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K Y B E R N E T I K A — VOLUME 36 ( 2000) , NUMBER 6, P A G E S 6 7 1 - 6 8 7 

THE SIMILARITY OF TWO STRINGS OF FUZZY SETS 

GABRIELA ANDREJKOVÁ 

Let A, B be the strings of fuzzy sets over x> where x 1S a finite universe of discourse. 
We present the algorithms for operations on fuzzy sets and the polynomial time algorithms 
to find the string C over x which is a closest common subsequence of fuzzy sets of A and 
B using different operations to measure a similarity of fuzzy sets. 

1. INTRODUCTION 

The problems of automatic (or partially automatic) corrections of texts are still 
topical and very important. The mistakes in the text can have special properties 
and those properties can be used in the construction of correcting algorithms. For 
example, following mistakes can be made in typing some string on the keyboard: (1) 
Typing a different character, usually from the neighbour area of the given character, 
(2) inserting a single character into the source string, (3) omitting (skipping) any 
single source character, (4) transposition of neighbour elements. 

In the most frequent mistakes, a character from the area on the keyboard adjacent 
to the required character was typed instead of the required character. For example, 
the neighborhood of the character / i s the set f = {/, d, g, r, t, c, v}. The sequence of 
sets A = f, r, e, s, c, o belongs to the word fresco. In this case (typing mistakes) 
let us assign membership value (m.v.) to each element of the neighborhood in 
such way that the character itself has m.v. 1 and the m.v.'s of "more erroneous" 
character are smaller than those of the "better one". For example, for set f we have 
M/) = 1, Md) = 0.4, fi(g) = 0.4, fi(r) = 0.2, fi(t) = 0.4, fi(c) = 0.3, fi(v) = 0.3. 
We consider that in the text, it is necessary to find the words which are very close 
to the word fresco. For example, it is possible to consider the sum of m.v.'s of a 
given string as a measure of its similarity of the string to the given word fresco. 
The measure of the similarity of the found words can be different to the length of 
the given word fresco. For example, if the word fresco is found in the text then the 
measure of the similarity to the given word fresco is the length of the word fresco 
(6), if the word tresc is found then the measure of the similarity is 4.4 because the 
symbol t is very close to the symbol /and symbol o is omitted. From the theoretical 
point of view, we have one string of symbols with m.v.'s and one string of sets of 
symbols with m.v.'s and a measure of a closest common subsequence is founded. 

If we consider a very high uncertainty of the words then we can analyze the strings 
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of sets of symbols with membership values, for example fuzzy sets. It is possible to 
consider the described problem as the closest common subsequence problem of the 
two similar strings and its repetition for text of strings. 

The simpler problem - the common subsequence problem of two strings of symbols 
with the same m.v.'s 1, is to determine one of the subsequences that can be obtained 
by deleting zero or more symbols from each of the given strings. Usually, it is 
measured the length of the common subsequence, but we can consider some different 
measures for the common subsequence. The longest common subsequence problem 
(LCS Problem) of two strings is to determine the common subsequence with the 
maximal length. For example, the strings AGJ is a common subsequence and the 
string ALGI is the longest common subsequence of the strings ALGORITHM and 
ALLEGATION. 

D.S. Hirschberg and L.L. Larmore [6] have discussed a generalization of LCS 
Problem, which is called Set LCS Problem (SLCS Problem) of two strings where 
however the strings are not of the same type. The first string is a sequence of 
symbols and the second string is a sequence of subsets of elements with the same 
m.v's 1 over an alphabet Ct. The elements of each subset can be used as an arbitrary 
permutation of elements in the subset. The longest common subsequence in this 
case is a sequence of symbols with maxifnal length. D.S. Hirschberg and L.L. 
Larmore have presented 0(m • n)-time.and 0(m 4- n)-space algorithm, ra,n are 
lengths of strings. The Set-Set LCS Problem (SSLCS Problem) is discussed by D. S. 
Hirschberg and L. L. Larmore [7]. In this case both strings are the strings of subsets 
of elements with the same m.v.'s 1 over an alphabet ft. In the paper [7] is presented 
the 0(m • n)-time algorithm for the general SSLCS Problem. 

In this paper we present algorithms for more general case of the Common Subse­
quence Problem, it means Closest Common Subsequence Problem of two strings of 
fuzzy sets - SSCCS Problem. 

2. BASIC DEFINITION IN FUZZY LOGIC CONNECTIVES THEORY 

A fuzzy set A over some universe of discourse % (which itself is classical set) is 
characterized by its membership function fiA : X ~^ [0,1] C 9?, 5ft the set of real 
numbers and often called fuzzy subset of x- Fuzzy sets are generalized characteristic 
functions. The membership values of elements in fuzzy sets can be considered as 
generalized truth values, i. e, as truth degrees of suitable many-valued logic L. We 
use definitions of connectives and quantifiers of the langauge L via truth functions 
and truth functional conditions according to [3, 4, 9]. 

