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PERIODIC SYSTEMS LARGELY SYSTEM EQUIVALENT 
TO PERIODIC DISCRETE-TIME PROCESSES1 

OSVALDO MARIA GRASSELLI,2 SAURO LONGHI AND ANTONIO TORNAMBE 

In this paper, the problem of obtaining a periodic model in state-space form of a linear 
process that can be modeled by linear difference equations with periodic coefficients is 
considered. Such a problem was already studied and solved in [20] on the basis of the notion 
of system equivalence, but under the assumption that the process has no null characteristic 
multiplier. In this paper such an assumption is removed in order to generalize the results 
in [20] to linear periodic processes with possibly the null characteristic multiplier (e.g., 
multirate sampled-data systems) # Large system equivalence between two linear periodic 
models of such processes is introduced and analyzed. For a given linear periodic process 
the necessary and sufficient conditions are found for the existence of a linear periodic system 
(i.e., a linear periodic model in state-space form) that is largely system equivalent to the 
given model of the process, together with an algorithm for deriving such a system when 
these conditions are satisfied. 

In addition, the significance of the periodic system thus obtained for describing the 
original periodic process that is largely system equivalent to the system, is clarified by 
showing that the controllability, the reconstructibility, the stabilizability, the detectability, 
the stacked transfer matrix, the asymptotic stability, the rate of convergence of the free 
motions, and even the number and the dimensions of the Jordan blocks of the monodromy 
matrix corresponding to each nonnull characteristic multiplier of the periodic system, are 
determined by the original periodic process (although the order of the periodic system is 
not, in general, as well as its reachability and observability properties, because of some 
possible additional or removed null characteristic multipliers). 

1. INTRODUCTION 

In order to find a state-space model for processes that can be modeled by linear 
differential or difference equations with constant coefficients, Rosenbrock made use 
of the following pair of vector equations [30]: 

T(s)S = U(s)u, (1) 

V = V(s)£ + W(s)u, (2) 
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where u is the input vector of the process, y is the output vector, f is the vector of 
the internal variables, called here pseudo-state, and T(s), U(s), V(s) and W(s) are 
polynomial matrices in the indeterminate 8; if s is replaced either by differentiation 
or by the one-step forward shift operator, the time-domain model of the process 
under consideration is obtained. He showed that under polynomial transformations 
on (1) and (2) that he called strict system equivalence and possibly an additional 
extension or reduction of the dimension of the pseudo-state (which will be recalled 
in detail in the next section), it is possible to obtain a description of process (1), (2) 
in state-space form, i. e., of the type: 

sx(t) = Ax(t) + Bu(t) (3) 

y(t) = Cx(t)+Du(t) (4) 

(where s means either differentiation or one-step forward shift operator), provided 
that T(s) is square and nonsingular and the input-output transfer function matrix 
corresponding to (1) and (2) is proper. It is stressed that for the linear system 
(3), (4) thus obtained, not only the transfer function matrix is the same as that 
of the given process described by (1) and (2), but also the Smith forms of si — A, 
[si — A B], [si - AT CT] and of the Rosenbrock system matrix of system 
(3), (4), coincide (possibly apart from some unit invariant polynomials) with those 
of T(s), [T(s) U(s)], [T(s)T V(s)T]T, and of the system matrix of (1),(2), re­
spectively; this means that the asymptotic stability of system (3), (4), the rate of 
convergence of its free motions, and even the whole Jordan form of Ay together with 
the whole Jordan forms of its non-reachable and unobservable parts, if any, and its 
invariant zeros with their ordered sets of structural indices, are determined by the 
original process described by (1), (2). Since then, several authors studied this kind 
of problem (see, e.g., [3, 7, 11, 21, 24, 32]), which is different from the well-known 
realization problem; this, in the time-invariant case, is the problem of finding a lin­
ear system of the form (3), (4) whose transfer matrix or impulse response matrix 
coincide with a given one (see, e. g., [23]), so that the datum of this problem consists 
of the input-output map that characterizes the mere zero-state output responses of 
the system to be found, whereas no complete information is given on the input-
state map of the same system, nor on its free responses. This makes non-unique 
the solution of the realization problem, if no a priori information is available about 
the non-existence of non-reachable and/or unobservable states of the system to be 
found; hence, arbitrary unobservable and/or nonreachable subsystems can be added 
to a found minimal realization, still obtaining a solution of the realization problem. 

The study of the problem of finding a state-space representation of a process that 
can be modeled by equations (1), (2) was extended in [20] to processes that can be 
modeled by linear difference equations with periodic coefficients (whose period will 
be denoted by u>) of the following form: 

r r 

J2 TiWtik+o = E UiW «(*+*)> (5) 
i=0 i=0 

r r 

y(k) = £ Vi(k)£(k + 0 + E W*W u(<k + 0, (6) 
i=0 i=0 
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for some integer r > 0, where k G Z,£(fc + i) G R m is the vector of the internal 
variables or pseudo-state, u(k + i) G R p is the input, y(k) G Hq is the output, 
Ti(k), Ui(k), Vi(k) and Wi(k), i = 0, . . . , r , are real periodic matrices of period LJ 
(briefly, cj-periodic), and the 7i(fc), i = 0 , . . . ,r, were assumed to be square. It was 
shown that, within the class of transformations of (5), (6) that was called system 
equivalence [20], it is possible to obtain a description of (5), (6) in state-space form, 
i. e. a description of the form 

x(k + l) = A(k)x(k)+B(k)u(k), (7) 

y(k) = C(k)x(k) + D(k)u(k), (8) 

where x(k) G R n is the state, and A(-),J9(-),C(-), D(-), are real cj-periodic matrices, 
provided that the process described by equations (5), (6) satisfies some causality 
conditions and, in addition, no null characteristic multiplier is associated with the 
left-hand side of (5) (see the next section for a formal definition of the mentioned 
notion of characteristic multiplier); moreover, most of the properties and features of 
the cj-periodic system (7), (8) thus obtained are determined by the original process 
(5), (6), as well as in the solution (3), (4) proposed by Rosenbrock [30] to the original 
problem of giving a state-space description of (1), (2). 

