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K Y B E R N E T I K A — VOLUME 36 (2000) , NUMBER 6, PAGES 6 8 9 - 7 0 5 

FUZZY DECISION TREES 
TO HELP FLEXIBLE QUERYING 

C H R I S T O P H E M A R S A L A 

Fuzzy data mining by means of the fuzzy decision tree method enables the construction 
of a set of fuzzy rules. Such a rule set can be associated with a database as a knowledge 
base that can be used to help answering frequent queries. In this paper, a study is done 
that enables us to show that classification by means of a fuzzy decision tree is equivalent 
to the generalized modus ponens. Moreover, it is shown that the decision taken by means 
of a fuzzy decision tree is more stable when observation evolves. 

1. INTRODUCTION 

Inductive learning raises a particular to the general. A set of classes C is considered, 
representing a physical or a conceptual phenomenon. This phenomenon is described 
by means of a set of attributes A = {A\, • . . , AN}. Each attribute Aj can take 
a value Vji in a given universe Xj. A description is an iV-tuple of attribute-value 
pairs (AJJVJI). Each description is associated with a particular class c& from the set 
C = {cr , . . . , CK} to make up an instance (or example, or case) e* of the phenomenon. 

Inductive learning is a process to generalize from a training set £ -= {e i , . . . , en} 
of examples to a general law to bring out relations between descriptions and classes 
ofC. 

From a training set, inductive learning enables us to extract knowledge. Such 
knowledge is used to associate any forthcoming description with a correct decision. 
For instance, an inductive learning process is the construction of a decision tree that 
is used to classify unknown descriptions. A decision tree is a natural structure of 
knowledge. Each node in such a tree is associated with a test on the values of an 
attribute, each edge from a node is labeled with a particular value of the attribute, 
and each leaf of the tree is associated with a value of the class [29]. However, when 
the values of attributes for the description change slightly, the decision associated 
with the previous description can vary greatly. It is a reason to introduce fuzziness 
in decision trees to obtain fuzzy decision trees [5, 18]. 

Fuzzy decision trees (FDTs) are a generalization of decision trees to handle at­
tributes with numeric-symbolic values, i.e. attributes associated either with a nu­
merical value (for instance, the size is 172 cm) or a symbolic value corresponding to 
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a numerical measure (for instance, the size is big). 
FDT is a very promising learning tool because it represents induced knowledge 

in a very expressive way. The knowledge represented as a FDT is understandable 
and it differs from black box systems as neural networks. 

Moreover, a FDT is equivalent to a set of fuzzy rules [6], And such kind of induced 
rules can be introduced to optimize the query process of the database [7, 33] or to 
deduce decisions from data [1, 2, 15, 16], FDTs enable us to obtain various kinds of 
such rules [19]. Thus, it is a powerful knowledge representation. A FDT, as a set of 
fuzzy rules, can be used as knowledge base to help flexibly querying a database. 

Nowadays, literature related to FDT construction is very active. However, few 
works study the classification step with such a tree. In particular, classification of 
observation described by means of fuzzy values is not studied. 

In this paper, we study the method to use a FDT to classify new cases and to 
infer new knowledge. We show that a FDT is really equivalent to a fuzzy rule base, 
and that the use of a FDT is equivalent to the application of the generalized modus 
ponens. Moreover, there exist several concepts to study the variability of the result 
provided by a fuzzy system with regard to modifications of the inputs of the system: 
the most commonly used are the sensitivity, the robustness and the stability. Here, 
we will deal with the stability of the decision taken by means of a FDT. 

This paper is composed as follows: in Section 2 we recall the method of clas­
sification by means of a classical decision tree and we highlight its link with the 
classical modus ponens. In Section 3, we present the method to use FDT to classify 
new cases. This method is based on the use of a measure of satisfiability to com­
pare fuzzy values. Thus, we show that this method of classification is equivalent 
to the use of the generalized modus ponens. In Section 4, we study the stability of 
the decision deduced from a FDT when the observation evolves. In Section 5, we 
describe our Salammbo software to construct and to test FDT, and we present the 
application of this kind of software to fuzzy data mining. Moreover, we show the 
utilization of induced fuzzy knowledge to help flexible querying. Finally we conclude 
and we present some future works. 

2. CLASSIFYING NEW CASES 

Inductive learning is composed of two steps. The first one is to bring out knowledge 
from a set of cases or observations, for instance to construct a decision tree from a 
set of cases. The second step is to apply this knowledge to classify new cases with 
this new knowledge. 

