Andrea Marková-Stupňanová

T-law of large numbers for fuzzy numbers

Persistent URL: http://dml.cz/dmlcz/135357

Terms of use:

© Institute of Information Theory and Automation AS CR, 2000

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://project.dml.cz
The notions of a t-norm and of a fuzzy number are recalled. The law of large numbers for fuzzy numbers is defined. The fuzzy numbers, for which the law of large numbers holds, are investigated. The case when the law of large numbers is violated is studied.

1. DEFINITIONS

1.1. Triangular norms, T-addition of fuzzy quantities

Since the law of large numbers for fuzzy numbers is based on the T-sum of fuzzy quantities, we recall some important results concerning t-norms.

Definition 1. A triangular norm (shortly t-norm) T is a non-decreasing, associative and commutative $[0, 1]^2 \to [0, 1]$ mapping that satisfies the boundary condition $\forall x \in [0, 1], T(x, 1) = x$.

Definition 2. A continuous t-norm T is called Archimedean if

$$\forall x \in]0, 1[, \quad T(x, x) < x.$$

Note some well-known t-norms. The strongest t-norm is minimum $T_M(x, y) = \min(x, y)$. On the other hand, the weakest t-norm is drastic product T_D defined as follows

$$T_D(x, y) = \begin{cases}
\min(x, y) & \text{if } \max(x, y) = 1, \\
0 & \text{elsewhere.}
\end{cases}$$

Continuous Archimedean t-norms can be divided into two classes: strict and nilpotent. An example of a strict (i.e. continuous, strictly increasing on $[0, 1]^2$) t-norm is the algebraic product T_p, and an example of a nilpotent t-norm (Archimedean, continuous, not strict) is the Lukasiewicz t-norm $T_L(x, y) = \max(0, x + y - 1)$.

1This research was supported by the grants VEGA 1/4064/97 and VEGA 2/6087/99.
We recall that fuzzy quantity \(A \) is a fuzzy subset of the real line. The addition of fuzzy quantities is based on a given t-norm \(T \), following Zadeh's extension principle, by

\[
A \oplus_T B(z) = \sup_{x+y=z} (T(A(x), B(y))), \quad z \in \mathbb{R}
\]

where \(A, B \) are given fuzzy quantities. If \(T \) is an Archimedean continuous t-norm with additive generator \(f \) then the addition of fuzzy quantities can be expressed as follows

\[
A \oplus_T B(z) = f^{(-1)} \left(\inf_{x+y=z} (f \circ A(x) + f \circ B(y)) \right), \quad z \in \mathbb{R},
\]

where \(f^{(-1)} \) is the pseudoinverse of \(f \), defined by

\[
f^{(-1)}(x) = f^{-1} \left(\min(f(0), x) \right), \quad x \in [0, +\infty[.
\]

Definition 3. Let \(A_1, \ldots, A_n \) be fuzzy quantities, \(n \in \mathbb{N} \). Then their \(T \)-arithmetic mean \(M_{n,T} \) is defined as follows

\[
M_{n,T}(x) = \frac{1}{n} (A_1 \oplus_T \cdots \oplus_T A_n)(x) := (A_1 \oplus_T \cdots \oplus_T A_n)(nx).
\]

1.2. Fuzzy numbers

Definition 4. A fuzzy quantity \(A \) is called a fuzzy number if it is convex fuzzy subsets of \(\mathbb{R} \) with one modal value only, i.e.

- \(\forall x < y < z \in \mathbb{R}, A(y) \geq \min(A(x), A(z)) \),
- \(\forall a \in \mathbb{R}, A(a) = 1 \).

Any continuous fuzzy number can be written as a triple \(A = (a, F, G) \) where \(F \) and \(G \) are continuous decreasing functions from \([0, \infty[\) to \([0, 1] \), such that \(F(x) = G(x) = 1 \) if and only if

\[
x = 0 \quad \text{and} \quad A = \begin{cases}
F(x-a) & \text{if } x \leq a \\
G(x-a) & \text{if } x > a.
\end{cases}
\]

The functions \(F \) and \(G \) will be called the shape functions.