A binary operation t in the real interval [0,1] is a t-norm if and only if it is (i) 
associative and commutative, (ii) non-decreasing in each argument, (iii) has 1 as 
neutral element, i. e. t(x, 1) = x for all x G [0,1]. A binary operation s in the real 
interval [0,1] is a t-conorm if and only if it is (i) associative and commutative, (ii) 
non-decreasing in each argument, (iii) has 0 as neutral element, i. e. s(x, 0) = x for 
all x £ [0,1]. The £-norms are suitable candidates for conjunctions in many-valued 
logic and the £-conorms candidates for disjunctions. To given any £-norm t, by 
st(#,y) =def 1 ~ t ( l - x, 1 — y) a t-conorm can be defined. 
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A binary operation <p in real unit interval [0,1] is called ^-operator (connected 
to a given it-norm t) iff for all x,y,z G [0,1] the following hold true ($i) x < z -=-> 
<p(y,x) < <p(y,z), ($2) t(x,ip(x,y)) < y, ($3) x < <p(y,t(y,x)). 

If ip is ^-operator which is connected to the it-norm t, then for all x,y G [0,1] it 
holds that (p(x,y) = sup{z\t(x,z) < y}. 

For each £-norm t we denote by At the connective of many-valued logic that 
has this f-norm t as its truth function, similarly for each it-norm t a disjunction 
connective Vt with truth function s t . Let LCS(t) be the denotation for t that is 
lower semicontinuous, it means that for each xo,yo G [0,1] and each e > 0 there is a 
S > 0 such that t(x, yo) > t(xo,yo) — e for all x G (xo - S, xo\. 

Using the ^-operators we can introduce a special kind of a negation function with 
respect to each £-norm t with the property LSC(t) in the following way: nt(u) =def 
cpt(u,0) for all u G [0,1]. 

The basic binary predicate symbol ue" will denote the membership relation of 
elements of the universe of discourse x with respect to the fuzzy subset of x- Let be 
[xeA] =def /J>A(X). 

For any t-norm t which has the property LSC(t) let — t be that (unary) negation 
connective which has n t as its truth function, that means always put [—tH] = 
n t([H]) . For any it-norm t which fulfills LSC(t) by -> t we denote that implication 
connective that has the ^-operator <pt as its truth function. Recall some classical 
logic connectives: 

1. The Godel intuitionistic connectives 

Ac(x,y) =min(x,y), VG(x,y) = max(x,y), ->G(X,V) = y if x > y else 1. 

2. The Lukasiewicz connectives 

AL(X,V) =max(0,x + y- 1), WL(x,y) =min{l,x + y), 
->L(X, y) = min(l, 1-x + y). 

3. The product logic connectives 

AP(x,y) = x.y, Vp(x, y) = x + y-xy, -*P(X, y) = min(l, ^ ) . 

Whole above mentioned operators are called fuzzy logic connectives. Fuzzy logic 
connectives play important role in comparisons of symbols of fuzzy set strings since 
the different results are obtained by different kinds of fuzzy logic connectives. It is 
difficult to determine the optimum operator since there are so many kinds of fuzzy 
logic connectives. 

For the quantifiers, we have considerations independent on the £-norms: 

fJxH(x)} = inf {H(x/a)l {3xH(x)] = sup[#(x/a)] , (1) 
aex aex 

where H(x/a) is the obvious "substitution notation" and it means that the free 
variable x of H has to be given the value a from the universe discourse x-
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3. OPERATIONS ON FUZZY SETS 

For each universe of discourse x a n d each formula H (x) of set theoretic language of 
many-valued logic we denote by {x G xJ-H(x)} or simply by {x|/I(x)} that fuzzy 
set A on x whose membership function \IA is characterized by: IIA(O) = \H(a)] for 
each a e x'i l-e- {x € x\\H(x)} has the characteristic property \ae{x G xl-*-7^)}] = 
[H(x/a)] for all a G X-

For any fuzzy sets A, B and any t-norm t, £-conorm s t and negation function n t 

we define 

1. intersection Tit": AC\t B =d e f {x| At (xeA,xeB)}, 

2. union "Ut": AUtB =d e f {x\\ Vt (xeA,xeB)}, 

3. complement "c£": C„ A =d e f {x\\ - n (xeA)}. 

3.1. Compar i son of two fuzzy sets 

Let C, D be fuzzy sets defined over the same universe of discourse x, i. e. C, D : x -> 
[0,1]. We discuss the following approach to measure how distinct or how similar are 
the fuzzy sets C,D. 

The approach for the comparison of fuzzy sets uses set theoretically oriented tools, 
especially the fuzzified identity = t . 

For any fuzzy sets C, D and any £-norm t with property LCS(t) let 

C Ct D =d e f \/x -r t (xeC,xeD), 

C=tD =d e f A t(C C t D,D C t C). 

The truth degree [C C t D] is a degree of containment of C in D and the truth 
degree [C =t D] is a degree of equality for the fuzzy sets C, D. 

For a readable formulation we use the following denotation for C, D G V(x)> 

- supp(C) = {x G x|MC(x) > 0} = {x G x\[xeA] ± 0} 

- { O D} = d e f {x-e x | [*eC] > [xeD]}, 

- {C^D} = d e f {x G x\[zeC] ¥> l*eD]}, 

- A(C,D) = d e f suP : c G { c > D }{[x£C] - [a:eZ?]}. 

Straightforward calculations for above defined logic connectives give the following 
results: 

1. The Godel intuit ionistic connectives, t = to 

[CCta D] = Mx£{c>D}[xeD] 

[C = t G D] = Mxe{c±D}[xeC Cka D]. 



The Similarity of Two Strings of Fuzzy Sets 675 

2. The Lukasiewicz connectives, t = ti 

[CCtL DJ = 1-A(C,D), 

[C =tL D] = max{0,1 - (A(C, D) + A(D, C))}. 