In this part, we recall the method of classification by means of a classical decision 
tree, and we show that this method is equivalent to the application of the modus 
ponens with the whole set of rules induced by the tree. 

A new example e to classify is described by means of values for each attribute 
{A\ = wi]...\An = wn}. This example has to be associated with a value for the 
class. The process of classification with the tree starts with the comparison of testing 
values of the attribute Aix present at the root of the tree with the corresponding 
value of e. Depending on the value wit, a vertex going out of that node is used to 
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reach either the next test node, or a leaf of the tree. If a test node is reached, a new 
comparison is done and the process is resumed until a leaf of the tree is reached. 
When a leaf is reached, the new example e is associated with the class present in 
this leaf. All the test nodes encountered from the root to the leaf during this process 
constitute a path of the decision tree. 

It is easy to see that a path of a decision tree is equivalent to an IF. . . THEN rule. 
The premises for such a rule r are composed by tests on values of attributes, and 
the conclusion is the value of the class that labels the leaf of the path: if A{ 1 = vix 

and A{2 = v\2 and . . .and A\p = v\p then C — Ck- So, when the description of e 
matches each premise of a rule, the class of the conclusion of that rule is associated 
with e. Otherwise, the rule is not fired. 

The modus ponens is the classical way of deduction of knowledge. It has been 
proposed in classical logic to formalize human reasoning. It is also used in knowledge-
based systems. 

Rule: P = > C 
Observation : P 
Deduction : C 

The notation P = > C is equivalent to the production rule denoted by if P then 
C 

Classification by means of a decision tree reflects the modus ponens process. The 
whole tree is a set of production rules R( which can be noted Pi = > Ci, each rule 
associated with a path in the tree from the root to a leaf. When classifying a new 
case, the description of this case is compared with all premises Pi of rules and is 
associated with the class Ci associated with this premise. 

Piece 

(wӣГ) 

(Draw) (WÕJD (Lost ) (Woň) 

Fig. 1. Example of decision tree. 
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For instance, five rules are defined by the tree given in Figure 1: 

R1 
R2 
RЗ 
R4 
R5 

i f Piece = Bishop and Pawns = Few then Draw 
if Piece = Bishop and Pawns = Many then Won 
if Piece = Rook and Time < 60s then l o s t 
i f Piece = Rook and Time > 60s then Won 
if Piece = Queen then Won 

The description [Piece = Rook, Time = 56s, Pawns = Few] is compared with 
the premises of the five rules. It appears that this description fires the rule R3. We 
have: 

Rule : Piece = Rook and Time < 60s => Lost 
Observation : Piece = Rook and Time = 56s 
Deduction: Lost 

3. CLASSIFYING BY MEANS OF A FUZZY DECISION TREE 

In a FDT, the values occurring in vertices of the tree are fuzzy values. Thus, a FDT 
is now equivalent to a fuzzy rule base. 

Now, the new example e to classify is described by means of fuzzy values for each 
attribute {A\ = w\\...; An = wn}. 

The comparison between two values1 highlights the degree that matches their 
resemblance with regard to a given criterion. In classical decision tree, two values 
are either similar or not. In fuzzy settings, two objects are similar with a degree of 
graduality. Several methods exist to measure the resemblance between two values 
[10, 11, 12, 13, 24]. 

A hierarchy is proposed by [4] to classify measures of resemblance with regard to 
their properties. Given an observed value w and a test value v, considered also as 
fuzzy sets of a given universe X, to measure the similarity s(w, v) between w and v, 
the following properties are required for s: 

• s(w?v) = 1 when w Cv, 

• s(w, v) = 0 when w D v = 0, 

• s(w, v) is increasing with w C\ v. 

The first property is required to normalize the measure. It reflects the fact that 
the similarity is maximum when the observed value w is equal or included in the test 
value v. The second property reflects the fact that there is no similarity between 
two disjoint values. The third property reflects the fact that the more the observed 
value w is included in the test value U, the higher the similarity of w and v. 

These properties are based on the following. The inclusion between subsets of X 
is defined as: for all v, w, w C v «0> w D v = w. Thus, given two fuzzy sets v and 

*We denote "value" both symbolic, or numerical value, and also fuzzy value. 
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w with membership functions \iv and fiw, if fiwnv is the membership function of the 
intersection of these two sets, we have w Cv<& nwnv = fx%v. The intersection w n v 
is increasing when for all v,wi, and w2, we have (wxnv) C (w2nv) <-> s(wi,v) < 
s(w2,v). 

