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STATIC OUTPUT FEEDBACK CONTROLLER DESIGN 

VOJTECH VESELÝ 

In this paper new necessary and sufficient conditions for static output feedback stabiliz-
ability for continuous and discrete time linear time invariant systems have been proposed. 
These condit;ons form the basis for the procedure of static output feedback controller design 
proposed in this paper. The proposed LMI based algorithms are computationally simple 
and tightly connected with the Lyapunov stability theory and LQ optimal state feedback 
design. The structure of the output feedback gain matrix, including a decentralized one, 
can be prescribed by the designer. In this way the decentralized output feedback controller 
can be designed. 

1. INTRODUCTION 

One of the most often mentioned open problems in control theory is the output 
feedback stabilization problem [3]. Simply stated, the problem is as follows: Given 
a dynamic system, find a static output feedback so that the closed loop system 
has some desirable characteristic, or determine that such a feedback does not exist. 
Various approaches have been used to study two aspects of the stabilization problem, 
namely conditions under which the linear system described in the state-space can be 
stabilized via an output feedback and the respective procedure to obtain a stabilizing 
control law. A body of literature deals with the output stabilization problem for the 
linear time invariant systems. Various approaches and results are surveyed in [8, 11, 
16] and in references therein. In the above papers the authors basically conclude 
that the problem of static output feedback is still open despite the availability of 
many approaches and numerical algorithms. This statement is justified by the fact 
no testable necessary and sufficient conditions exist to test the stabilizability of a 
given system using a static output feedback, and that numerical algorithms cannot 
be shown to be convergent in general [16]. 

A necessary and sufficient condition for output feedback stabilizability of a lin­
ear continuous time invariant system is given in [11], and of a linear discrete time 
invariant system in [14]. The results given in the above two papers are not construc­
tive and do not solve the computational aspects of the problem. Nevertheless, the 
relationship of the above results with the linear quadratic regulator is helpful, for 
continuous time systems [5] and for discrete time systems [14] it has inspired to pro­
pose an algorithm which iterates the algebraic Riccati equation until the constraints 
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are satisfied. 

It has recently been shown that an extremely wide array of output feedback 
controller design problems may be reduced to the problem of finding a feasible point 
under a Biaffine Matrix Inequality (BMI) constraint. The BMI has been introduced 
by [15] and [7] as a geometric reformulation of many problems in the output feedback 
controller design and robust control. However it is known that BMI problems are 
JVP-hard [17]. The main result of [17] shows that it is rather unlikely to find an 
algorithm for solving general BMI problems and it is also shown that simultaneous 
stabilization of N plants with a static output feedback is an JVP-hard problem. The 
BMI feasibility problem is discussed in [7] and the paper presents a branch and bound 
global optimization algorithm which finds an ^-global minimum in a finite number of 
iterations. In this paper the BMI problem of the output feedback controller design 
is reduced to an LMIs problem. 

The theory of linear matrix inequalities (LMIs) [2] has been used for output 
feedback controller design in [1, 9, 13, 18]. Most of the above works present an 
iterative algorithm in which a set of equations, or set of LMI problems are repeated 
until certain convergence criteria are met. In [18] a necessary and sufficient condition 
for simultaneous stabilizability via static output feedback is obtained and an iterative 
LMI algorithm is proposed to obtain the output feedback gain. In [9] necessary and 
sufficient conditions for the existence of an Hoo controller of any order are given 
in terms of three LMIs. The authors in [10] study the conditions under which the 
designing output feedback controllers can be divided into two stages and a dynamic 
output feedback can be obtained. In [1] the authors have proposed an LMI based 
algorithm which does not require iteration of LMI problems. The goal is to eliminate 
the need for iteration by an appropriate choice of the initializing state feedback 
matrix. The V-K iteration algorithm proposed in [4] is based on an alternative 
solution of two convex LMI optimization problems obtained by fixing the Lyapunov 
matrix or the gain controller matrix. This algorithm is guaranteed to converge but 
not necessarily to the global optimum of the problem depending on the starting 
conditions. 

In the present paper new necessary and sufficient conditions for output feedback 
stabilizability of linear continuous and discrete time systems are the basis for the 
proposed static output feedback design procedure. For iterative and non iterative 
LMI based algorithms and for the structurally constrained state feedback method 
the structure of the static output feedback gain matrix can be prescribed by the 
designer including the decentralized case. The design procedure of the output feed­
back controller design for the continuous time version has been completed up to the 
LMI based algorithms. The discrete time approach to this problem is outlined up 
to the classical iterative algorithm, the remaining part being still under research. 