The interest of obtaining a description of (5), (6) in state-space form is motivated 
by the variety of processes that can be modeled by linear difference equations with 
periodic coefficients (e. g., multirate sampled-data systems, periodically time-varying 
digital filters, seasonal phenomena [1, 2, 27]) and the resulting amount of contribu­
tions devoted to solve control problems for linear periodic discrete-time systems -
including eigenvalue assignment, state and output dead-beat control, disturbance 
decoupling, optimal control, robust tracking and regulation, and input-output block 
decoupling (see [4, 5, 9, 14, 15, 16, 17, 19, 28, 25, 22]) - since most of these con­
tributions are based on a state-space description. For similar reasons, the different 
problem of finding discrete-time linear periodic realizations of input-output linear 
maps was studied by several authors [8, 12, 26, 29, 31]; in particular, a necessary 
and sufficient condition for the existence of a linear periodic minimal realization was 
introduced in [31] in terms of the Hankel matrix associated with an input-output 
periodic application. However, in general a periodic minimal (i.e., reachable and 
observable at all times) realization may have a time-varying dimension (see [6, 12], 
also for algorithms for its computation) - although "quasi-minimal" (i. e., reachable 
and observable at least at one time instant) realizations with a constant dimension 
[6, 26] can be obtained - ; this is because the zero-state output responses of system 
(7), (8), which are its only features that have to be matched with the datum of the 
realization problem, do not depend on its unobservable and/or non-reachable parts, 
which, however, may have time-varying dimensions [13]. 

On the contrary, the number of arbitrary and independent initial conditions on 
which the solutions of (5), (6) depend (which is the natural characterization of the 
dimension of the state of the corresponding system (7), (8) to be found) is constant 
with time, namely it does not depend on the initial time under consideration [20], 
while process (5), (6) could actually have some pseudo-state free motions that are 
unobservable from y and/or some subvector of f that cannot be influenced by tx, 
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so that the equations (5), (6) (which are assumed to be a complete description of 
the process under consideration) could actually be equivalent (in some sense) to a 
complete description of an arbitrary periodic system of the form (7), (8), and not 
only to that of its zero-state output responses. Therefore it seems to be of interest 
to find a cj-periodic system of such a form that preserves most of the properties and 
features of the original a;-periodic process (5), (6), without the assumption about the 
null characteristic multiplier that was used in [20]. This is just the purpose of this 
paper, in order to give a solution to the same kind of problem that was studied in 
[20] also for the class of periodic processes of the form (5), (6) that actually have the 
null characteristic multiplier (e.g., multirate sampled-data systems [1] always have 
it). 

Preliminarily, in Section 2 a polynomial time-invariant characterization of such a 
process, and some related notions and results, will be recalled, including the notion 
of system equivalence [20] between two models of the form (5), (6). In Section 3 
the more general notion of large system equivalence between two such models will 
be introduced, and the properties and features that are invariant under it will be 
analyzed. In Section 4 the necessary and sufficient existence conditions of a periodic 
system described by (7), (8) that is largely system equivalent to a periodic process 
described by (5), (6) will be given, together with an algorithm for deriving such a 
periodic system from the given process (5), (6). 

2. NOTATIONS AND SOME BACKGROUND MATERIAL 

Henceforth, the identity matrix of dimension v will be denoted either by J„, or 
simply by J; A will denote the cj-steps forward-shift operator, and A - 1 its inverse; 
in addition, J?„(A), v G Z+ will denote the following matrix operator: 

R„(A) := 0 /(w-i)i/ 
ДJ„ 0 (9) 

where Z + is the set of positive integers. 
Let a vector function z(t) G R" be given, with t G Z ; for any k G Z, the u-stacked 

form of z(t) at time k is defined by 

zk(h) := [zT(k + hu) zT(k + hu + l) . . . zT(k + hu + u-l)] , h G Z. 

Prom now on, whenever the operator J?^(A) will be applied to zk(h), the operator A 
will have the meaning of an o;-steps forward-shift in the k variable, or, equivalently, 
a one-step forward-shift in the h variable. Notice that [20]: 

Rl/(A)zk(h) = zk+1(h). (10) 

Let an u;-periodic matrix F(t) G R l / X / X be given, with t 6 Z, representing the 
linear map z(t) = F(t)w(t); for any k G Z, the u-stacked form of F(t) at time 
k is defined by Tk := diag {F(k), F(k + 1 ) , . . . , F(k + u> - 1)} , and represents the 
induced linear map between the o;-stacked forms at time k of the vector functions 
z(t) and w(t), i.e. zk(h) = Tkwk(h),h G Z. 
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By introducing the cj-stacked forms £k0(h),Uk0(h),yk0(h) at time ko of vectors 
£(k),u(k),y(k) and the cj-stacked forms T^MiM^iM and Wi,k0 at time A:0 of 
matrices Ti(k),Ui(k), Vi(k),Wi(k), i = 0, . . . , r , the model (5), (6) of the process 
under consideration can be expressed in the following form, which is called the u-
stacked form at time ko of model (5), (6) [20]: 

Tko(A)tko(h) = Uko(A)uko(h), (11) 

Vk0(h) = Vko(A)tko(h) + Wko(A)uko(h), (12) 

whereT*0(A) := £ T,fcoi4(A),Z40(A) := £ u.,*0R4(A), V*0(A) := £ V^R^A), 
i=0 t=0 i=0 

r 
Wfc0(A) := Y, Wi,k0Rp(&). The following polynomial matrix of A: 

i=0 

- # ( Д ) := 
-Tk0(A) Uk0(A) 
Vk0(A) Wk0(A) 

(13) 

is termed the u-stacked system matrix at time ko of model (5), (6), thus extending 
the time-invariant Rosenbrock system matrix [30]. It will be the main tool for 
deriving a state-space representation (7), (8) of process (5), (6). 

The following assumption is justified by Proposition 2.2 of [20], and will be as­
sumed to hold throughout the paper. In fact, if it is not satisfied, either the number 
of scalar equations contained in (5) can be trivially reduced, without modifying the 
set of pseudo-state and output solutions of (5), (6) for any given input function u(-), 
or such solutions do not depend on a finite number of arbitrary and independent 
initial conditions or even no solution exists for some u(-) [20]. 