3. The product logic connectives, t = tp 

[C C t p D] = if {Cn t D) = 0 then 1 else mmxE{c>D} { | f i§[} , 

[C =tP D] = [C C t p D] AP {D C t p C\. 

Modelling the involved connectives for implication and conjunction in our fuzzy 
set theoretic setting via any residuation operator, i. e. any ^-operator (p for impli­
cation and any (left) continuous t-novm t for conjunction, in addition to equality 
degree \C =t D\ also some local degree to which two fuzzy sets C and D are equal 
each other at a point o G v i s given as a number \C = D\(d) defined e.g. in 
analogy with definition of = t , but deleting the universal quantifier V there, i.e. the 
inf-operator. That means we take this local degree of equality as the value 

\C = D\(a) =def t(<rOt(/IC(a),/xD(a)),(/?t(/xD(a),/ic(a)). (2) 

The simple fact that always fJ>c(a) < /J>D(a) or fiD(a) < Hc(a) is the case, i.e. that 
always (pt(iJic(a),fJ>D(a)) = 1 or <£t(/ID(a),^c(a)) = 1, allows to simplify (2) to 

\C = D\(a) = At(^t(/iC(a),/iD(a)),(rOt(/iD(a),^c(a))). (3) 

Thus one has, together with the ^-operator </?t, only to take the min-operator instead 
of the *-norm t to finally find \C = D)\(a). 

Nevertheless one usually also likes to have a number expressing a (unique) degree 
to which C and D are equal to each other in a global sense. For this one has to 
aggregate the partial evaluations 2 and 3 of equality over the whole space x-

On the base of (2) we have the following results for the above defined logic 
connectives if a e C fit D: 

1. The Godel intuitionistic connectives 

\C = D\\G(a) = min{/iC(a),/iD(a)}. (4) 

2. The Lukasiewicz connectives 

1 - fiD(a) 4- //C(a), if nc(a) > /xD(a), 

\C = D\L(a) = { 1 - fic(a) + fiD(a), if fj,D(a) > tic(a), (5) 

1 otherwise. 

3. The product logic connectives 

lO = DMa) = m i n { ^ M ) / ^ } . (6) 
(Hc(a) nD(a)\ 
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There is, however, no unique way to perform these tasks. Perhaps the most preferred 
ways in the engineering community are to take either a so-called optimistic or a 
pessimistic form of aggregation. 

In the optimistic case one prefers to modelize the degree of the statement "C and 
D are equal to each other" by the maximal value of \\C = D\\(x) over x, viz. 

|C = D | = d e f S u p | C = Z)|(x). (7) 
xЄx 

On the opposite, i. e. pessimistic pole, one often uses the formula 

\\C = D\\=áe{mî\\C = D\\(x). (8) 
xЄx 

This degree of equality (8) has a "pessimistic character" because obviously it indi-
cates the worsf case of all the local degrees (2). 

The possibility to get an intermediate value of global equality not as likely to 
cause overestimation or underestimation as (7) or (8) is to take for example the 
average value of all the local equality degrees, i. e. to consider 

\C = D\ = d e f 5 3 \C = D\(x)lcard(X) (9) 
xЄx 

in the case of a finite universe of discourse x o r °f a ^ least a finite support of the 
fuzzy set CU D. It means, in the average case the sum of membership values is very 
important and we will use the sum as the measure of the similarity of two fuzzy sets. 

Straightforward computations give the following results: 

1. The Gödel intuitionistic connectives 

- optimistic case (pessimistic case) 

\\C = D\G =def supæЄ x (infж Є x) {mm{џc(x)ђџD(x)}}, 

- average case 

\C = D\G = d e f Y,xЄx{^n{џc(x),џD(x)}}lcard(x)' 

2. The Łukasiewicz connectives 

- optimistic case (pessimistic case) 

\\C = D\L = d e f s u p ж Є x (infæ6x) {1 - џD(x) + џc(x)ђ 1 - џciľ) + џD(x)}. 

3. The product logic connectives 

- optimistic case (pessimistic case) 

\C = D\P = d e f s u p i e x (infæex) {min { ^ { | } , ^ @ } } . 
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3.2. Algorithms for operations on fuzzy sets 

The most important operations on sets and fuzzy sets are: (1) intersection, (2) 
union and (3) comparison. We will study algorithms for (4) difference of sets. The 
algorithms for computation of new sets by using of above operations on the sets 
depend on representations and data structures applied to sets. Let x be the finite 
set, |x| = s. We will consider two representations only: (a) ordered elements of the 
set, (b) a set without an ordering of elements. 

The algorithms for above operations on sets: 

(a) The elements of the universe of discourse are ordered according some linear 
order. Then any fuzzy set can be represented by 1-dimensional array of the 
length |x|. It is necessary to have m.v.'s of all elements in the fuzzy set (0, 
if element is not in the set). Let A, B be two fuzzy sets represented by two 
arrays A and B. In the case both sets have the elements ordered in the same 
order. 