A special case of a continuous fuzzy number is a LR-fuzzy number, i.e., continuous fuzzy number with bounded support.

Definition 5. A fuzzy quantity \(A \) is a so called LR-fuzzy number \(A = (a, \alpha, \beta)_{LR} \) if the corresponding membership function satisfies for all \(x \in \mathbb{R} \)

\[
A(x) = \begin{cases}
L \left(\frac{x-a}{\alpha} \right), & \text{for } a - \alpha \leq x \leq a, \\
R \left(\frac{x-a}{\beta} \right), & \text{for } a \leq x \leq a + \beta, \\
0 & \text{else},
\end{cases}
\]

where \(L \) and \(R \) are the left and right membership functions, respectively.
T-law of Large Numbers for Fuzzy Numbers

where \(a \) is the peak (modal value) of \(A \), \(\alpha > 0 \) and \(\beta > 0 \) is the left and the right spread, respectively, and \(L \) and \(R \) are decreasing continuous functions from \([0, 1]\) to \([0, 1]\) such that \(L(x) = R(x) = 1 \) iff \(x = 0 \) and \(L(x) = R(x) = 0 \) iff \(x = 1 \).

Note that, if shape functions \(L \) and \(R \) are linear, i.e., \(L(x) = R(x) = 1 - x \), we will speak about triangular, or linearly fuzzy number \(A = (A, \alpha, \beta) \).

1.3. The law of large numbers for fuzzy numbers

Definition 6. [2] Let \(A \) be a given fuzzy number. Let \(D \) be a subset of \(\mathbb{R} \) and \(\overline{D} \) be the complement of \(D \). The grade of possibility of statement \("D \) contains the value of \(A" \) is defined by

\[
\pi(D) = \sup_{x \in D} A(x).
\]

The grade of necessity of the statement \("D \) contains the value of \(A" \) is defined by

\[
N(D) = 1 - \pi(\overline{D}).
\]

Fullér [2] introduced the law of large numbers for special \(LR \)-fuzzy numbers and \(t \)-norms bounded by the Hamacher product \(t \)-norm.

Theorem 1. (The law of large numbers, [2]) Let \(A_n = (a_n, \alpha, \alpha), n \in \mathbb{N} \) be symmetric triangular fuzzy numbers and let \(T \leq T_{H_0}, \) where \(T_{H_0}(x, y) = \frac{xy}{x+y-xy} \) (whenever \((x, y) \neq (0, 0) \)) is the Hamacher product. If \(a = \lim_{n \to \infty} \frac{a_1 + \cdots + a_n}{n} \) exists, then for any \(\varepsilon > 0 \)

\[
\lim_{n \to \infty} N \left(a^{(n)} - \varepsilon \leq M_{n,T} \leq a^{(n)} + \varepsilon \right) = 1,
\]

\[
N \left(\lim_{n \to \infty} M_{n,T} = a \right) = 1,
\]

where \(a^{(n)} = \frac{a_1 + \cdots + a_n}{n} \).

However, note that Fullér's law of large numbers is not defined correctly. He requires (in his proof) that conditions (1) are equivalent to condition \(\lim_{n \to \infty} M_{n,T}(z) = \chi_a(z) \), what is not true. See the following example.

Example 1. Let \(A_i \) be crisp fuzzy numbers \(A_n = \chi_{a_n}, a_n = (\frac{1}{2})^n, n \in \mathbb{N} \). The limit of the arithmetic means of peaks \(a_i \) is equal to zero, \(\lim_{n \to \infty} a^{(n)} = 0 \) and the \(T \)-arithmetic mean of fuzzy numbers \(A_i, i = 1, \ldots, n \), is for arbitrary \(t \)-norm \(T \) defined by \(M_{n,T}(z) = \chi_{a(n)}(z) \). However \(\lim_{n \to \infty} M_{n,T}(z) = 0 \neq \chi_0(z) \) whenever \(z = 0 \).