A s s u m p t i o n 1. The polynomial matrix 7fc0(A) is square and nonsingular. 

If Assumption 1 holds for ko = ko G Z, then it holds for any ko G Z, and the 
degree of det7fc0(A) is independent of the time ko [20]. Therefore, the degree of 
det7jk0(A) for an arbitrary ko G Z is called the order of model (5), (6), since it 
coincides with the number of arbitrary and independent initial conditions on which 
the solutions of (5), (6) depend [20]. 

Moreover, under Assumption 1 and for a fixed time fco, the application of the z-
transform to both sides of (11), (12), with zero initial conditions both for £fc0(M and 
uk0(h), yields yko(z) = G%(z)uko(z), where Gfo(z) := Vko(z)^1 (z)Uko(z)+Wko(z) 
is called the u-stacked transfer matrix at time ko of model (5), (6). 

For the linear cj-periodic system described by (7), (8), equations (11), (12) reduce 
to the following ones: 

Rn(A)xko(h) = Ak0xko(h) + Bk0uko(h), (14) 

Vk0(h) = Ckoxko(h)+VkoUk0(h), (15) 

(where xko(h), Ak0^Bk0Xk0 and T>k0 are the o;-stacked forms at time ko of x(k), 
A(k),B(k),C(k) and D(k), respectively), which are termed the u-stacked form at 
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time k0 of system (7), (8); if the symbol 5f0 (A) is used in this case instead of Sj^(A), 
relation (13) reduces to 

-?£(*) ~ 
A o - R n ( A ) Bko 

Ck0 Vk0 

(16) 

5fo(A) is called the u-stacked system matrix at time k0 of system (7), (8). In a 
similar way, the u-stacked transfer matrix GfQ(z) at time k0 of system (7), (8) is 
expressed by G%Q(z) := Ck0(Rn(z) - Ak0)~

lBkQ +£)jbo- Further, the state transition 
matrix over a period $(k0 +u;, k0) of system (7), (8) at the initial time k0, expressed 
by $(k0 + u, k0) := A(k0 + u - 1) • • • A(k0 + l)_4(fc0), will be called the monodromy 
matrix at time k0 of system (7), (8). 

The basic relation that will be used here between two (mu + qu) x (mu + pu) 
polynomial matrices 51(A) and S2(A) with real coefficients will still be the same 
relation that was introduced by Rosenbrock through strict system equivalence in the 
time-invariant case [30]. Namely, two (mu + qui) x (mu + pu) polynomial matrices 
Sl(A) and 52(A) with real coefficients are said to be strictly system equivalent if a 
relation of the following form holds: 

S 2 (Д) = 
M(A) 0 
Y(A) /, qu ] 

sҶд) І V ( Д ) X(A) 
0 Lp<jJ 

(17) 

where M(A),N(A),X(A) and Y(A) are polynomial matrices in A with real co­
efficients, and M(A),IV(A) are square and unimodular [20]; in addition, if matrix 
SX(A) in (17) is an cj-stacked system matrix at some time k0, then the matrix 5 2 (A) 
that is obtained by (17) for some M(A), iV(A), X(A) and Y(A) of the type defined 
above, will be referred to as an cj-stacked system matrix at the same time, with the 
same abuse of terminology used in [20]. 

The meaning of the strict system equivalence relation between two a;-stacked sys­
tem matrices is similar to the meaning of the strict system equivalence relation be­
tween two system matrices corresponding to two time-invariant processes described 
by a pair of equations of the form (1), (2). In the latter case, in order to obtain a 
pair of equations of the form (3), (4) from the original model of the form (1), (2), an 
extension of the dimension of £ was needed whenever such a dimension was lower 
than the degree of detT(s) in (1) [30]; it was obtained by introducing some addi­
tional scalar components tf into f, characterized by the scalar equations fJ = 0, 
which had to be added to the scalar components of equation (1), so as to obtain a 
new pair of vector equations of the form (1), (2) in such an extended pseudo-state 
and with the matrices 

-ÌM.= 
0 

T(s) Ui(s):= 
0 

U(s)\ 
VІ( .s):=[0 V(s)], (18) 

instead of matrices T(s), U(s) and V(s), respectively. For similar reasons, the 
same kind of extension of £(k) could be needed in equation (5) [20]; this can be 
obtained by introducing some new zero components into £(k) and by introducing the 
corresponding trivial scalar-equations into vector equation (5). Denoting by &(k)9 
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j = m + 1 , . . . ,ra + i/, such new zero components of f(fc), where the nonnegative 
integer v denotes their number, such an extension of f (fc) gives rise to the following 
operation to be performed on the original model (5), (6): 

(a) for v > 0, v G Z, add the following v scalar equations to equation (5): 

?(k) = 0, (19) 

for j = ra + 1 , . . . , ra + v, so that, defining 

ze(k)-.= [e(k) r+1(*) ••• r+u(mT, m 
a new model of the form (5), (6) is obtained, with £e(k) G JRm+I ' instead of £(k). 

Notice that for v = 0 such an operation leaves unchanged the original model 
(5),(6). 

As in [30], in order to find a state-space description (7), (8) of process (5), (6) 
having the order of this as the dimension n of the state x(k), the converse of operation 
(a) is actually needed whenever the dimension m of £(k) is greater than the order of 
process (5), (6) [20], since strict system equivalence does not alter the dimension of 
the pseudostate. The converse of operation (a) can be formally defined as follows: 

(b) if, for some i / > 0 , i I G Z , vector £(k) can be partitioned as follows: 

t(k) = [?(k)T r-"+1(fc) ••• zm(mT, (21) 
where &(k), j = m — v + 1 , . . . ,ra, are scalar functions satisfying (19), and vector 
££(k) satisfies an (m — i/)-dimensional vector equation of the form (5) and a q-
dimensional vector equation of the form (6), with ££(k) G R m _ l / instead of f (fc), 
then remove equations (19) from the given model for each j = m — v + 1 , . . . , m. 