1. intersection - time complexity O(s): 

for i := 1 to s do C[i] := {A[i] t B[i]}\ 

2. union - time complexity O(s): 

for i := 1 to s do C[i] := {A[i] s t B[i]}\ 

3. comparison - time complexity O(s): 

c := 0; for i := 1 to s do c := c -F \\A[i] = B[i]\\; c := c/8; 

4. difference A-B - time complexity O(s): 

for i := 1 to s do 
if (A[i] > 0) and (B[i] > 0) then C[i] := 0 else 
if (A[i] > 0) and (B[{] = 0) then C[i] := A[i] else C[i] := 0; 

(b) It is possible to represent any element of the universe of discourse by record (if 
it is necessary to remember the names of elements): (e,/j(e)). The fuzzy sets 
can be represented by the arrays of records. The representation is better than 
the first one if the universe of discourse has many elements and the numbers 
of elements in fuzzy sets are small. Let A, B be two fuzzy sets represented by 
two arrays A and B of records, \A\ = a, |i?| = b. 

1. intersection - time complexity 0(a-b): 

for i := 1 to a do for j := 1 to b do if A[i] • e = B[j] • e then 
begin C[i] • e := A[i] • e; C[i] := A[i] • /i^(e) t B[j] • /ijg(e) end; 

2. union - time complexity 0(a • b): 

k := 0; for i := 1 to a do 

for j := 1 to b do begin C[i] • e := A[i] • e; C[i] := A[i] • AM(e) s t B[j] • //B(e) 
end; 

3. comparison - time complexity 0(a • b): 

c := 0; for i := 1 to a do for j := 1 to b do c := c+ \A[i] = B[j]\\; c := c/s; 
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4. difference A-B - time complexity 0(a • b): 

k := 0; for i := 1 to a do begin inc(k)\C[k) := A[i)\ 

for j := 1 to b do if B[j) • e = A[i) • e then dec(k)\ end; 

4. BASIC DEFINITIONS IN STRINGOLOGY 

In this section, some basic definitions and results concerning to CCS Problem, SCCS 
and SSCCS Problem are presented. 

Let fi be a finite alphabet, |fi| = s,1 < 5. In the connection to the fuzzy sets 
fi = X . 

Let A = a\a2.. .am,ai G fi, 1 < i < m be a string over an alphabet fl, where 
|.A| = m is the length of the string A. 

The string C = c\...cp is a subsequence of the string A = o i . . . a m , if a 
monotonous increasing sequence of natural numbers i\ < ... < ip exists such that 
Cj = a\j, 1 < j < p. The string C is a common subsequence of two strings A, B if 
C is a subsequence of A and C is a subsequence of _B. \C\ is the length of the com­
mon subsequence. The classical problem to find the longest common subsequence is 
defined and solved in Hirschberg [5]. In the classical problem, each element in the 
string is in his position as full member. But sometimes we are not sure about it in 
texts. The element should be in his position with 70%, it means, the element is in 
his position with some membership value. It means, we can suppose that in some 
position should be one element of some set of elements with membership values. 

Let HA(a>i) G (0,1), 1 < z < m, be some membership values of elements in the 
string A. The pair (A, PA) is the string A with the membership function PA, m-string 
pA for short. Val(pA) is a measure of fiA defined by the (10). 

Val(nA) = E^/x^a.). (10) 

The string pC = (C,pc) is a subsequence with the membership function pc, 
shortly m-subsequence of the m-string \iA if C is a subsequence of the string A 
and 0 < pc(ct) < AM^/J* for 1 < t < p. The m-subsequence pC is a closest 
m-subsequence if Val(p,C) = S^=1/ir;(cJ) = S ^ x / M ^ . ) . 

The string pC is a common m-subsequence of two m-strings JJ,A and pB if pC is 
a m-subsequence of pA and pC is a m-subsequence of pB. 

The string pC is a closest common m-subsequence of the m-strings pA and pB if 
pC is a common m-subsequence with the maximal value Val(pC). It means, if pD 
is a common m-subsequence of the strings /aA and p,B then Val(pD) < Val(pC). 

If pC is a closest common m-subsequence of the m-strings, pA and \iB then 
pc(ct) = mm{pA(akt),PB(bit)}, for 1 < t < p. 

The CCS Problem: Let pA and pB be m-strings. To find a closest common 
m-subsequence of the m-strings pA and /LB, CCS(ptA,pB) for short. 
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The MCCS Prob lem is to find the measure of CCS (pA,pB), MCCS for short. 
It means, MCCS(pA,pB) = Val(CCS(pA,pB)). 

Algorithms for CCS and MCCS Problem Andrejkova are described in [2], 

0.9 0.9 0.6 0.5 0.2 0.8 0.4 0.6 0.5 

A= © © © © © © © © © 

B= © © © © © © & 
0.6 0.6 0.3 0.4 0.9 0.5 0.6 

Fig. 1. The closest common m-subsequence of two m-strings A and B. 

Example 1. ft = {a, b, c}, A = abaabacab, m = 9, PA = (.9, .9, .6, .5, .2, .8, .4, .6, .5), 
B = abcdbcb,n = 1,PB = (.6, .6, .3, .4, .9, .5, .6). The string C = abcb is a sub­
sequence, D = abbcb is the longest common subsequence of the strings A and B, 
and pE, E = abcb,pE = (-6, .9, .4, .5) is the closest common m-subsequence of the 
m-strings pA and /LB, Val(pE) = MCCS(pA, pB) = 2.4 as it is shown in Figure 1. 