From the hierarchy of measures by [4], it can be shown that the measure s is not 
necessarily a classical measure of similarity because the property of symmetry is not 
required (ie. it is not required that for all v,w, s(w,v) = s(v,w)) It can be shown 
that the measure s is a measure of satisfiability (also known as measure of inclusion) 
in the sense of [4]. An example of such a measure of satisfiability is given by [4, 32]: 

( M(wC)v) 
s^v) = ̂ i^r (1) 

where M is a measure of fuzzy sets2 [32] It can be noted that this measure is the 
normalized version of the measure of fuzzy sets introduced by [10]. 

For the construction of fuzzy decision trees, as previously introduced by [31], 
the measure M(A) generally used is defined on QA Q fy f° r all A £ F(Q), with a 
membership function /J,A in [0,1], as follows: 

• if QA is a continuous universe of values: M(A) = JQ HA(X) dx 

• if QA is a discrete set of values: M(A) = J2xenA ^ ( X ) -

When Q,A is a discrete set of values, M is the well-known reiative sigma-count [35]. 
In this paper, for the sake of simplicity, we denote JQ HA(X) dx the measure M 
when QA is either a continuous universe or a discrete set. 
- Thus, the measure of satisfiability used in the software Salammbo (see Section 5) 
of construction of FDT [18, 22] is: 

Deg(w,v) = Ix/wnv*X if / ^ d x ^ O (2) 
Jx V™ dx Jx 

where fiw is the membership function associated with the value w, fi>wnv is the 
membership function associated with the intersection w n v of w and v, X is the 
universe of values where fiw and ^wnv are defined. In the case where Jx [iw dx = 0, 
we set Deg(w,v) = 0. 

3.1. Comparison of an observation and premises 

Given the rule i f A\x = vix and . . .and Aip = vip then C = c*, a comparison is 
done between the description of example e and the premise of the rules. 

To value the resemblance between W = (wit,...,wip) and V = (vix,... ,vip), the 
resemblance of each component wi. and vi{ is done. We denote Deg(u>/., vi.) this 

2We recall that a measure of fuzzy sets is defined as: 
Definition 1 (Measure of fuzzy sets). Let Q be a set of elements, F(fl) be the set of subsets 
of Q, and given C an order on elements of F(O). A measure of fuzzy sets M is a function defined 
from F(O), to R+, such that JV1(0) = 0 and VA,B € F(H), B C A =-> M(B) < M(A). 
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measure. Thus, to obtain the whole resemblance degree Deg(W, V) for W and V, all 
these degrees Deg(wi., vi.) are aggregated: 

Deg(VV,V) = Veg((wi1,...,wlp),(vll,...,vlp)) = Ti = 1...pneg(wti,vti). (3) 

This aggregation is done thanks to the triangular norm (t-norm) T in order to 
highlight the conjunctive link between all these values in the premise. Depending 
on the measure of satisfiability used, the t-norm must be chosen carefully in order 
to preserve the equality. That will enable us to ensure the cognitive process used in 
this kind of reasoning: the resemblance between two complex objects is related to 
the resemblance between each of their corresponding parts. 

Thus, in our context, it can be shown that this property is obtained for the 
measure of satifiability we used (eq. 2) and the product t-norm. 

P r o o f . For the sake of simplicity, in this part, we denote wh by Wi. 
Prom (eq. 2), when Jx V>(Wi,...,wp) dx ^ 0, we have: 

Deg((wu.. .,wp), (vi,.. .,vp)) = " —-^ (4) 
JxV(Wu...yWp)dx 

with X = X\ x . . . x Xp, where Xi is the universe of values of attribute Ai. 
The membership function V>(wi,...,wp)i defined on X, cartesian product of the 

Xi's, is deduced from the membership functions fiWi by means of a t-norm: for all 
x = (xi,...,xp) e X, fi(Wu...,Wp)(x) = Ti = i...P V>Wi(xi). Here, Jx H(Wu...,Wp) dx = 
0 is equivalent to Wi(xi) = 0 for at least one i, and thus, for that i, we have 
Deg(wi,Vi) = 0. In this case, (eq. 3) is trivial: 

IIt=i...p Deg(«/i, vi) = Deg((wi,... ,wp), (vu... ,vp)) = 0. 