Operation (b) too leaves unchanged the original model (5), (6) for v = 0. 
The most general relation between two cj-periodic models of the form (5), (6) that 

was used in [20] can be obtained by putting together strict system equivalence and 
operations (a) and (b), and is now recalled, since the contribution of this paper is 
based on enlarging such relation. Then, two u;-periodic models Mi and M2 of the 
form (5), (6), satisfying Assumption 1 and having inputs and outputs of the same 
dimensions p and <1, respectively, are said to be system equivalent at time fen if there 
exist an operation of the type (a) or (b) to be carried out on Mi and an operation of 
the type (a) or (b) to be carried out on M2 such that the u;-stacked system matrices 
at time fen of the resulting models are strictly system equivalent. 

System equivalence at time ko is an equivalence relation [20] under which many 
features and properties of process (5), (6) remain unchanged; among them, the u-
stacked transfer matrix at any time and the order [20]. For the following develop­
ments it is useful to recall all of them, together with the definition of those which are 
non-standard. Then, in view of the results in [20], under Assumption 1, the zeros of 
the polynomial det7jfc0(z) are called the characteristic multipliers of model (5), (6) 
at time ko with corresponding (ordered sets of) structural indices at the same time 
defined as their (nondecreasing sequences of) multiplicities as zeros of the invariant 
polynomials of Tk0(z). The polynomial det7ik0(z) is independent of ko [20], and is 
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called the characteristic polynomial of model (5), (6). Further, under the same As­
sumption 1, the invariant zeros, input decoupling zeros, and output decoupling zeros 
of model (5), (6) at time ko are defined to be the zeros of the invariant polynomials 
of Sj£(z), \-Tko(z) UkQ(z)], \-TZ(z) V T ( Z ) ] T , respectively, with ordered sets 
of structural indices at the same time defined as their nondecreasing sequences of 
multiplicities as zeros of such polynomials. 

About these notions, it can now be stressed that not only the cj-stacked transfer 
matrix at any time of a model of the form (5), (6), and its order, but also its whole 
characteristic polynomial (apart from some nonnull scalar constant), the nonnull 
structural indices of its nonnull characteristic multipliers at any time, and all types 
of the nonnull zeros at any time, together with their nonnull structural indices, are 
invariant under system equivalence at time ko [20], as well as its null characteristic 
multiplier, if any, and its null zeros of all types at time &o, if any, together with their 
nonnull structural indices at the same time. 

In [20] this was discussed in order to clarify its meaning in terms of the very 
strong properties that are not altered by system equivalence at time fc0, and therefore 
the significance of finding an cj-periodic system of the form (7), (8) that is system 
equivalent at time ko to a given model of the form (5), (6) satisfying Assumption 1. 
In fact, in [20] such a problem was solved under the additional assumption that the 
given model has no null characteristic multiplier. In the following sections similar 
results will be obtained without such an additional assumption. 

3. LARGE SYSTEM EQUIVALENCE 

In order to make easier to find a solution to the problem of obtaining an cj-periodic 
state-space description of the form (7), (8) of an cj-periodic process modeled by a pair 
of equations of the form (5), (6), without any assumption about the null characteristic 
multiplier of the original model, system equivalence at time ko will be now suitably 
enlarged. 

Specifically, it will be convenient to allow to record the values of u(k — u + 1), 
u(k — u + 2), . . . , u(k — 1) in a suitable extension £L(k) of the pseudo-state £(fc), and 
to allow to correspondingly increase the order of the given model by introducing the 
new factor zp^~^ into its characteristic polynomial (as will soon be clear). This will 
be obtained by allowing the use of the following extra operation on the u;-periodic 
model (5), (6): 

(c) add the following u> — 1 vector equations to equation (5): 

Ci(* + i) = C2(*), 

: (22) 
C,-2(fc + l) = C-i(k), 
C..-i(je + l) = u(k), 

so that, defining 

iL(k) := [CT(k) Cl(k) ... Cj-i(fc) ZT(k)]T, (23) 
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a new model of the form (5), (6) is obtained, with £L(k) G R ™ + ( " - ! ) P instead of 

In addition, the converse of operation (c) has to be allowed in order that system 
equivalence at time fen remains an equivalence relation after the enlargement thus 
obtained. The converse of operation (c) can be formally defined as follows: 

(d) if vector £(k) can be partitioned as follows 

*(*) := [Cf>) Cl(k) Cт-i(-)ť°(*)f, (24) 

where Q(k) G R p , i = 1,. . .,CJ — 1, satisfy (22) and £°(k) satisfies an [m — (u - 1)p]-
dimensional vector equation of the form (5), and a g-dimensional vector equation of 
the form (6), with f°(fc) G R™-^"1)-3 instead of f(fc), then remove equations (22) 
from the given model. 

It is clear from (22) that the solutions y(k) of (5), (6) are not altered by the 
operations of the types (c) and (d). 

Notice also that, by (10), the a;-stacked system matrix at time ko of the model 
obtained after that an operation of the type (c) has been carried out on model 
(5), (6), is strictly system equivalent to the following one: 

-?ffL(Д) = 

-д-(Д) 
o 

0 
0 
0 

Łu)p 

- Я p ( Д ) 

0 
0 
0 

0 
0 

- Я P ( Д ) 

0 

o 
o 

o 
o 

-Tfco(A) 

0 v*0(Д) 

Âup 

u*,(Д) 
w*0(Д) 

-TČ(Д) 
v£(Д) 

^ L o ( д ) 
wfc0(Д)J 

(25) 

having LJ — 1 block rows and columns in addition to Sj£(A). Hence, the following 
relation holds: 

detTk
L(z) = ±z^-VdetTko(z), (26) 

as it was previously mentioned. 
Then, two o;-periodic models M\ and M2 of the form (5), (6), satisfying Assump­

tion 1 and having inputs and outputs of the same dimensions p and g, respectively, 
are said to be largely system equivalent at time ko if there exist a (possibly null) 
finite number of operations of the type (c) or (d) to be carried out on M\ and 
a (possibly null) finite number of operations of the type (c) or (d) to be carried 
out on M2, such that the resulting models, M\ and M2, respectively, are system 
equivalent at time ko. 