Let P(ft) be the set of all subsets of ft. A string of sets B over an alphabet 
ft, set-string for short, is any finite sequence of subsets from P(ft). Formally, B = 
B1B2.. .Bn,Bi G P(ft) , l < i < n, n is the number of sets in B. The length 
of the symbol string described by B is N = Ef=1|i?i|. A string of symbols C = 
C1C2 . . . cp, Ci G ft, 1 < i < p, is a subsequence of symbols (subsequence, for short) of 
the set-string B if there is a nondecreasing mapping F : {1,2, . . .,p} —> {1 ,2 , . . . , n} , 
such that 

1. if F(i) = k then Ci G Bk, for i = 1,2,... ,p 

2. if F(i) = k and F(j) = k and i ^ j then Ci 7- Cj. 

Let A = A\... Am,B = Bi... Bn, 1 < m < n, be two set-strings of sets over 
an alphabet ft. The string of symbols C is a common subsequence of symbols of A 
and B is C a subsequence of symbols of A and C is a subsequence of symbols of the 
set-string B. 

As similar as for strings, let define f-set as a set with membership function defined 
on its elements. More exactly, if ft is universe of discourse, f-set A over ft is fuzzy 
subset of ft which is characterised by its membership function \LA : ft -> [0,1]. 

Let fiBi ? i = 1,2,.. . , n be the membership functions of the sets Bi, i = 1,2,.. . , n 
in the string B. It means, fiB = \iB\[iB2 .. ./LBn- pB is the /-set-string B of /-sets 
Bi,i = 1,2,... ,n with the membership functions ps{, /-set-stringpB for short. The 
weight of the f-set B with membership function /i£ is 

W{B) = Y,^{x). (11) 
xeB 

A string pC is an m-subsequence of the /-set-string pB if (1) pC is the subse­
quence of symbols of the set-string B and (2) if c = Ci, Ci G Bk then pc(c) < pBh (

c*)-
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The m-string \iC is a common m-subsequence of the /-set-strings \iA and \xB if 
fiC is m-subsequence of [iA and \iC is m-subsequence of jiB. 

The string fiC is a closest common m-subsequence of the /-set-strings /i^4 and 
\xB if /xC is a common subsequence with maximal value Val(fiC). Note that fiC is 
not in general unique. 

The SSCCS Problem: Let [iA^B be two /-set-strings. The Set-Set Closest 
Common Subsequence problem of the /-set-strings \LA and /LB, SSCCS(fiA^fiB) for 
short, consists of finding a closest common m-subsequence fiC with the maximal 
value Val(fiC). 

The MSSCCS Problem consists of finding the measure of SSCCS /-set-string, 
MSSCCS(fiA,fiB) for short. 

It means, MSSCCS(M,A»B) = Val(SSCCS(fiA,fiB)), 

0.7 0.3 0.6 0.4 0.5 0.6 0.3 0.8 

x-{© ®}{® ® ®}{®®®\ 

B={® ® ©K® © ®M® ® ©K© ©} 
0.4 0.3 0.5 0.7 0.6 0.8 0.9 0.5 0.7 0.5 0.3 

Fig. 2. The closest common subsequence of two /-set-strings A and B. 
Example 2. Let A = {a,d}{c,a,d}{e,6,a},m = 3, \IAX = (.7, .3),IM2 = (-6, .4, 
.5), / M 3 = (.6,.3,.8),£ = {d,e ,c}{a,d,e}{M,c}{M},n = 4. \kBx = (.4, .3, .5),/XB2 

= (.7, .6, . 8 ) , / / B 3 = (-9, .5, .7),/ij34 = (.5, .3). The membership values are described 
according to the named order in the set. For example, / ^ ( a ) = 0 .7 , /^ (d ) = 0.3. 
Then MSSCCS(/x.4),/i/3) = 2.4 as it is shown in Figure 2. 

5. ALGORITHM FOR MSSCCS PROBLEM WITH GODEL CONNECTIVES 

The basic idea of the algorithm starts from the definition of MSSCCS Problem. 

MSSCCS(/JLA,IJLB) = max/zc{Val(fiC) : fiC is the common m-subsequence 

of /z.4and fiB}. (12) 

In the following part of the paper we will use the /-sets only and for simpler 
description we will omit the symbol \i in the names of sets. 

A flattening of a sequence of sets is defined as a concatenation, in order of 
the sequence, of strings formed by some permutation of individual elements of 
the sets in the sequence. For example, the flattening of the /-set-string A in 
Example 2 is A/n = ddbaceba,HAfn = (.3, .7, .5, .4, .6, .6, .3, .8) and so is Afi2 = 
daacbbae, /J>Afi2

 = (*3> -7, .4, .6, .5, .3 , .8, .6). 
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If we have some flattenings of both set-strings then it is possible to apply the 
MCCS algorithm, Andrejkova [2]. It is necessary to compute MCCS values of all 
pairs of all flattenings both set-strings but it is too much time consuming. 

If we have the flattening of one set-string and the second is as set-string then it is 
possible to use the MSCCS algorithms. But it is necessary to compute MSCCS value 
for all flattenings of one string. It is to much time consuming too. Both algorithms 
have the exponential time complexity. 

It is possible to use the following algorithm of polynomial time complexity. The 
algorithm works in two steps: 

1. to create the string of symbols for each of set-string; each set can be encoded 
as the string of all permutations of its elements (the length of such string is 
k2 - 2 • k + 4, k is the number of elements in set [10]); for example, the shortest 
m -string of elements in the /-set-string A in example 2 is dadcabcdbcbeabeab 
and so is adacabcabcebaebae. 