The paper is organized as follows. In Section 2, problem formulation and some 
preliminary results are presented. The main results are given in Section 3. In Section 
4, the obtained theoretical results are applied to some examples. The notation 
is standard, and will be defined as the need arises. Much of the notation and 
terminology follows references [8, 11] and [14]. 
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2. PRELIMINARIES AND PROBLEM FORMULATION 

We shall consider the following linear time invariant continuous and discrete time 
systems 

CTS 
x = Ax(t) + Bu(t), y(t) = Cx(t), x(0) = x0 (1) 

DTS 
x(t + 1) = Ax(t) + Bu(t), y(t) = Cx(t), x(0) = x0 (2) 

and the static output feedback 

u(t) = FCx(t) (3) 

or structurally constrained state feedback [5] 

u(t) = (K + L) x(t) (4) 

where x(t) G Rn is the plant state; u(t) G Rm is the control input; y(t) G Rl is 
the output vector of the system; A, B, C, and F, K, L are constant matrices of 
appropriate dimensions. The closed loop system can be described by 

CTS 
x = (A + B(K + L)) x(t) =: (A + BFC) x(t) (5) 

DTS 
x(t + 1) = (A + B(K + L)) x(t) =: (A + BFC) x(t) (6) 

As it is well known [8], the fixed order dynamic output feedback of Older less or 
equal to n is a special case of the static output feedback problem. 

The problem studied in this paper can be formulated as follows: For a continuous 
and discrete time linear system described by (1) or (2) design a static output feedback 
controller with the gain matrix F and control algorithm (3) or (4) so that the closed 
loop system (5) or (6) is stable. The following performance indices are associated 
with the systems (1) and (2): 

CTS 
/•CO 

Je= (x(t)TQx(t) + u(t)TRu(t)) dt (7) 
jo 

DTS 
CO 

Jd = Y^[x(t)TQx(t) + u(t)TRu(t)] (8) 
t=0 

where Q = QT > 0 and R = RT > 0 are matrices of compatible dimensions. 

Definition. Consider the system (1) or (2). If there exists a control law u* and 
a positive scalar J* such that the closed loop system is stable and the closed loop 
value cost function (7) or (8) satisfies Jc < J* (Jd < J*), then J* is said to be the 
guaranteed cost and u* is said to be the guaranteed cost control law for system (1) 
or (2). 



208 v - VESELÝ 

Let us recall several commonly used notions for continuous time systems. The 
matrix D G Rnxn is called stable if all its eigenvalues lie in the left half complex 
plane, i.e. if Re{Ai(-D)} < 0 for i = 1,2,... ,n . System (1) with a stable matrix 
A is called stable. System (1) is called output feedback stabilizable if there exists 
a real output feedback gain matrix F such that A + BFC is a stable matrix. The 
pair (A, C) is called detectable if there exists a real matrix X such that A + XC is 
stable. The adequate notions can be recalled for discrete time systems. 

The following results are analogous to the corresponding discrete time cases (cf. 
[12])-

Lemma 1. The matrix A is stable iff there exist P > 0, Q > 0 satisfying the 
following Lyapunov matrix equation 

ATP + PA + Q = 0. (9) 

3. STATIC OUTPUT FEEDBACK CONTROLLER DESIGN 

In the next developments (subsection 3.1) we employ Lemma 2. 

Lemma 2. Let two matrices C e Rlxn and K e RmXnJ < n ,m < n be given. 
If for the prescribed gain matrix structure F it holds FC ^ 0, then there exists no 
unique solution with respect to two matrices F G Rmxl and L e Rmxn such that 
the following equality holds 

FC = K + L. (10) 

P r o o f . This is a standard fact. • 

Owing to Lemma 2 one can recalculate the obtained results from a static struc­
turally constrained state feedback to a static output feedback. Note that the struc­
ture of gain matrix F can be determined by the designer. 

3.1. Structurally constrained state feedback design 

Consider the system described by (1) with control algorithm (3). The following 
lemma is well-known. 

Lemma 3. Let the linear time invariant system be given. Then the following 
statements are equivalent. 

1. The system (1) is stabilizable via the state feedback 

u(t) = Kx(t). (11) 
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2. There exist matrices Q > 0 and R > 0 of compatible dimensions such that the 
following ARE 

PA + ATP - PBR~lBTP + Q = 0 (12) 

has a unique solution P = PT > 0. 

3. There exist matrices P > 0 and R > 0 of compatible dimensions satisfying the 
following ARI 

PA + ATP - PBR~1BTP < 0. (13) 

In fact, if (A, B) is stabilizable via state feedback (11), then, for any Q > 0, R > 0, 
the ARE (12) and ARI (13) must have a unique solution P > 0. 

In what follows the idea of the static structurally constrained state optimal control 
problem [5] is used with the new necessary and sufficient conditions for static output 
feedback stabilizability of linear systems proposed in this paper. The main results 
for a continuous time system are given in the following theorem. 

T h e o r e m 1. Let the linear time invariant continuous system (1) be given. Con­
sider the static structurally constrained feedback (3). Then the following statements 
are equivalent. 

1. The system is static structurally constrained feedback stabilizable. 

2. There exists a symmetric and positive definite matrix P and matrices K and 
L satisfying the following matrix inequality 

(A + B(K + L))TP + P(A + B(K + L)) < 0. (14) 

3. There exist positive definite matrices P and R, and matrices K and L satisfying 
the following matrix inequalities 

AT
LP + PAL - KTRK - PBR'1BTP < 0 

(RK + BTP)(t>-1 (RK + BTP)T - R < 0 (15) 

where AL = A + BL and <j> = -(AT
LP + PAL - PBR~1BTP - KTRK). 