Propos i t ion 1. The relation of large system equivalence at time ko between two 
a;-periodic models of the form (5), (6) is an equivalence relation. 
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P r o o f . The reflexivity and symmetry properties are obvious. As regards tran­
sitivity, given three cj-periodic models Mi,i = 1,2,3, having inputs and outputs of 
the same dimensions p and q, respectively, assume that the pairs M\ and M2, and, 
respectively, M2 and M3, are largely system equivalent at time fco- That is, there 
exist pairs of integers j\,j2, and J2, J3, such that the pairs of models M\,M2 and 
M.2,M$, respectively, are system equivalent at time ko, where Mi is obtained from 
Mi after that j{ operations of the type (c) (—j{ operations of the type (d)) have 
been carried out on Mi, if 3i > 0 (-f h < 0)> * = 1>2, and Mi is obtained from 
Mi after that ji operations of the type (c) [—ji operations of the type (d)] have 
been carried out on Mi, if ji > 0 (if ji < 0), i = 2,3. Without loss of generality 
(apart from a renumbering of the three models), assume that j 2 > J2, and define 
j 2 — j 2 =: j 2 > 0. It can be easily checked that the system equivalence at time ko 

of M2 and M3 implies the system equivalence at time ko of M2 and M3, where 

Mi is the model obtained from Mi after that J2 operations of the type (c) have 

been carried out on Mi,i = 2,3. Since M2 = M2, models M\ and Mz are system _ 
equivalent at time ko, by virtue of the transitivity of system equivalence at time ko 
[20]. This proves that M\ and M3 are largely system equivalent at time fco. • 

The following proposition and remark stress that most of the features and prop­
erties of a given model that are invariant under system equivalence at time ko, are 
still invariant under large system equivalence at time ko. 

Propos i t i on 2. Given two cj-periodic models M\ and M2 of the form (5), (6), 
satisfying Assumption 1 and having inputs and outputs of the same dimensions p 
and q, respectively, pseudo-states of dimensions rrii,i = 1,2, and cj-stacked system 
matrices at time ko Sj^^(A),i = 1,2, if they are largely system equivalent at time 
ko, then: 

(a) the c*j-stacked transfer matrices of M\ and M2 at any time coincide; 

((3) M\ and M2 have the same nonnull characteristic multipliers, nonnull input 
decoupling zeros, and nonnull output decoupling zeros at all times and the same cor­
responding ordered sets of structural indices (apart from u\m\ — 7712! null structural 
indices); 

(7) Sj^i(A) has full row-rank if and only if S j J ^ A ) has full row-rank; 

(8) if S ^ . ( A ) , i = 1,2, have full row-rank, then 5 ^ ( A ) , i = 1,2, has full row-
rank for all k € Z, and M\ and M2 have the same nonnull invariant zeros at all 
times and the same corresponding ordered sets of structural indices (apart from 
u\m\ - rri2\ null structural indices). 

P r o o f . By relation (25) and by the properties of strict system equivalence, the 
cj-stacked transfer matrix at time ko of the model obtained after that an operation 
of the type (c) has been carried out on model (5), (6), coincides with that of the 
same model (5), (6). This, together with Proposition 3.3 and relation (22) of [20], 
proves (a). 
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Item (7) trivially follows from (9) and (25), together with Proposition 3.3 of [20]. 
The former assertion in the item (S) follows from Proposition 2.4 of [20]. 
As regards nonnull input decoupling zeros and their ordered sets of structural 

indices in item (/?), using the notations in (25), notice that there exist unimodular 
matrices M(z) and R(z) such that 

M(z)[-Гk

L

0(z) 

-Rp(z) 
0 

0 
0 
0 

•ІLJp 

-RP(z) 

0 
0 
0 

UÏ0(z))R(z) 

0 . . 
Łup 

0 
0 
0 

0 
0 

-Rp(z) 
0 
0 

IШP 0 
-Rp(z) U(z) 

0 S(z) J 

(27) 

where S(z) is the Smith form of [-Tk0(z) Uk0(z)] and U(z) is some polynomial 
matrix. Then, the meaning of the invariant polynomials of the matrix in the right-
hand side of (27) in terms of the g.c.d. of its minors, and Propositions 2.4 and 3.3 of 
[20], prove the assertion in item (/?) concerning nonnull input decoupling zeros and 
their ordered sets of structural indices. The other assertions in item (ft), as well as 
the latter assertion in item (5), can be proved in a similar way. • 

R e m a r k 1. By Proposition 2,- if a system M2 in the state-space form (7), (8) 
is largely system equivalent at some time ho to a given model M\ of the form 
(5), (6), then the cj-stacked transfer matrix of M2 at any initial time and all the 
features of M2 that are listed in items (ft), (7) and (S) of Proposition 2 are specified 
by the original model Mi. Their meaning and significance with reference to the 
structural properties and to the free motions of system M2 is analyzed in detail in 
[18] (where it is shown that, in particular, the characteristic multipliers of system M2 
coincide with the eigenvalues of its monodromy matrix). This connection allows to 
deduce from Proposition 2 that, for example, such a system M2 is controllable (resp., 
reconstructible) if and only if Mi has no nonnull input (resp., output) decoupling 
zeros, it is stabilizable (resp., detectable), if and only if Mi has no input (resp., 
output) decoupling zeros outside the open disk of unit radius [18]; moreover, not 
only the cj-stacked transfer matrix at any time &o and all the nonnull characteristic 
multipliers of system M2 - and therefore the asymptotic stability [10], and the. rate 
of convergence of the free motions -, but even the number and the dimensions of the 
Jordan blocks corresponding to each nonnull characteristic multiplier, in the Jordan 
form of the monodromy matrix of system M2, at any time ko, are determined by the 
properties of the original model Mi (in fact, in [20] a short analysis was developed 
about the role of the characteristic multipliers of model Mi for its pseudo-state free 
motions). In addition, the relevance of the property that S^ (z) has full row-rank 

for any ko £ Z and for any nonnull z € C if and only if S^ (z) has full row-rank 

(which is implied by items (7) and (6) of Proposition 2) is clarified by recalling that 
such a condition on the cj-stacked system matrix S^ (z) of the c*J-periodic system 
A<2» is necessary and sufficient, together with stabilizability and detect ability, for 
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the existence of a solution of the robust tracking and regulation problem for system 
M2 when the u;-stacked forms of reference signals and disturbance functions have a 
time dependence characterized by zh, \z\ > 1 [17]. 