2. to apply the MCCRS algorithm, Andrejkova [1] for the two in the previous step 
constructed m-strings (each element of the /-set can be used once at most). 

The algorithm works in polynomial time: 0(M2 • IV2 • K), where M = E^LJA*!, 
IV = £?_.-_ |J?J'|, and K is the number of elements in closest common restricted 
subsequence. 

We formulate the following algorithm with the better time complexity according 
to Hirschberg idea [7]. The algorithm uses the intersection, union, equivalence and 
difference of fuzzy sets and checks subsets of used and free elements. 

5.1. Description of the simple algorithm 

The algorithm extends the strings of fuzzy sets one by one set and finds the closest 
common subsequence for the partial substrings. For each substring it memorizes free 
elements and used elements with their membership values of the current fuzzy sets 
in the strings. If we analyze the /-sets A{ and Bj from the common elements point 
of view then we can consider three parts as shown in Figure 3. Part I contains free 
elements of the /-set A{ and from the part I we can choose elements for prolongation 
of the closest common subsequence. Analogously for part III of the /-set Bj. Part 
II contains common elements but the /-subset actually used has a new membership 
function and it is /-subset of the /-set represented by part II. Since Godel logic 
connectives will be used throughout the subscripts indicating this will be omitted. 

We will now present a rigorous formulation of the above description. 
For convenience, we define .An = -3n = 0-
We define Ent(i,j) to be the set of quintuples (k,Ff,Fu,Gf,Gu) such that: 

(1) k is the measure of 7, a common m-subsequence of some flattening of Ai... A{ 
and some flattening of B\... Bj, defined by (10). 

(2) free f-set Ff C A{ is the /-set of elements of Ai which are not used by 7, 

(3) free f-set Gf C Bj, is the /-set of elements of Bj not used by 7, 
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Fig. 3. Common and free elements of /-sets Ai and Bj. 

(4) f-set of used elements Fu C Ai is the /-set of elements of At used by 7, and 

(5) f-set of used elements Gu C Bj is the /-set of elements of Bj used by 7. 

Example 3. (0.8, {(a, 0.4), (b, 0.5)}, {(c, 0.5)}, {(e, 0.3)}{(d, 0.3), (c, 0.5)}) is in 
Ent(l,2), (1,0, {(a,0.7), (d,0.3)}, {(d,0.6), (e,0.8)}, {(a,0.7)}) is in Ent(2,l) and 
(1.2, {(&,0.5)}, {(c,0.5), (a,0.4)},{(d,0.6), (e,0.8)}, {(a,0.4)}) is in Ent(2,2) for / -
set-strings in Example 2. 

We refer to such quintuple as an entry. The measure of the CCS of some flattening 
of Ai... Am and some flattening of B\... Bn is then, by definition, the largest k such 
that (k,Ff,Fu,Gf,Gu) G Ent(m,n) for some /-sets Ff,Fu,Gf and Gu. Ent(0,0) 
contains just one entry, namely (0,0,0,0,0), while Ent(i,j) can be computed dy­
namically from Ent(i — l,j) and Ent(i,j — 1). The problem is that the cardinality 
of Ent(i,j) could become very large, making such an algorithm exponential in the 
worst case. 

Let e = (k,Ff,Fu,Gf,Gu) G Ent(i - l,j) and FS,FU C Fs be the /-set with 
the following property: xeFs 4-> xeFu and ^FU(X) < fiFa(x) = /i^.(x). It means, 
the /-set F s is the maximal /-set that has the same elements as the /-set F u , but 
membership values of elements in Fs are the same as in the /-set Ai. 

Let S be any subset of Ai f) Gf. We say, e vertically generates e' G Ent(i,j) iff 

1. e' = (k + W(S) - W(AinGu) + W(S'), A{ -S,Fu,Gf- S,Gu) for any subset 
S' of Ai fl Gs, W(S') > W(Ai n Gu), or 

2. e' = (k + W(S), Ai -S,Fu,Gf - S,Gu) and for each subset S' of A{ fl Gs is 
W ( S ' ) < W ( - 4 i n G u ) . 

The element e' G Ent(i,j) and it is shown by the following: If a is common m-
subsequence with a measure k = Val(a) of the flattening of A\.. .-4;_i and some 
flattening of Bi...Bj, where F / C A{-i and G/ C t _?j are free /-sets, and /? 
is a m-sequence consisting of the elements of S C Ai D Gf written in any order, 
then a/3 (having measure k + Val(S)) is common subsequence of a flattening of 
Ai ...Ai and a flattening of f ? i . . . Bj, with free /-sets Ai — S and Gf — S. The 
used elements from /-set Gu can be used with some better membership values and 
it is evaluated by the comparison of the weights of the sets Ai n Gs and Ai D Gu. If 
W(Ai fl Gu) < W(Ai fl Gs) then there exists some better using of elements in Ai. 
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Similarly, if (kJFf,FUiGflGu) G Ent(iJ - 1) and S C Ff f) Bj and S' is any 
subset of Bj n F8,W(S') > W(Bj n Fu), we say (k,FfrFu, Gf,Gu) horizontally 
generates (k + W(S) - W(Bj f) Fu) + W(S'), Ff - 5, F u , Bj - 5, Gu) G Fn£(i, j ) or 
(fc-l-IV(S'), Ff - 5 , Fw, Bj - S , Gn) G Ent(iJ) according to the relation W(Bj HFU) < 
I __ W(S'). It means, the following lemma is fulfilled: 

Lemma 1. If e G Ent(i,j) for i + j > 0 then e is generated by some element of 
either Ent(i - 1, j ) or Ent(i,j - 1). 

