fictitious measurement 

z = e- A M -e-Bi-u. (22) 

After substitution of e from (20) into (22), the variable z can be expressed as 

z = Ai ) 2 • xe - JSi • uN + T ^ i • £. 

Using (20), (21) and (23), the estimation model can be rewritten as 

Xe 

ÙN 
= 

A2,2 
0 

-в2 
0 

Xe 

UN 

+ " A 2 i i 

0 
-B2 

0 
e 
u 

> - . - - B i ) 
xe 

UN 

+ í 2, 

+6 

(23) 

(24) 

(25) 

where £i and £2 are absolutely random processes with zero mean and covariance 
matrices as 

COV fьЄi IAr' P , IAA'I' E,2 

COV Є ь Ь 

covfa,f- = r-?.l rkl' 
(26) 

An optimal estimator for the estimation model (24) and (25) and the noise co-
variance matrices (26) are obtained by standard design tools in a form 

xe 

üN 

L2.2 -B2 1 [ &e 1 , [ A2,i B2 1 [ e 1 
0 0 J [ «JV J •** [ 0 0 j [ « J 

+ K-(z-z) (27) 

z = Ai>2 • xe - B i • uN) (28) 

where the innovation (z — z) was derived from (23) and (28) as 

(z — z) = e - Ai,i -e — Bi-u — Ai ) 2 • xc + .Bi • uN. (29) 
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The optimal regulator (16) is given by the gain matrix LE- If we denote the first 
p columns of the state regulator gain matrix LE as Le and the remaining block as 
LXJ the regulator can be rewritten as 

u* = г/jv - Lx • xe — Le (30) 

The optimal error feedback regulator with inputs u and e and output u* is rep­
resented by equations (27) and (30). The recommended control u* is optimal in 
open-loop control. Thus the LQG regulator can be used in an open-loop as an 
advisor in the control system with variable structure of the plant (see Figure 2a). 
This can be used for: elimination of wind-up effect, as e. g. in [2]. 

o 
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\ > »• 
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LQG n 
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LQG n n 
< Эptimal PID Controlleг ^ 

a) b) 

Fig. 2. Structure of LQG and PID control. 

4. OPTIMAL PID REGULATOR 

Here, we assume that every recommended control is realized, which means that 

u = u (31) 

Then, after substitution (31) into (27), we obtain the optimal feedback regulator as 
shown in Figure 2b. The following text deals with a relation between this and a PID 
regulator. 

Denoting the last p rows of the innovation gain matrix K as K2 and the remaining 
block as K\, the optimal regulator (27) and (30).can after substitution of (31) into 
(27) and some calculations be rewritten in a form 

xe = ARti-xe + Bitti-e + Ki-ě 

ůN = AR}2 - xe + BRt2 - e + K2 - é 
Le -e, u = —Lx • xe + û/v 

(32) 

(33) 

(34) 
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AR,\ = A2,2-K\ •A1,2-(B2-K1-B\)-LX 

AR2 = —K2 • Ai o + K2 • B\ • Lx 
35 

BR,i = A2,\-K\-A\,\-{B2-K\-B\)Le 

-5fi,2 = — K2 • Ai?i + K2 - B\ • Le. 
If the matrix Aj^i is nonsingular, then p eigenvalues of the regulator (32)-(34) are 
zero. They can be interpreted as p parallel integrators in the error feedback. Such 
regulator, according the internal model principle [5], guarantees robust servomech-
anism of control system. 

The regulator (27) and (30) can be easily written as a matrix MIMO PID regu­
lator, after using following substitutions 

xe = xD - A ^ \ • BR1 • e (36) 

uN = Ul + ARt2 • A ^ \ • xe - [AR)2 • A ^ \ • Ki - K2j • e, (37) 

where AR^ is assumed to be a nonsingular matrix. After (36) and (37) are sub­
stituted into (32)-(34) and some simplifications we obtain the matrix MIMO PID 
regulator as 

(38) 

(39) 

(40) 

(41) 

(42) 

where up is proportional, uj integrational and uD derivative control component and 

KP = -Le - AR,2 • AR\ K\+K2 + Lx- AR\ • BR,\ 

(43) 

uP = KP • e 

Tj Ù! = e 

тD 
• xD + xD = BD e 

uD = cD. xD 

u* = Up +U! + UDì 

-AR,2 • AR\ • AR\ • вR1 

Ti = (Bfí,2 - A Я ) 2 • A л \ BR,I) 

тD 
= —-A-R,l 

вD = -AŘ\{Ki + A-R\ BR,I) 

cD 
= Aд,2 • ARl — Lx. 