The above analysis, if it is compared with a similar one concerning with system 
equivalence between a system of the form (7), (8) and a model M\ of the form (5), (6) 
(i. e., Remark 3.4 in [20]), shows that most of the features and properties of system 
(7), (8) that are determined by the features and properties of the given model M i , 
which is system equivalent at time ko to the system, are preserved in the system M2 
of the same form (7), (8) that is obtained through large system equivalence at time 
ko from the same given model M\. However, it is worth to stress that the order 
and the characteristic polynomial of the system M2 can be different from those of 
the original model M\ (since factors ^PC^ - 1 ) can be introduced or removed - see 
(26)), and that, in addition, the reachability and the observability at time ko of the 
system M21 the Smith form of its stacked system matrix at time ko, and its nonnull 
invariant zeros at all times, are not specified, in general, by the original model M\, 
whereas in system equivalence they are. 

On the other hand, it is emphasized that, by (22) and Remark 3.2 of [20], the 
output solutions of M\ and M2 over the interval [fco,oo), for each given input 
function w(-)rA.0+oox, are exactly the same, and their pseudo-state solutions over the 
same interval are biuniquely related apart from transient terms, which become equal 
to zero from time k = ko 4- u — 1. D 

In view of the previous discussion, it seems reasonable to look for an a;-periodic 
system of the form (7), (8) that is largely system equivalent at time ko to a given 
cj-periodic model of the form (5), (6). 

4. MAIN RESULT 

The conditions for the existence of an u;-periodic system (7), (8) that is largely system 
equivalent at time ko to the given cj-periodic model (5), (6), under Assumption 1, 
are expressed by the following theorem. 

T h e o r e m 1. For the cj-periodic model (5), (6), under Assumption 1, there exists 
an cj-periodic system of the form (7), (8) that is largely system equivalent at time 
ko to the model (5), (6), if and only if its o;-stacked transfer matrix G^fo(z) satisfies 
the following conditions: 

(i) Gjfo(z) is a proper rational matrix; 

(ii) if Gk
[
o(z) is rewritten as G^f0(z) = Fko(z) + Qko, with Fk0(z) strictly proper and 

Qk0 constant, and Qk0 is decomposed into blocks of dimensions q x p, then Qk0 is 
lower block triangular. 

If conditions (i) and (ii) hold for k0 = k0,ko £ Z, then (i) and (ii) hold for all 
k0 6 Z. 

P r o o f . The last statement is contained in Proposition 2.5 of [20]. 
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Since system (7), (8) satisfies conditions (i) and (ii) restated in terms of the same 
system (see Theorem 3.1 and relations (2.2) and (2.3) in [18]), then the necessity 
follows from Proposition 2. 

As regards the sufficiency, denote by M the given u;-periodic model (5), (6), and 
by n its order, i.e. the degree in A of det7ib0(A). Denote by M the cj-periodic 
model that is system equivalent to M at time fen, and is obtained from M by an 
operation of the type (a) with v := h — m, if m < n, and with v := 0, if m > n; 
denote by m := m + v > n the dimension of the pseudo-state of At, by Sjf0(A) its 

u;-stacked system matrix at time fco, and by 7A,0(A), Z40(A), Vfc0(A) and V\40(A) 
the four blocks constituting Sj£(A). 

Call M the cj-periodicjnodel that is largely system equivalent to M at time 
.fen, and is obtained from M by an operation of the type (c). The (j-stacked system 
matrix of M at time .fen is strictly system equivalent to the matrix SjfQ

L(A) expressed 

by (25) rewritten with f*0(A), Z40(A), V*0(A) and W*0(A) instead of T*0(A), 
Z40(A), V*0(A) and W*0(A), respectively. _ 

Since, by Proposition 3.3 of [20], the hypotheses on M still holds on M, and 
rfiLo > n, there exist [30] unimodular matrices M(A) and 1V(A), and polynomial 
matrices Y(A) and -X"(A) such that: 

Šľ0
L(A) := 

lшp(uf — 1) 

0 
0 

M(Д) 
У(Д) 

0 
0 

Łqut 

SZL(&) 
IШp(u-l) 0 

0 N(Д) 
0 0 

0 
X(A) 

ipoj J 

[ -Bp(Д) ІLJP 0 0 0 0 " 
0 -Rp(A) 0 0 0 0 

0 0 l(jjp 0 0 0 
0 0 .. -RP(A) 0 0 ІLJp 

0 0 0 lmu—ñ 0 0 
0 0 0 0 Eg-AҺ jM Jкn 
0 0 0 0 T м 

Ьk0 

pM 
Гкo -

(28) 

where EjfQ> J ^ , LjfQ and P]^ are constant and, if PjM is decomposed into blocks of 
dimensions q x p, then Pj^ is lower block triangular by Proposition 3.3 in [20] and 
condition (ii). Relation (28) implies that Sj£L(A) is strictly system equivalent to 
Sj£L(A). Let J^,LjfQ, and Pj£ be partitioned as follows: 

(29) 

(30) 

jM _ 
Jk0 — 

r jM jM jM 1 
l J * 0 ł 0 J iko,l '•" ^ o , ^ - ! J ' 

pM _ ľк0 -

Г P£o,o 0 0 
pM pM п 
^fco.1,0 ^ Л o Д Д U 

0 

0 

pM pM pM 
- X f c 0 , w - 1 , 0 ^kotLJ-l,! • r *o,w- l ,2 * 

pM 
JГkoìLJ — ltLJ — l-
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тM __ 
ьko -