P roof , e = (k,FfjFu,Gf,Gu) G Ent(iJ), it means e = a/5, /3 is the part of 
elements in AiDBj. According to above construction, the part (3 is the prolongation 
of some element e' G Ent(i - 1, j ) or Ent(iJ - 1). In the part a should be elements 
with higher membership values. • 

The element e G Ent(iJ) is generated from elements in E(i - 1 , j) or Ent(i,j - 1 ) 
using of two sets: the free subset and the used subset of J3j, respectively A{. The 
following algorithm is a dynamic programming algorithm in which the boundary 
conditions are set and then the interval entries are determined: 

Algorithm A. 

for all i do Ent(i, 0) := {(0, Au 0,0,0)} 

for all j doEnt(0J) := {(0,0,0,2^,0)} 

for i :—l torn do 

for j := 1 ton do 

Ent(i,j) := {all entries vertically generated from Ent(i — l , j )} 

(J {ail entries horizontally generated from Ent(i,j — 1)} 

max_fc := the largest k such that (k,Ff,Fu,Gf,Gu) G Ent(m}n) for some 

Ff,Fu,Gf,Gu. 

5.2. Description of the better algorithm 

The above algorithm may be very time-consuming because of too many quintuples 
is necessary to analyze. We will speed the algorithm by eliminating consideration of 
many quintuples. 

If (k,Ff,Fu,Gf,Gu),(k',F'fyF'u,G'f,G'u) £ Ent(i,J), we say that (k,Ff,Fu,Gf, 
Gu) dominates (k\F'f,F'u,G'f,G'u) ((k'^F^FiG^G'j < (k,F,,Fu,Gf,Gu)) if the 
following conditions hold: 

1. d = k - k' > 0, 

2. (w(F'f -Ff)<d and Fu C Fn) or (w(F'u -Fu)<d and Ff C F ; ) , 

3. (w(G'f -Gf)<d and G'u C G U ) or (w(Gu -Gu)<d and G'f C Gf). 
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The relation "•<" is a transitive, antisymmetric and reflexive relation. The el­
ements of Ent(i,j) can be ordered according to relation "^", it means they are 
ordered in chains. The last element of the chain has maximal measure and that is 
very important as can be seen according to the following lemma: 

Lemma 2. Any element of Ent(i,j) which is not maximal with respect to the 
relation "•<" can be discarded during execution of the algorithm without affecting 
the final value of max .k. 

P r o o f . It will be proved by downward induction on both indices i and j . The 
value of max J; is obtained from Ent(m,n) in the last step and all other elements 
may be discarded with no effect. 

Suppose i + j < m + n and e' G Ent(i,j),e' is not maximal. Let e G Ent(i,j) 
be maximal. It means, e' •< e. It is necessary to prove that maximal element of 
Ent(i + 1, j ) or Ent(i,j + 1) which is generated by e' can be generated by e too. 
And the element e' can be discarded. 

Let e = (k,Ff,Fu,Gf,Gu),e' = (k',Ff,Fu,G'f,Gu) and e' vertically generates 

/ ' . / ' should have two forms for some ra-set P C Ai+\ D Gf 

(a) / ' = (.V + W ( P ) - W ( ^ 

if W(Ai+1 n G'u) < W(Ai+\ n G's), or 

(b) / ' = (k'^W(P),Ai+\-mP,P,G,
f-mP,Gu),iiW(Ai+\nG,

u) > W(Ai+1nG's). 

Let S = P n Gf, and / is vertically generated by e. f should have two forms: 
(1) / = (k + W(S) - W(A{+\ n Gu) + W(Ai+\ n Gs), A{+\ -m S, S, Gf -m S, Gu) 
or (2)/ = (k + W(S),Ai+1 -m S,S,Gf -m S,GU). It is necessary to analyze four 
cases to prove the Lemma (a)-(l), (a)-(2), (b)-(l), (b)-(2). We start with the first 
one, it means (a)-(l), and W(A{+\ 0 GJ < W(Ai+1 n G'8) and W(Ai+l n Gu) < 
W(Ai+\r\Gs). 

Since e' •< e,d = k — k', 

d>0, ((w(F'f -m Ff) < d and Fu C Fu) or (w(F'u -m Fu) < d and F'} QFf)), 

and ((w(G'f -m Gf) < d and Gu C GU) or (w(Gu -m Gu) < d and G) C G / ) ) . 
Then W(P -m S) = W(P - m P f l Gf) = W(P -m Gf) < W(F'f -m Ff) < d and 
W(P-mS) < W(P)-W(S). Letd' = (W(P)-W(S))-(W(Ai+1nGa)-W(Ai+1n 
G'*)) - (W(Ai+1 nGu) - W(Ai+1 nG'u)<d We prove that / ' < f, it means / ' is 
not maximal or / = / ' . According to definition of "-<" it is necessary to check three 
conditions 1-3. 