The membership function H((wi,...,wp)n(vi,...,vp)) is defined from the membership 
functions fJ>(Wly...lW ) and H(Vl,...,vp) by means of the t-norm used as intersection opera­
tor. It is generally the same t-norm as the cartesian product: ^((Wl,...,Wp)n(vi,...,vp))

 = 

' \^(wi,...,Wp)l ^(vi,...,Vp))' 

In the case where the product t-norm is used as both conjunctive operator of 
fuzzy sets, and cartesian product, we have, for all x = (x\,... ,xp) £ X, 

V((wi,...,wp)n(vi,...,vp))(x) = I\i=i...pVwi(xi).iiVi(xi). Thus, on X = Xxx .. .x Xp, 
we have: 

fx ti((wi,...,wp)n(vi,...,vp))dx = Jx \Jli=1_pfiwi(xi) . iiVi(xi)j dx. And thus, if 
the universes Xi are supposed independent from each other, (in this case dx = 
dxi ...dxp, we have: Jx V((Wu...,Wp)n(vi,...,vp)) dx = Ui=i...PJxi Vw^Xi) .fiVi(x{)dxi. 
With the same hypothesis of independence of the universes of values, we have 
Jx V>(Wll...,Wp) dx = Yli=i...plx ljLwi(xi). As a consequence, (eq. 3) can be found 
from (eq. 4): 

/ fJ>wir\vi(xi)dxi 

Deg((wi , . . . ,Wp),(vx , . . . ,vp)) = J ] --% - ~ — and thus 
•" J nw.\Xi) axi 

Deg((u/i,... ,wp), (ui,. . . ,vp)) = rL=i...P
Deg(w<>t;i)- D 
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3.2. Classifying with a fuzzy decision tree 

(Iris-setosa ] 

Description 

Petal length : Medium 

Petal width : About 2cms 

(Iris-virginica 

ris-virginica ) 

Class 

Iгis--virginica 0,4 

Iris--veгsicoloг 0,6 

Iris--setosa 0,3 

ílris-versicolor J 

F i g . 2 . Classification with a fuzzy decision tree. 

In a FDT, a leaf can be labeled by a set of classes {c i , . . . , c/c}, each Cj associated 
with a weight P* (CJ \ (vh,... vip)) computed during the learning phase. This weight is 
the probability of Cj for training examples with values (vh,... vip) weighted by their 
membership degree to the leaf. This weight does not exist in classical decision trees 
because training values are crisp, and a training example belongs to only one leaf. 
So, in this case, P*(cj\(vh,... vip)) is equal to 1 for each Cj. Thus, a path of a FDT 
is equivalent to the following rule: if Ah = vh and . . .and Aip = vip then C = 
c\ with the degree P*(c\\(vh,.. .v\p)) and . . . and C = cK with the degree 
P*(cK\(vh,...vlp)). 

For each premise, a degree of satisfiability Deg(wh, vh) is computed for the corre­
sponding value wi.. Finally, given a rule r, a description is associated with the class 
Cj with a final degree of satisfiability Fdegr(cj) that corresponds to the satisfiability 
of the description to the premises of the rule r weighted by the conditional proba­
bility for Cj according to the rule r in order to take into account the confidence of 
the rule: Fdeg r(c i) = T i = i...pDeg(wii,vii).P*(cj\(vh,vh,.. .vlp)). 

Final degrees computed from all the rules are aggregated by means of a triangular 
conorm _L (for instance, the maximum triangular conorm) to obtain a single degree 
of satisfiability Fdeg(cj). If np is the number of rules given by the FDT, we have 
F d e g ^ ) = JLr = i . . . npFdegr (CJ). 
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For each value of the class, the description e is associated with such a degree 
of satisfiability Fdeg(cj) for each class Cj computed from the whole set of rules. 
The class ce associated with e can be chosen as the class with the highest degree 
of satisfiability: FDeg(ce) = maxj-i.m.K FDeg(cj). Such a process of aggregation of 
degrees is used in order to have meaningful values of degrees for each class. 

For instance, the whole process of classification of an example is summarized 
in Figure 2. A given example, the description of which is described by means of 
fuzzy values, must be classified. Each of its values for corresponding attributes are 
compared with each value labeling a vertex in the tree. The value of this degree is 
reported on the corresponding edge of the tree. The final degree for each class is 
computed as mentioned and is reported in the figure. 