Hence, we have to define the law of large numbers for fuzzy numbers as follows:

\[
\lim_{n \to \infty} \frac{1}{n} \left(A_1 \oplus_T \cdots \oplus_T A_n \right)(z) = \begin{cases}
1 & \text{if } z = a, \\
0 & \text{otherwise,}
\end{cases}
\]
where \(A_n, n \in N \) are fuzzy numbers with peaks \(a_i \) and \(a = \lim_{n \to \infty} \frac{a_1 + \ldots + a_n}{n} \).

In the same paper Fuller showed that for \(T_M (T_M(x,y) = \min(x,y)) \) the law of large numbers is violated. Note that the law of large numbers (2) with respect to \(T_M \) (and then for all \(t \)-norms) holds only for every special fuzzy \(LR \)-fuzzy numbers \(A_n = (a, \alpha_n, \beta_n)_{LR} \) such that

\[
\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} a_i = 0 \quad \text{and the same for the right spreads.}
\]

On the other hand the class of sequences of fuzzy numbers such that the law of large numbers holds with respect to the weakest \(T \)-norm \(T_D \) is very large. It contains, e.g., all sequences \(\{A_n = (a, \alpha_n, \beta_n)_{LR} \}, n \in N \} \) of \(LR \)-fuzzy numbers with bounded spreads \(\alpha_n, \beta_n \leq C \), as well as all sequences \(\{A_n = (a, F_n, G_n), n \in N \} \) of fuzzy numbers with bounded shapes \(F_n, G_n \leq F, n \in N \), where \(F \) is shape function) and unbounded support, etc.

2. \(T \)-LAW OF LARGE NUMBERS FOR FUZZY NUMBERS

Recently, Hong [4] has shown that to each shape function \(L : [0,1] \to [0,1] \) there exists a concave shape function \(L^* \) such that \(L^* \geq L \).

Lemma 1. For any additive generator \(f \) of a strict \(t \)-norm and for any shape function \(F \) there exist a shape function \(F_j \) such that \(F_j > F \) and \(f \circ F_j \) is convex.

Proof. Let \(f \) be a generator of a strict \(t \)-norm. Then \(f \circ F \) is increasing continuous function. By the same arguments as used by Hong in [4], there exists a convex function \(F^* \leq f \circ F \). Put \(F_j = f^{-1} \circ F^* \). Then \(F_j \geq f^{-1}(f \circ F) = F \) and \(f \circ F_j = F^* \) is convex.

Lemma 2. For any nilpotent \(t \)-norm \(T_1 \) there exists a strict \(t \)-norm \(T_2 \) such that \(T_1 \leq T_2 \).

The proof is obvious. If we realize that \(T_L \leq T_p \), it is enough to apply Mesiar's transformation principle [11].

Theorem 2. \((T\text{-law of large numbers})\) Let \(A_n = (a, \alpha_n, \beta_n)_{LR}, n \in N \) be \(LR \)-fuzzy numbers with bounded spread sequences, i.e., \(\alpha_n \leq c, \beta_n \leq c, n \in N \), for some \(c > 0 \). Then the law of large numbers holds with respect to any continuous Archimedean \(t \)-norm \(T \), i.e.

\[
\lim_{n \to \infty} \frac{1}{n} (A_1 \oplus_T \ldots \oplus_T a_n) (z) = \begin{cases}
1 & \text{if } z = a, \\
0 & \text{otherwise.}
\end{cases}
\]

Proof. Let \(T \) be a strict \(t \)-norm and let \(L_f \geq L, R_f \leq R \) be shapes such that the composites \(f \circ L_f \) and \(f \circ R_f \) are convex (existence of \(L_f, R_f \) is ensured by Lemma 1). Then \(A_n \leq B_n = (a, c, c)_{LR}, n \in N \). It is obvious that

\[
\frac{1}{n} (A_1 \oplus_T \ldots \oplus_T A_n) (a) = 1 \quad \text{for all } n \in N.
\]
Further, for $z \neq a$, say for $z \in]a, a + c]$, we have by [10, 11]
\[
\frac{1}{n} (A_1 \oplus_T \cdots \oplus_T A_n) (z) \leq \frac{1}{n} (B_1 \oplus_T \cdots \oplus_T B_n) (z)
\]
\[
= f^{-1} \left(n \cdot f \circ R_f \left(\frac{z - a}{c} \right) \right) \to 0.
\]
For $z > a + c$, \(\frac{1}{n} (A_1 \oplus_T \cdots \oplus_T A_n) (z) = 0 \). The case when $z < a$ is similar.