Here, the matrix Kp is a proportional and KD = CDBD a derivative feedback 
gain matrix. Matrices Tj, TD are integrational and derivative matrix time constant, 
respectively. 

This structure of the optimal error feedback regulator was expected. However, 
the structure of the matrix derivation block is unusual. If we rewrite it in a Jordan 
form, we obtain (n— p) scalar derivators. Time constants of these derivators are given 
by the eigenvalues of TD. Input of the derivators is a linear weighted combination 
of the error. The derivative control action is then given by a linear combination of 
the individual output derivator components. 
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5. EXAMPLE 

Here, we shown an example of the proposed LQG optimal control design. Consider 
a stable plant of a third order with two inputs and two outputs, where 

-1 0 0 " 1 0 " 
A = "o -\ 0 , в = o \ 

0 0 - 1 _ 0 1 _ 

' 1 1 0 ' 
0 1 1 

,н = ' - 1 
0 

0 0 " 
- 1 0 , г = 

0 0 -1 " 
, G = 0 0 -\ ) 

0 0 - 1 

0 0 0 
-1 

" 1 0 0 " 
0 0 0 , A = 0 1 0 
0 0 0 0 0 1 _ 

c = 

The generalized disturbance w represents reference signals of outputs y and exo-
disturbances of the controlled plant. Diagonality of the disturbance generator matrix 
A guarantees a mutual independence of the components of the disturbance vector 
w. 

In this case, the solution of equation (7), which determines the nominal control 
(11), is given by matrix 

" - 1 0.5 - 1 ~ 
0 -0.5 - 1 

L = 

Defining the optimality criterion (12) as 

r t F 

J = lim E I — / ((y - yR)f • (y - yR) + (u - uN)' • (u - uN)) dt } . 
ÍF-+OQ l t F Jo J 

the gain matrix of the optimal regulator (15) for measured state of the augmented 
plant is given as 

" 0.4825 -0.0404 -0.0798 
0.3425 0.5369 -0.1618 Le = 

Finally, the calculation of parameters of the matrix MIMO PID regulator (38) -
(42) yields 

KP = -1.8991 -0.2793 
-0.6739 -1.8811 , Tľ 

-0.4340 -0.0181 
0.2849 -0.6222 

TD = 1.4609, B = [ -0.0003 0.5023 ] , CD = 
0.8233 
0.7855 

As there is less information available for the PID regulator then for the state 
regulator, its control quality is lower. In this example, the optimality criterion value 
of the state regulator is J * t a t e = 0.831, and of the PID regulator is Jp j D = 1.503. 
Responses of the plant variables u, y to a unit step of w are shown in Figure 3. Both 
regulators, state and PID one, were used. 

Difference between control quality of the state and the error feedback control 
increases when the plant is not stable. This fact will be demonstrated in the next 
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example with an unstable plant. The plant has the same quadratic form [10] of all 

transfer functions between outputs and inputs as the stable plant. Two transfer 

functions have the same quadrat ic form if and only if the absolute values of their 

zeros and poles and gains are identical. The most different results are obtained for a 

"conjugated" plant with zeros and poles of all transfer functions which lie opposite 

to poles and zeros of the stable plant in the complex plane. 

l/я, = 1(0 УR2 = Цђ V = l(ť) 

y\ 

// 

—— PID r gulator 
- - - Stat r gulator 

2/2 

щ 

Щ 

F i g . 3. Responses of control system to an input step on exo-disturbances. 

"Conjugated" plant is created by changing signs of matrices A and C. T h e n the 

value of the opt imal i ty criterion of the state regulator is Jstate = 7.997 and of the 

error regulator Jpro = 20050.830. T h e difference in quality between control of a 
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stable and an unstable plant with state regulator is shown in Figure 4. 

VRг = 1(*) УR2 = 1(*) 

У\ 
( . 

— Stable plant 
- - - Unstable plant 

У2 

Fig. 4. Responses of control system with state regulator and stable/unstable plant to an 
input step on exo-disturbances. 

6. CONCLUSIONS 

In this paper, solution of a continuous version of the LQG problem under presence of 
Wiener disturbances was shown. As a result of the optimization for error regulation, 
a structure and a parameter setup of a matrix MIMO PID regulator was obtained. 
It can be proven that the matrix MIMO PID regulator guarantees a servo robustness 
of the control system. 

Authors experience [8] shows that in most cases the complexity of the error feed­
back regulator structure can be reduced without a significant loss of quality. Para­
metric optimization of the regulator structure can also provides information about 
the quality loss for the reduced regulator structure. 

Discrete version of the presented problem can be solved the same way [9]. 

(Received December 22, 1997.) 
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