3.2.1. The fuzzy classification is a generalized modus ponens 

The generalized modus ponens (GMP) is an extension of the classical modus ponens 
to handle fuzzy data [34]: 

Rule: P = * C 
Observation : . P' 
Deduction : C 

Thus, observing a value P' close to the premise P of the rule enables the con­
struction of a conclusion C close to C. This deduction process is smoother than 
the classical one and reflects better the human process of reasoning: in spite of the 
fact that it is extremely rare that the exactly same cause appears several times, the 
human brain is always able to deduce knowledge. 

The membership function of the conclusion C is deduced from the membership 
functions of P , C, and P' as [34]: 

Vy € F, iMc(y) = sup Tm(wup»(x)9fR(x,y)) (5) 
xex 

with / i c and UP* as the respective membership functions of C and P ; , Y the 
universe where the conclusion is defined, X the universe where the premise is defined, 
fR is the fuzzy implication that describes the link between the premise and the 
conclusion, and T m is the GMP operator [3]. 

It can be shown that, under particular hypothesis, the classification by means of 
a fuzzy decision tree described in Section 3.2 is equivalent to a GMP. 

Let the product t-norm be the implication operator (which does not generalize 
the classical implication), and the GMP operator. Thus, if \ic and tip are the 
respective membership functions of C and P , we have fR(x, y) = /JLP(X) . /Ic(y), and 
Tm ( / /p ' (#) , /#(£ , j/)) = npi(x) . fR(x,y). So, in this case, the equation 5 becomes 
for all y € F , ficf(y) = supx£X(iJ,p<(x) . HP(X) . iic(y)) and thus for all y € Y, 
Hc(y) —• \*>c(y) • supx€x(HP'(x) • ^P{X))' Now, let the product t-norm be the 
intersection operator. If MP' and fip are normalized on X, the measure a ( P ' , P ) 
defined as a(Pf,P) = supxex(PP'(x) • MPO )̂) i s a measure of satisfiability. 

P r o o f . It is easy to see that: 
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— if P' C P then 3x e X, jiP,(x) = jiP(x) = 1 thus < J ( P ' , P ) = 1 

— if P' fl P = 0 then Vx E X, J I P , (x ) . /iP(x) = 0 thus a(P\ P) = 0 

— if P ' fl P is increasing, then supa.6X(/xP/(x) . /ip(x)) is increasing too, as a 
consequence a(P',P) is increasing with respect to P' fl P . • 

Consequently, cr(P', P) can be considered as the global degree Fdegr(C) obtained 
according to the rule r for the class C. Thus, the analogy between the generalized 
modus ponens and the classification by means of a fuzzy decision tree has been 
pointed out. 

4. STABILITY OF FUZZY DECISION TREES 

We do not consider fuzzy control where the stability of a system is an important 
part of research. This stability of a system concerns the research of an equilibrium 
point after a modification of the input data of the system [9]. 

In other domains, several works have been done on the study of the stability of 
fuzzy models. For instance, the sensitivity and the robustness of a system are studied 
in [27]. The authors introduced two kind of measures, the measure of sensitivity 
se(x,e) which is defined as the distance between a linguistic label A(x) (a fuzzy set 
defined on values x from a given universe X) and a disturbed version A(x + s), and 
the measure of robustness ro(x,e) which is defined as ro(x,e) = 1 — se(x,e). 

A study of the robustness or the sensitivity of a binary operator is done in other 
works [25, 26]. 

A more general study is introduced in [28]. In this work, the sensitivity of fuzzy 
models based on linguistic rule bases is studied. The modification of the input data 
leads to a modification of the output value of the fuzzy system. The link between 
these two modifications is studied considering the operators used to infer the output 
value from the input data. 

In this part, a study of the stability of fuzzy decision trees is done. The stability 
of these trees when classifying evoluting observations is proved. 

4 .1 . Evolut ion of an observation and classical decision t ree 

With a classical decision tree, a small variation of values near the boundaries of the 
values present in the node of the tree can imply an important change of the decision. 
As mentioned, when the decision is inferred by means of the classical method, values 
of the description are compared to premises to fire rules. Thus, a small change in 
the value describing an observation will modify the matching of this observation 
with premises of rules, it will change the fired rule and thus, it can give a new 
unpredictable value for the decision. 

4.2. Evolut ion of an observation and fuzzy decision t ree 

On the contrary, the value of the decision taken by a FDT is continuous relatively 
to small changes in the values of the description of the observation. This continuity 
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results from the continuity of the measure of satisfiability and the continuity of the 
inference method used to aggregate the satisfiability degrees. Moreover, the measure 
of satisfiability in the fuzzy case is computed as a value from [0,1] instead of a crisp 
value from {0,1} in classical trees. Therefore, changes from a rule to another is 
gradual and fired rules are less dependent on small variations of the values of the 
description. This gradation is related to the chosen measure of satisfiability and the 
chosen operators of aggregation. 