We have proved that the law of large numbers holds for arbitrary strict t-norm. As far as it holds for any weaker t-norm, by Lemma 2 it holds for any nilpotent t-norm, too.

Theorem 2 can be easily generalized to the case of LR-fuzzy numbers $A_n = (a, \alpha_n, \beta_n)_{L_n, R_n}$ such that $\alpha_n \leq c$, $\beta_n \leq c$, $L_n \leq L_f$, $R_n \leq R_f$, $n \in N$.

The requirements of Theorem 2 are sufficient conditions only. In the following example the spreads of incoming fuzzy numbers are unbounded.

Example 2. Let $A_n = (0, \sqrt{n}, \sqrt{n})$, $n \in N$ be linear fuzzy numbers. Consider the Lukasiewicz t-norm T_L. Then
\[
M_{n, T_L} = \frac{1}{n} (A_1 \oplus_{T_L} \cdots \oplus_{T_L} A_n) = \frac{1}{n} (0, \sqrt{n}, \sqrt{n}) = \frac{1}{n} A_n = \left(0, \frac{1}{\sqrt{n}}, \frac{1}{\sqrt{n}} \right)
\]
and
\[
\lim_{n \to \infty} M_{n, T_L} = \chi_0.
\]

In the next example the shape functions are not bounded by any shape function.

Example 3. Let $A_n = (0, 1, 1)_{L_n, L_n}$, $n \in N$ be LR-fuzzy numbers with the shape functions $L_n(x) = 1 - x \sqrt{\ln(n+3)}$. The limit function
\[
L(x) = \lim_{n \to \infty} L_n = \begin{cases}
1 & x \in [0, 1[\\
0 & x = 1
\end{cases}
\]
is not a shape function. Consider the Lukasiewicz t-norm T_L. Then
\[
\frac{1}{n} (0, 0, 0) \leq \frac{1}{n} (A_1 \oplus_{T_L} \cdots \oplus_{T_L} A_n) \leq \frac{1}{n} (A_n \oplus_{T_L} \cdots \oplus_{T_L} A_n).
\]
Hence for $x \neq 0$
\[
\frac{1}{n} (A_n \oplus_{T_L} \cdots \oplus_{T_L} A_n) (x) = \max \left(0, 1 - n|x|\sqrt{\ln(n+3)} \right),
\]
then
\[
\lim_{n \to \infty} M_{n, T_L} = \chi_0,
\]
i.e., the law of large numbers holds.

In the following example the spreads and the shape functions are unbounded.
Example 4. Let $A_n = (0, \ln(n+3), \ln(n+3))_{L_n L_n}$, $n \in N$ be LR-fuzzy numbers with shape functions L_n as in previous Example 3. $L_n(x) = 1 - x \sqrt{\ln(n+3)}$. Consider the Lukasiewicz t-norm T_L. Then using the same way as in the previous example we can show

$$\lim_{n \to \infty} M_{n, T_L} = \chi_0,$$

i.e., the law of large numbers holds.

For continuous fuzzy numbers $A_n = (a, F, G)$, $n \in N$, with unbounded supports the law of large numbers holds, too.

Theorem 3. Let $A_n = (a, F, G)$, $n \in N$ be fuzzy numbers with unbounded support, i.e., $\text{supp} A_n = (-\infty, \infty)$. Then the law of large numbers (2) holds with respect to any continuous Archimedean t-norm T.

Proof. Let T be a strict t-norm and let $F_f \geq F, G_f \geq G$ be shapes such that the composites $f \circ F_f$ and $f \circ G_f$ are convex. Then $A_n \leq B_n = (a, F_f, G_f)$, $n \in N$.