тM 
^ko.O 

M 
LkoЛ 

тM 
L^ko,w-l 

(31) 

where all the blocks in (29), (30) (and, respectively, (30), (31)) have p columns (and, 
respectively, q rows). Then, it is possible to check that the following strict system 
equivalence relation holds: 

M 0 
I lqu) Җ L ( Д ) 

N X 
0 /, PЪ> J 

= Sк0 (Д), (32) 

where M, IV, X and Y are constant (with M and IV being nonsingular) and expressed 

by 

M = 
0 

*(jp(u) — 1) 

Itm—ñ 

M31 

Y = [Yi 0 з ] , 

(m—n)u) 

o 
0 

0 
0 

M33 

JV = 
0 

-Ҷm—ñ)u " 

0 0 

Iüф(w-l) 0 

0 

Nзз 

X = 0, 

(33) 

(34) 

(35) 

(36) 

and 
\ML 

Sk0 (A) = 

- I ( m -
0 
0 

ñ)ш 0 

- Я P ( Д ) 
0 

0 
I(jjp 

- Ä P ( Д ) . 

0 
0 
0 

0 
0 
0 

0 
0 
0 

o -
0 
0 

0 
0 
0 

0 
0 

—7L.-i,o 

0 
0 

—7_.-i,i 

'. - ß p ( Д ) 
0 

—71.-1,u/-з 

l(jjp 

- ß p ( Д ) 
—71-1,u/-2 -71 

0 
0 

- l , w - i(A) 

0 

*шp 

Uш-i 
0 Vo Vi Vo,-3 Vo,-2 Vu,-1 w J 

with 

Mзi = [Mзю Mзu 

Mзн = ' ° 

M3l,ш-2] 

0 ... o o 
J M jM jM r\ 

k0t-u>+i+2 ~~Jko,-u>+i+3 ••• ~~Jk0,i
 u 

JkoJ := 0, J = - O ; + 2 , - C J + 3 , . . . , - 1 , ( i f c j > 2 ) , 

M 3 3 = M тpM [E% Щ 
—Iñ(w-l) 

*o ako • ,. JSІ Iň 

(37) 

(38) 

ł * = 0 ł . . . ł w - 2 , (39) 

(40) 

(41) 
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Y = [Yio YП 

Yił = 

Yl.w-2 = 

Yl,i = 

0 . . . 0 0 0' 
0 . . . 0 r м 0 

0 0" 
Yl,ш-2 0 > 

УÌУLJ-2 ] , 

, i = 0 , . . . ,CJ — 3, 

г p M 
* ko.^-l-i.O 

_pM 
^•koyLJ — iyO 

_pM 
гko,u-2,0 

_pM 
-^ko.uJ-1,0 

_pM 
^kOyLJ — iyl 

_pM 
^^0,-^-2,1 
pM 
-Nfco.c-—1A 

Yз = 

M 
^koЛ 

M 
^ k o , 2 

0 
0 

M 
Ь k o , 2 

M M 
^koyLJ-2 -^koyLJ-2 

M M 
L ^ k o , ^ - l ^ko.LJ-l 

-Vзз = 

-*ñ Iñ 

o iñ 

o 

0 

-h 
0 
0 

0 
0 

_pM 
fco,_—2,i—1 

_pM 
ko,w—l,i—l 

i = 0 , . . . , _ > - 2, 

0 0 
0 0 
0 0 

rAf 
• ^ f c o , - - ! 

) 0 
) 0 

--ñ --ñ 

0 0 J 

Г 0 0 
0 0 

0 0 
L 0 0 

0 1 
0 

0 
0 ~Jko,i 

'Lj—lji -

T__i,__i(A) = Rft(A)-diag{/ii,...,/n,<}, 

&_-i = 

H = 

_ = 0,.. .,a; — 2, 

, i = 0 , . . . , _ i - 2 , 

- 0 0 
0 0 

. . . 0 

. . . 0 
o • 
0 

0 0 
. 0 0 

. . . 0 

. . . 0 
0 

тM 
Jk0,ш-1 J 

'0 
0 diаg i \ pM 

0 
pM 

t,0> кo,ш—i 

(42) 

(43) 

(44) 

- P , 

0 
0 

м 
fco,--

(45) 

(46) 

(47) 

(48) 

(49) 

(50) 

(51) 
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V__x = diag{LJK-,J.gilf...,L^_1}> 

W = d i a g { P t f ^ , P j i l t l > . . . , P ^ _ 1 ^ _ 1 } ; 

(52) 

(53) 

in (39) there are u block columns, each of which with p scalar columns; each block 
column Yu in (42) has up scalar columns; the null block columns in (43) and (44) 
have p scalar columns; the null block column in (46) has n scalar columns. Now, 

ML 
it is easy to see that, by a further strict system equivalence on Sko (A), consisting 
of suitably interchanging its first (u — l)pu + rhu rows and columns, the following 
system matrix is obtained: 

-ML 
>k0 

(Д) = 

-I(m-n)u; 0 
0 diag {_4p, _4_ t..., A^-i} - i_((,-i)P4.n(A) 

where 

0 

AІ = 

d iag{Co,d,...,Cu,_i} 

0 
diag{-90,Hi,...,_3 u,-i} 
diag{_9o,A,...,-Du,_i} 

(54) 

A_-i = 

BІ = 

B_-i = 

0 
0 
0 

I(w-2) p 
0 
0 

0 
0 , ' š = 0, . . . , c _ - 2 , 

Г ° Һ 
0 0 

0 

h 
0 0 
0 0 

0 0 
0 0 

jM jM 
L t / /co,0 "'fco.l 

0 
0 

jM 
J * 0 . -

IP 0 
0 0 

jM jpM Jk0ìu-2 ^ko 

" 0 " 

h 
0 

,» = 0,. • •»-o - 2, 

(55) 

(56) 

Уk0,O/-l J 

Oo = [0 . . . 0 Lм
ß], 

(57) 

(58) 

(59) 

<* = [0 . . . 0 PM
i>0 . . . P& t l__ i_J.«]-< = l C-i-2. (60) 

C--i = W,_ - i . o ••• P&-1V-2 ^ . - - i h (61) 