In a first step, given a reference value v, we study the continuity of the measure 
of satisfiability Deg when a new fuzzy value w, near a previous fuzzy value w, is 
observed. This new value has a satisfiability degree Deg(w,v). When w is slightly 
different from w, then it can be said that an error function e is defined on X, lying 
on [—1,1]: for all x e X, fiw(x) = H>w(%) + e(x). 

For instance, such an error function is given in Figure 3. 

Fig. 3. Example of error function 

Continuity of the measure of satisfiability 

To establish the continuity of the measure of satisfiability Deg with w, given the 
measure (eq. 2), it can be proven that for all <r, there exists a, such that for all 
x e X, \fiw(x) - Vw(x)\ < a => \Deg(w,v) - Deg(w,v)\ < a. 
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P r o o f . To study the continuity of Deg with regard to w, we study the evolutions 
of \Deg(w,v) — Deg(w,v)\ with regard to \w — w\. For instance, we use the degree 
of satisfiability previously given (eq. 2). With the product t-norm as intersection 
operator, we have3 

,-, / \ fvV>wlivdx fY(»w-e)Hvdx ( f iiw dx\ f t\iv dx 

Deg(w,v) = JV . = Jx
 f . = (Deg(ti;-t;)y - Jfi . 

Jx i±w dx Jx »w dx y Jx /iu, da: J Jx LIW dx 
l \ u," dx \ i ctt dec 

Thus, we have J)eg(w,v) — Deg(w,v) = Deg(w,v) I 1 — y — J + f — , 
V J x / i u , d x / Jx ^w dx 

/ \ / \ I C dx J €Llv dx 
and finally Deg(w,v) - Deg(w,v) = -Veg(w,v)-£x h Jf — . 

Jx LIW dx Jx LIW dx 
I c d x I €. LL dx 

Thus, we have \X)eg(w,v) - Veg(w,v)\ = -Deg(w,v)-P^- h Jf — . 
Jx A-ti, da; Jx LIW dx 

As a consequence, |Deg(ii), v) - Deg(w, v)\ can be upper bounded by means of the 
triangular inequality: 

|Deg(i5.«)-Deg(u.,ti)| < »eg{v,v)\klM. + \Sx **> d*l 
Jx Vw dx Jx jiw dx 

< Ix M dx
 + Ix l 6!^ dx

 ( 6 ) 

"" Ix ^w dx Ix ^w dx 

Thus, if there exists a positive real value a such that for all x G X, |e(x)| < a 
then Ix\

e(x)\ dx < afx dx. And by denoting the supposed finite integrals as 
M(w) = fx /JLW dx, M(v) = fx \iv dx and M = fx dx, from (eq. 6) we have 
\Deg(w,v)-»eg(w,v)\<aM+«^. 

By definition, for all x € X, fiv(x) < 1 and thus M(v) < M, we have |Deg(i&, v) -
Deg(iu, v)\ < j$T^- That concludes on the continuity of Deg with regard to w: for all 

o->0, 3a = ^ ^ such that for all xGX, |e (x) | < a => |Deg(u>,t;)-Deg(u;,t;)| < a. 
Or for all a > 0, there exists a = al%ffl such that for all x G X, \^w(x) - fiw(x)\ < 
a =0 |Deg(i0, v) — Deg(iy, v)\ < a. D 

Thus, the variation of the degree of satisfiability is continuous with respect to the 
variation of the observation. 

Evolution from a precise value to a fuzzy value 

We focus now on the problem of the evolution of a precise value w for the observation 
into a fuzzy value w such that w is near w. Let v be a fuzzy value, the degree of 
satisfiability of the precise value w related to v is computed as Deg(w,v) = fiv(w) 
(see Section 2) and we assume that fiv is continuous. 

When w is also a precise value, the variation of the degree is continuous because 
in this case Deg(w,v) = fj,v(w). 

When w is a fuzzy value, Deg(u), v) converges to Deg(w,v) = fiv(w). Let w be a 
fuzzy value with w as modal value and [w — /?, w + (3] as support set. We suppose 

3For the sake of simplicity, we denote in this part iiw(x)y Vw(x) and e(x) by nWi ^iw and 6. 