By [12] for all $z \in \mathbb{R}$ we have

$$\frac{1}{n} (A_1 \oplus_T \cdots \oplus_T A_n) (z) \leq \frac{1}{n} (B_1 \oplus_T \cdots \oplus_T B_n) (z)$$

where

$$F_f^{(n)}(z) = \left(a, F_f^{(n)}(nz), G_f^{(n)}(nz) \right) \rightarrow (a, 0, 0),$$

for all $x > 0$, similarly for $G_f^{(n)}$.

By the same arguments as in the previous proof, the law of large numbers holds for any nilpotent t-norm, too. \qed

The requirement of equal peaks is not a necessary condition, too. See the following example.

Example 5. Consider the Gaussian fuzzy numbers

$$G(\mu_n, \sigma_n^2) \sim A_n(x) = e^{-\frac{(x-\mu_n)^2}{\sigma_n^2}}, \quad n \in N,$$

we can be write as triples $\left(\mu_n, F(\sigma_n^2), F(\sigma_n^2) \right)$, where $F(x) = e^{-x^2}$, and the product t-norm T_p. Then by [10]

$$M_{n, T_p} = \frac{1}{n} (A_1 \oplus_{T_p} \cdots \oplus_{T_p} A_n)$$

$$= \left(\frac{\mu_1 + \cdots + \mu_n}{n}, F(\sigma_1^2 + \cdots + \sigma_n^2)(nx), F(\sigma_1^2 + \cdots + \sigma_n^2)(nx) \right),$$
where
\[F(\sigma_1^2 + \cdots + \sigma_n^2)(nx) = e^{-\frac{n^2}{\sigma_1^2 + \cdots + \sigma_n^2}}. \]

If exists
\[\mu = \lim_{n \to \infty} \frac{\mu_1 + \cdots + \mu_n}{n} \quad \text{and} \quad \lim_{n \to \infty} \frac{n^2}{\sigma_1^2 + \cdots + \sigma_n^2} = \infty \]
then the law of large numbers holds. As an example, take \(\mu_n = \frac{1}{2n} \), \(n \in \mathbb{N} \) and \(\sigma_1^2 = \sigma_2^2 = \ldots \).

Theorem 4. Let \(A_n = (a_n, F, G) \), \(n \in \mathbb{N} \), and let an Archimedean continuous \(t \)-norm \(T \) with additive generator \(f \), such that \(f \circ F \) and \(f \circ G \) are convex, be given. Let
\[
\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} a_i = a \in \mathbb{R};
\]

\[
b = \lim_{n \to \infty} \left(\sum_{i=1}^{n} a_i - na \right) = \lim_{n \to \infty} \sum_{i=1}^{n} (a_i - a), \quad |b| \in [0, \infty];
\]

\[
c = \begin{cases}
(f \circ F)'(0) & \text{if } b > 0 \\
(f \circ G)'(0) & \text{if } b < 0
\end{cases}.
\]

Then the law of large numbers (2) holds.

Proof. Suppose that \(b > 0 \). Then there is some \(n_0 \in \mathbb{N} \) such that for all \(n \geq n_0 \), \(\sum_{i=1}^{n} a_i > na \). Then by [12]
\[
\frac{1}{n} (A_1 \oplus_T \cdots \oplus_T A_n)(a) = (A_1 \oplus_T \cdots \oplus_T A_n)(na)
\]
\[
= f^{-1} \left(n \cdot f \circ F \left(\frac{\sum_{i=1}^{n} a_i - na}{n} \right) \right).
\]

Now
\[
\lim_{n \to \infty} \frac{f \circ F \left(\frac{\sum_{i=1}^{n} a_i - na}{n} \right)}{\frac{1}{n}} = (f \circ F)'(0) \cdot b = cb = 0
\]
and consequently
\[
\lim_{n \to \infty} f^{-1} \left(n \cdot f \circ L \left(\frac{\sum_{i=1}^{n} a_i - na}{n} \right) \right) = f^{-1}(0) = 1.
\]

For \(z < a \) we get
\[
\frac{1}{n} (A_1 \oplus_T \cdots \oplus_T A_n)(z) = (A_1 \oplus_T \cdots \oplus_T A_n)(nz)
\]
\[
= f^{-1} \left(n \cdot f \circ F \left(\frac{1}{n} \sum_{i=1}^{n} a_i - z \right) \right) \to 0
\]
and similarly for \(z > a \).