1. z = k + W(S) - W(Ai+1 n Gu) + W(Ai+1 n Gs) - (k' + W(P) - W(Ai+1 n 
Gu) + W(Ai+1 nG'»)) = k-k'- (W(P) - W(S)) + W(Ai+1 nGa)- W(Ai+1 n 
G s) + W(Ai+1nGu) -W(Ai+1nG'u>d-d' > o 

2. W(P -mS)<d and Ai+1 -m P Cm Ai+1 - m S 

3. W(G'f -m P -m (Ff -m S)) = W(G'f -m Gf) < d a i ld G'u Cm Gu. 
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The rest three cases can be proved by a very similar method. And the vertical case 
is very similar. • 

If e = (A;,F/,FU,G/,GU) G Ent(iyj), we define the horizontal child of e to be 
hor(e) = k+W(FfnBj+1)-W(AinGu) + W(AinGs),Ff-Bj+uFu,Bj+1-Ff1Gu) 
or hor(e) =k + W(Ff nBj+i), F/ - J3 i + 1 , F u , 5 i + 1 - F / , Gu) and define the vertical 
child of e to be ver(e) = k + W(Ai+inGf)-W(Bj+lnGu) + W(Bj+1nG8),Bj+l-
Gf,Fu,Gf-Bj+uGu)oiver(e) = k + W(Ai+1nGf),Bj+l~GfiFu,Gf-Bj+uGu). 
We define MaxEnt(iJ) to be the set of maximal elements of Ent(i,j) under the 
dominance relation "-<". 

Lemma 3. Any entry horizontally generates at most one maximal entry and ver­
tically generates at most one maximal entry. 

P roo f . Let e = (fc,F/,Fu ,G/,Gu) G Ent(i,j). The only elements vertically 
generated by e which can be maximal are in the ver(e), since they dominates any 
others vertically generated by e. Similarly, hor(e) dominates any entries horizontally 
generated by e. • 

We say that (k, F / , F u , G/, Gu) strongly dominates (&', F / , F u , G/, Gu) if k > k'. 
If S C Ent(i,j), defines Dom(S) C S to be the set obtained by deleting every ele­
ment of S which is strongly dominated by another element of S. We now inductively 
define sets Chain(i,j) C Ent(i,j) by: 

1. Chain(i,0) = {(0,Au0,0,0)}, 

2. G/iam(0,j) = { (0 ,0 ,0 , ^ ,0 )} , 

3. Chain(i,j) = L)om({ver(e)|e G Chain(i - 1, j )} U {/ior(e)|e G 
G Chain(i,j — 1)}). 

We refer to entries Chain(i,j) as wee.Wy maximal. We observe the following 
theorem. 

Theorem 1. MaxEnt(i,j) C Chain(i,j). 

P r o o f . By induction. For i = 0 or j = 0 the two sets MaxEnt(i,j) and 
Chain(i,j) are identical. For i , j > 0, and e G MaxEnt(i,j) must be vertical or 
horizontal child of some maximal element, which is weakly maximal by induction. 
It means, e must be weakly maximal, since it is maximal and thus cannot be deleted 
by operator Dom. 0 

Using the results of the Lemmas 2 and 3 and Theorem 1 we have the following 
algorithm: 
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Algorithm B. 

{Using weakly maximal entries.} 

for all i do Chain(i, 0) := {(0, A{, 0,0,0)}; 

for all j do Chain(0,j) := {(0,0,0, Bj, 0)}; 

for i:=l to m do 

for j:=l to n do 

begin 

Chain(i,j) := 0; 

for all (k,Ff,Fu,Gf,Gu) G Chain(i,j - 1) do begin 

Fs := Fu;p,F* := p,Ai; 

help := W(Bj D F8) - W(Bj n Fu); 

if help < 0 then 

insert (k -F W(F C\ Bj),Ff - Bj, Fu, Bj - Ff, Gu) into Chain(i,j) else 

insert (k + W(Ff n Bj) -F help, Ff - Bj,Fu, Bj - Ff,Gu) into Chain(i,j) 

end; 

for all (k,Ff,Fu,Gf,Gu) G Chain(i - 1, j ) do begin 

Gs := Gu;p>Ga •= A*H,; 

help := W(Ai n Gs) - W(A{ n Gu); 

if help < 0 then 

insert (k + W(Ai n G),Ai - Gf,Fu,Gf - Aiy Gu) into Chain(i,j) else 

insert (k + W(Gf n A{) + help, Ai-Gf,Fu,Gf - Ai,Gu) into Chain(i,j) 

end; 

delete all nonweakly maximal elements from Chain(i,j) 

end 

max _fc := the maximum value ofk such that (k,Ff,Fu,Gf,Gu) G Chain(m,n) for 

some Ff,Fu, Gf and Gu. 

The algorithm works in 0(m • n • K • £)-time, where K is the maximal number 
of elements in Chain(i,j) and t is the maximal time spent for computing of the 
intersection of two sets. The algorithm works in 0(m • n • A:)-space, where k is the 
maximal number of elements in the /-sets Ai, Bj. 

6. CONCLUDING REMARKS 

The polynomial algorithms for the operations on fuzzy sets can be used to find 
the closest common subsequence (according to Godel connectives) of two fuzzy sets 
strings (MSSCCS Problem) in polynomial time. The algorithms should be modified 
for using of Lukasiewicz and product logic connectives. 
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