700 C MARSALA 

that w belongs to the support of the fuzzy value v and does not belong to its kernel. 
When x £ [w - 0,w], fiw(x) = 2±J=22 a n c j w h e n xe[w,w + /?], fiw(x) = =*±g±*L. 
Moreover, let Vx G [w — /3, w + 0], fiv be a straight line valued as fiv(x) = ax + b. 

Fig. 4 . Example of evolution from crisp to fuzzy value (case (w — (3) > —-). 

The degree of satisfiability is continuous if lim/?_>o Deg(w,v) = Deg(w,v). 

— When (w - (3) > — £ (see Figure 4), we have fx/J>wnv(x) dx = fiv(w)/3, and 

thus: Deg(w,v) = todjjpg. = fiv(w) = Deg^-v) . 

— When w = — £, we have Deg(u?,i;) = jiv(w) = /iv(—~) = 0, thus Deg(iD,7;) = 
q/32 -

- j ^ - = ^ , and thus lim^-^o Deg(iD,t;) = lim/3_^o e = 0. 

Finally, given a fuzzy value of reference v, the degree of satisfiability of w tends 
towards the degree of satisfiability of w when /3 tends towards 0. 

— When w < — | , the degree of satisfiability of w related to v is equal to 0. A 
modification of w such that w = w + (3 < — £ will have a degree of satisfiability 
to v also equal to 0. On the contrary, when /3 is such that w + (3 > — £, the 
previously mentioned proof is repeated to prove that the degree tends towards 
0. 

— When w = - ^ , the same proof is repeated to prove that Deg(w,v) tends 
towards Deg(w,v) 

All the proofs given here deal with observed values in one of the slopes of v. All 
other proofs are equivalent for each case and they are not given here. 

To conclude, in the next part, we prove that with the given measure of satisfiabil­
ity, a slight change in the observed value leads to a slight modification of the value 
of the degree of satisfiability. 
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4.2.1. Evolution of the degree for the conclusion of the rule 

After having checked the continuity of the measure of satisfiability when the ob­
servation evolves, we prove now the continuity of the degree associated with the 
conclusion of a rule. 

As mentioned, the degrees from all the premises of a rule are aggregated to 
compute a global degree (see Section 3.2). This aggregation is done by means of the 
product t-norm. 

Let us call D(w) the value of this product. When one value of the observation 
changes slightly, we proved previously that the variation of the degree is also slight: 
Let wik be the prime value and let wik = wik + e be the evolved value. We have 
proven that Deg(wik,vik) becomes Deg(wik,vik) + e, with small values for e G R. 
The global degree D(w) is: 

D(w) = (Ľeg(wlк,vlк)+є) П 1Deg(wii,vii). 

Or 

and 

D(w) = D(w) + є 

\D(w) - D(w)\ = 

i=l...к—l,fc+l,...,p 

[ J Ľeg(wh,vh) 
k.=i...fc-i,fc+i,...,p , 

I I -)eg(»-,.,,u.<) 
ii=l...k—l,k+l,...,p 

and thus: \D(w) — D(w)\ < \e\ since Vuv/t.,v/., Deg(wi{,vi{) < 1. 
As a consequence, we deduce the continuity of D(w) with respect to w: Vcr > 0, 

3a = a such that Vx G X, \e\ < a ---> \D(w) - D(w)\ < a. 
As a consequence, we prove that the classification by means of the fuzzy method 

is more stable than the classification by means of a classical method. 

5. THE SALAMMBO SOFTWARE 

We have implemented the Salammbo software to build fuzzy decision trees [5, 18]. 
This software enables us to test several kinds of parameters during the construction 
of the FDT, and during the use of this tree to classify a new case. 

The construction of a FDT is done by means of measures chosen in a general 
family we have introduced on the basis of interesting properties required for the 
discrimination process (the choice of attributes to construct nodes of the tree) [23]. 
For instance, the FDT can be constructed by means of the Shannon entropy, the 
Gini test of impurity, or a fuzzy measure of entropy. Moreover, an automatic method 
to build a fuzzy partition on the set of values of numerical attributes is introduced 
that enables us to avoid the prior definition of fuzzy values of attributes by an expert 
[17]. 

During the process of classification of new cases with the FDT, various parameters 
(t-norms, t-conorms, implications operators) have been implemented to be used in 
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the Salammbo software. It enables us to test them and to compare them in the 
process of classification on different kinds of databases [18]. These experiments 
highlight the higher accuracy of fuzzy decision trees when classifying a test set of 
examples. 