However, we cannot drop the requirement of the Archimedean property for \(T \).
Theorem 5. Let $A_n = (a, \alpha, \beta)_{LR}$, $n \in N$ and let T be a continuous t-norm. We denote

$$A(z) = \sup \{c \in [0,1]; c \leq A_1(z), T(c,c) = c\}.$$

Then

$$\lim_{n \to \infty} \frac{1}{n} (A_1 \oplus_T \cdots \oplus_T A_n)(z) = A(z).$$

Proof. Following [1], if $T(c,c) = c$ and $A_1(z) = c$, then $\frac{1}{n} (A_1 \oplus_T \cdots \oplus_T A_n)(z) = c = A(z)$ for all $n \in N$. If $A_1(z)$ is not an idempotent element of T, then it is contained in some interval $[\alpha_k, \beta_k]$ from the ordinal sum decomposition of T. Then by [1] and Theorem 2, $\lim_{n \to \infty} \frac{1}{n} (A_1 \oplus_T \cdots \oplus_T A_n)(z) = \alpha_k = A(z)$. □

Corollary 1. Let $A_n = (a, \alpha, \beta)_{LR}$, $n \in N$ and let T be a non-Archimedean continuous t-norm. Then the law of large numbers does not hold.

3. SUFFICIENT CONDITIONS FOR THE T-LAW OF LARGE NUMBERS IN SPECIFIC CASES

Let $A_n = (a, \alpha_n, \beta_n)_{LR_n}$. Let T be an Archimedean t-norm with an additive generator f. Then the validity of the T-law of large numbers for $(A_n)_{n \in N}$ is equivalent to the validity of the condition:

$$\lim_{n \to \infty} n f^*(A^{(n)}) \geq f(0) \quad \text{for all } x \neq 0,$$

where f^* is some convex lower bound of an additive generator f of T, and $A^{(n)}$ is the lowest concave upper bound of centralized fuzzy numbers A_1, \ldots, A_n we are dealing with, i.e.,

$$A^{(n)}(x) \geq A_i(x - a_i), \quad \forall x \in R, \forall i \in \{1, \ldots, n\}.$$

Proposition 1. The sequence of linear fuzzy numbers $(A_n)_{n \in N}$, $A_n = (a, \alpha_n, \beta_n)$, $n \in N$, obeys the T_p-law of large numbers whenever $\lim_{n \to \infty} \frac{n}{c_n} = \infty$, where $c_n = \max(\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_n)$.

Proof. It is immediate that

$$A^{(n)} = \left(0, \max(\alpha_1, \ldots, \alpha_n), \max(\beta_1, \ldots, \beta_n) \right)_{\frac{a_n}{c_n}, \frac{b_n}{c_n}}.$$

Recall that $f(x) = -\log x$ is a (convex) additive generator of t-norm T_p. Then the condition (3) is fulfilled whenever

$$\infty = \lim_{n \to \infty} -n \log \left(\max \left(0, 1 - \frac{x}{a_n}\right)\right) = \lim_{n \to \infty} -n \log \left(\max \left(0, 1 - \frac{x}{b_n}\right)\right)$$
for any \(x > 0 \), i.e.,

\[
\lim_{n \to \infty} -n \log \left(\max \left(0, 1 - \frac{x}{c_n} \right) \right) = +\infty.
\]

If \(\{c_n\}_{n \in \mathbb{N}} \) is bounded, then the latest equality is obvious (and then \(\lim_{n \to \infty} \frac{n}{c_n} = \infty \)). For \(c_n \to \infty \), it is

\[
\lim_{n \to \infty} -n \log \left(\max \left(0, 1 - \frac{x}{c_n} \right) \right) = x \lim_{n \to \infty} \frac{n}{c_n} = +\infty
\]

(for all \(x > 0 \)) iff

\[
\lim_{n \to \infty} \frac{n}{c_n} = \infty.
\]

Remark. Note that \(\lim_{n \to \infty} \frac{n}{c_n} = \infty \) if and only if \(\lim_{n \to \infty} \frac{n}{\alpha_n} = \lim_{n \to \infty} \frac{n}{\beta_n} = \infty \).