A = Pk
M,iti,i = 0,...,u>-h (62) 

in (55) - (61) the square matrices Ai, i = 0,.. •, u - 1, have the same dimensions, as 
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well as the matrices B{, i = 0 , . . . , u - 1, and the matrices d, i = 0 , . . . , u - 1; the 
numbers of scalar rows of the row blocks of B{ in (57) are the same as those of the 
corresponding row blocks of A{ in (55). Lastly, by a further strict system equivalence 

-ML 
on Sko (A) — merely consisting of proper interchanges of the first (u - 1) pu + rhu 

-ML 

rows and columns of Sk(j (A) —, the cj-stacked system matrix at time k0 is obtained 
of an cj-periodic model of the form (5), (6) having rh — h identically null components 
of the pseudo-state; since the hypotheses required by operation (b) are satisfied, an 
operation of the type (b) with v := rh — h can be performed, so that the cj-stacked 
system matrix at time k0 is obtained of an cj-periodic system of the type (7), (8), 
with n = h + (u — 1) p and 

A(ko + i + hu>) 

B(k0 + i + h<jj) 

C(k0 +i + hш) 

D(k0 + І + ҺJ) 

4t* = o)...,w-i,VÄєz, 
BІ, i = 0 , . . . , w - l , V / i б Z , 

d, t = 0 , . . . , w - l , V Л є Z, 

Di, i = 0 , . . . , w - l , V / i Є Z . 

(63) 

(64) 

(65) 

(66) 

Thus, such a system is largely system equivalent to M. • 

Now, the constructive procedure that is contained in the sufficiency proof of 
Theorem 1 will be given in full details for the simplest case u = 2 and h = m, where 
h denotes the degree of det7jk0(--^)-

Then, consider a 2-periodic model M of the form (5), (6) satisfying Assumption 1 
and conditions (i) and (ii) of Theorem 1, with the degree h of det Tk0 (A) equal to m. 
In this case no preliminary operation of the type (a) is needed. After an operation of 
the type (c), the o;-stacked system matrix at time k0 of the model M thus obtained 
is strictly system equivalent to the matrix S^L (A) expressed by 

-C (A) = 
-BP(л) 

0 
0 

-T*„(Д) 
0 v*o(Д) 

ҺP 

Z40(Д) 
w*o(Д) 

Then, by standard strict system equivalence, polynomial matrices M(A), N(A), 
Y(A) and X(A) are found [30], with M(A) and iV(A) being unimodular, such that 
(28) holds, where Eft, J ft, L^o and P^ are constant, and matrix 5 ^ L ( A ) reduces 
to 

QML 
(Д) = 

" 0 -Ip 0 0 Ip 0 " 
-Д/p 0 0 0 0 ІP 

0 0 -Iñ 0 0 0 
0 0 0 E£-ыñ 

тM 
JЛп,0 

тM 
Jk0Л 

0 
0 

0 
0 

0 
0 

ŢM 

ЛЃ 
ŢЭM 

^k0,0,0 
тэM 
-Nfco.1,0 

0 
ŢЭM 

Гk0ЛЛ J 

(67) 

where the partitions (29), (30) and (31) of Jg, Pj% and LfQ have been used, with 
the last two block rows having q scalar rows. 



18 O.M. GRASSELЫ, S. LONGHI AND A. TORNAMBE 

For Sj£L(A) the following strict system equivalence relation holds: 

Г Һ 0 0 0 0 0 ] 
0 0 -h 0 0 0 
0 h 0 0 0 0 
jM 

Jkn,0 0 p M 
ko h 0 0 

0 0 0 0 h 0 
p Л Í 
-fco.1,0 0 тM 

^ko.l 0 0 h\ 

s*r(--) 

\lp 0 0 0 0 0 " 
0 0 Ip 0 0 0 
0 h 0 -h 0 0 
0 h 0 0 0 0 
0 0 0 0 Ip 0 
0 0 0 0 0 Ip\ 

0 0 -Ip 0 Ip 0 ] 
0 h 0 -h 0 0 

-д/P 
0 0 0 0 Ip 

0 -Д/ñ jM 
Jk0,0 < 0 jM 

JkoЛ 
0 
0 

тM 
^ko.O 

0 
0 

pM 
*k0,l,0 

0 
тM 

Ьko,l 

pЛÍ 
•Чfco.0,0 

0 

0 
pM 

~ML 
:=S*o (A)- (68) 

Matrix Sk0 (A) is the w-stacked system matrix at time ko of a 2-periodic system 
of the form (7), (8), with: 

0 0 
0 Һ 

0 

, V/г e Z, 

0 

A(ko + ҺJ) = 

A(k0 + fш + l) = 

B(ko + hu) = 

B(k0 + hш + 1) = 

C(k0 + fш) = [0 LЙ,o].V/.€Z, 

jM p Д f 
lУjfeo.O ^ko J 

, V/l Є Z, 

, V/i e z, 

/м ,V/.eZ, 
•'Лo.lJ 

C(fc0 + /lu, + l) = [ P M

l i 0 ££ > 1 ] ,V / l €Z, 

(69) 

(70) 

(71) 

(72) 

(73) 

(74) 

D(ko + hw + i) = P £ A i , . = 0,1, V/i e Z. (75) 



Periodic Systems Largely System Equivalent to Periodic Discrete-time Processes 19 

5. CONCLUSIONS 

In this paper a description in state-space form of a discrete-time linear periodic pro­
cess has been obtained within the class of models which are largely system equivalent 
at some time fen to the given one. 

It has been shown that the cj-stacked transfer matrix at any initial time and the 
nonnull characteristic multipliers of the periodic system thus obtained coincide with 
those of the original periodic model (although their orders do not coincide), and 
the asymptotic stability, the controllability, the reconstructibility, the stabilizability, 
the detect ability, and even the number and the dimensions of the Jordan blocks, in 
the Jordan form of the monodromy matrix of such a system, corresponding to each 
nonnull characteristic multiplier, are determined by the original periodic model, as 
well as the existence of a solution of the robust tracking and regulation problem. 

(Received October 20, 1998.) 
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