5.1. Fuzzy decision tree to help flexible queries 

Nowadays, a large amount of data is contained in a lot of databases. These data 
represent an important source of potential knowledge to use. Data mining is the 
process of mining databases in order to induce such knowledge [14]. Fuzzy data 
mining is concerned by the mining of fuzzy knowledge [8, 22]. 

For instance, the FDT construction method can be applied to mine a database 
and extract fuzzy knowledge [19]. The fuzzy rule base induced as a FDT is a new 
form of knowledge that can be associated with the database. This knowledge can 
be used in different ways. 

First of all, it enables us to improve the querying process of the database. A 
set of rules can be introduced to optimize the query process of the database [7, 33] 
or to deduce decisions from data [1, 2, 15, 16]. Such a set of induced fuzzy rules 
can be associated with a database as a knowledge base that can be used to help 
answering frequent queries. A fast response can be found for a query on the value of 
an attribute. It can also lower the conditions on the values of attributes for a query, 
before the process of examination of the database [7]. Moreover, fuzzy rules can 
take advantage of the fuzziness of their values to take into account new numerical 
or fuzzy values. The method of classification with such a set of fuzzy rules is a good 
way to handle new values for attributes. 

Secondly, a set of fuzzy rules is completely understandable and a decision taken 
by means of these rules is explainable. It can be used as a new knowledge on the 
domain of the database, and it can be understood by any expert of this domain. 

5.2. Fuzzy decision trees applied to data mining 

Tests have been conducted that highlighted the interest of fuzzy decision trees for 
data mining processes, laying in their expressiveness, and their qualities when han­
dling numerical attributes. 

For instance, in chemistry, associations between the structures of chemical com­
pounds and the quality of their odors have been brought out by means of the con­
struction of FDT with the Salammbo software [20]. Applications were conducted to 
extract knowledge from other kinds of domains: from a geographical oriented-object 
spatial database [21], and from an electrical domain database [18]. 

Here, we present some results of two construction methods, obtained on two 
commonly used training databases with a cross validation test. These databases are 
available on the ftp site of the University of Irvine, California4. 

The first comparison concerns the iris database. In this database, examples are 
described by means of 4 numeric attributes and there are 3 classes to recognize. The 
second comparison concerns the database of Breiman's waveforms. In this database, 

4ftp://ftp.ics.uci.edu/pub/machine-learning-databases 
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Table 1. Comparison of classification by classical 
and fuzzy decision trees. 

Base Method Size Classifìcation rate 
Iris Classic 8.5 95.2% 

Salammbô 4.0 96.0% 
Waveform Classic 44.6 72.7% 

Salammbô 66.9 78.2% 

examples are described by means of 21 numeric attributes and there are 4 classes to 
recognize. 

In Table 1, results with the Classic method concern the classical ID3 method and 
are those given by [30] for the C4.5 algorithm, adapted to numeric attributes. In 
this case, the decision trees are also pruned. Results with the Salammbo software 
concern the construction of fuzzy decision trees with a fuzzy measure of entropy as 
measure to select attributes (see [18]). The Size is the average number of paths of 
the built trees, and the Classification rate is the number of test examples that are 
well classified by means of the built tree. 

It can be observed that the fuzzy decision trees provide better classification rate 
than the classical decision trees. In the case of the iris database, the size of fuzzy 
decision trees, even with no pruning, is highly smaller than the size of the classical 
decision tree. In the case of the waveform database, the size of the tree should be 
minimized by means of a pruning phase. 

6. CONCLUSION AND FUTURE WORKS 

In this paper, a study is done that enables us to show that classification by means 
of a fuzzy decision tree is equivalent to the generalized modus ponens. 

The proposed method of classification by means of a fuzzy decision tree lies on 
the use of measure of satisfiability to compare observed values to testing values. It 
has been proved that such a method ensures the cognitive process used in this kind 
of reasoning. 

Moreover, we proved that using a fuzzy decision tree instead of a classical decision 
tree, a slight change in the values of a description leads to a slight change in the value 
of the decision. Given a measure of satisfiability and a process of inference by means 
of a fuzzy decision tree, we showed that a continuity in the value of the decision 
is obtained relatively to the values of the description. Thus, the stability of fuzzy 
decision trees when classifying evoluting observations results from this continuity. 

In future works, we will study the links existing between the measure of satisfia­
bility and the inference method. Moreover, we will also analyze the stability of the 
method of construction of fuzzy decision tree when the slight changes occur in the 
data pertaining to the training set. 

(Received June 13, 2000.) 
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