We can generalize Proposition 1 in several directions. Firstly, let \(f^* \) be a convex lower bound of an additive generator \(f \) of a \(t \)-norm \(T \) (if \(f \) is itself convex, we can take \(f^* = f \)). Then the conclusions of Proposition 1 with respect to the \(T \)-law of large numbers are valid whenever \((f^*)'(1^-) < 0 \). Recall that in the case of \(T = T_p \), \((- \log 1^-)' = -1 \). For the Hamacher product \(T_{H_0} \), \(f(x) = \frac{1}{x} - 1 \) and \(f'(1^-) = -1 \).

For the Yager \(t \)-norm \(T_p^Y \), \(p \in]0, \infty[\), \(f_p(x) = (1 - x)^p \). In the case \(p \leq 1 \), \(f_p \) are concave and the corresponding \(f^* \) is, e.g., \(f^* = 1 - x \) with \((f^*)'(1^-) = -1 \). In all these cases Proposition 1 can be applied. However, for \(p > 1 \), \(f_p'(1^-) = 0 \), and Proposition 1 cannot be applied.

Proposition 2. The sequence of linear (triangular) fuzzy numbers \((A_n)_{n \in \mathbb{N}} \), \(A_n = (a, \alpha_n, \beta_n) \), \(n \in \mathbb{N} \) obeys the \(T^p \)-law of large numbers for a given \(p > 1 \) whenever \(\lim_{n \to \infty} \frac{c_n}{\beta_n} = \infty \), where \(c_n \) is defined as in Proposition 1.

Proof. It is enough to deal with unbounded sequence \(\{c_n\}_{n \in \mathbb{N}} \). Then

\[
\lim_{n \to \infty} n \left(1 - \left(\max \left(0, 1 - \frac{x}{c_n} \right) \right) \right)^p = x \lim_{n \to \infty} \frac{n}{c_n^p}, \quad x > 0
\]

and

\[
x \lim_{n \to \infty} \frac{n}{c_n} \geq 1 = f_p(0) \quad \text{for all } x > 0
\]

is equivalent to

\[
\lim_{n \to \infty} \frac{n}{c_n^p} = \infty.
\]

Note that Proposition 2 can be derived directly from results of Kolesárová [5, 6]. Indeed, following [5, 6], it is

\[
\frac{1}{n} \left(A_1 \oplus_{T_p^Y} \cdots \oplus_{T_p^Y} A_n \right) = \left(a, \frac{1}{n} \left(\sum_{i=1}^{n} \alpha_i^q \right)^{1/q}, \frac{1}{n} \left(\sum_{i=1}^{n} \beta_i^q \right)^{1/q} \right),
\]
where $\frac{1}{p} + \frac{1}{q} = 1$. Then the T_p^Y-law of large numbers is equivalent to the equalities

$$\lim_{n \to \infty} \frac{1}{n} \left(\sum_{i=1}^{n} \alpha_i^q \right)^{1/q} = \lim_{n \to \infty} \frac{1}{n} \left(\sum_{i=1}^{n} \beta_i^q \right)^{1/q} = 0. \quad (4)$$

It is a matter of simple calculations to show that equalities (4) are fulfilled whenever

$$\lim_{n \to \infty} \frac{\alpha_n^p}{n} = \lim_{n \to \infty} \frac{\beta_n^p}{n} = 0,$$

or equivalently

$$\lim_{n \to \infty} \frac{n}{c_n} = \infty.$$

On the other hand, we can generalize also the shapes L and R. If L^* and R^* are the corresponding concave upper bounds, the non-zero value of derivatives $(f^* \circ L^*(0^+))'$ and $(f^* \circ R^*(0^+))'$ allows to apply Proposition 1.

(Received October 8, 1999.)

REFERENCES

Andrea Marková–Stupňanová, Slovak University of Technology, Radlinského 11, 813 68 Bratislava. Slovakia.
e-mail: andy@vox.svf.stuba.sk