P r o o f . The proof that the first and second statement are equivalent is given in 
Lemma 1. To prove the third statement recall that, for any matrices Eii,Ei2 and 
E22 where En and E22 are symmetric, the following are equivalent: 

En E12 

E12 E22 >o 

E22 > 0, En - E12E2-2
lE?2 > 0 (16) 

Eu > 0, E22 — E12En E\2 > 0. 



210 V. VESELÝ 

Using the Schur complement formula (16) the inequality (14) which can be rewritten 
as 

-[(AL + BK)TP + P(AL + BK)] > 0 (17) 

is for R > 0 equivalent to the following inequality 

R RK + BTP 
(RK + BTP)T ф 

> 0 . 

From (16) it is straightforward to show the equivalence of (15) and above inequality, 
which proves the equivalence of the third and the second statements. • 

Corollary 1. Find (P,K) solving the following two matrix equations 

ATP + PA- PB(I + R~1)BTP + QC = 0 (18) 

where Qc = (L + BTP)T(L + BTP) + Q- KTRK - LTL + (K + L)TR(K + L) 

K = -R~1BTP (19) 

then the following inequality holds 

/•OO 

Jc = / x(t)T[Q + (K + L)TR(K + L)] x(t) dt < xTPx0 = J* 
Jo 

necessary and sufficient conditions for system stabilizability(15) hold. 

Equations (18) and (19) inspired the following algorithm for the calculation of 
the gain matrix F. 

Algorithm A. 

Step 1. Set i = 1, LQ = 0, PQ = I, Rc = (7 + I?-1)-1 where I is the identity matrix 
of corresponding dimension. 

Step 2. Compute QCi-

Step 3. Calculate P{ = Pf > 0 

ATPi + PtA + Qd - PiBR-1BTPi = 0. (20) 

Step 4. Compute the gain matrix 

Ki = -R-lBTPi. (21) 

Step 5. For given matrices Ki,C, using Lemma 2 compute the matrices Fi and Li 
in the same way for all i. 

Step 6. Calculate er = \\Li — Z/f_i|| if er < error stop, else set i = i + 1 and go to 
Step 2. 
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If the sequence L0, Lu . . . converges, say to L, gain matrix K is given by (19). It is 
easy to show that Algorithm A can be rewritten to LMI based algorithm. Note that 
for the stabilization problem the matrix Qci is 

Qa = Qd(Algorithm A)-(K + L)TR(K + L)-Q. 

Although the convergence of the Algorithm A has not been formally proven, it has 
converged for the most tests performed in connection with this research. Typically, 
the number of iterations for convergence varies from 15-50 depending on the values 
of matrices Q and R. 

In this section we will present a new procedure to design a static structurally 
constrained state feedback for discrete time system (2). The following theorem will 
be employed'in the further development. 

T h e o r e m 2. Let the discrete linear time invariant system be described by (2). 
Then the following statements are equivalent. 

1. The system (2) is static structurally constrained state feedback stabilizable. 

2. There exists a symmetric and positive definite matrix P and matrices K and 
L satisfying the following matrix inequality. 

[A + B(K + L)]TP[A + B(K + L)] - P < 0. (22) 

3. There exist symmetric and positive definite matrices P and R and matrices K 
and L satisfying the following matrix inequalities 

-(t>d<0, G(f>jlGT-I<0 (23) 

where 

(j>d = -(ATPA - P - ATPB(BTPB + R)~1BTPA + Qdb + Qda) 

G=^=(BTPB + R)-2 BTPA + V2(BTPB + R)*K 
v2 

Qdaa = -^=(BTPB + R)~1BTPA + V2L 

v2 

Qda = QT
daa(B

TPB + R)Qdaa + (K + L)T BT PB(K + L) 

Qdh = -2KT(BTPB + R)K - 2LT(BTPB + R)L. 

P r o o f . The proof of equivalence of the first and second statements is evident 
from a similar lemma for discrete time systems as Lemma 1. The proof of equivalence 
of the second and third statements is similar to that of Theorem 1. According to 
(16) the matrix inequality 

7 G 1>0 G T <t>d
 > 0 
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is for R > 0 equivalent to 

<j>d>0, I-G<j>j1GT>0 

0 r < 
I > 0, <f>d - GTG > 0. 

Obviously the former is equivalent to (23), the latter can be after some manipulation 
rearranged into the form (22). Thus (22) is equivalent to (23) (or statement 2 is 
equivalent to 3) which completes the proof. • 

Corollary 2. Let us find (P,K) solving the following two matrix equations 

ATPA - P - ATPB(BTPB + R)~1BTPA + Qd = 0 (24) 

K = -\(BTPB + R)-1BTPA (25) 
Zi 

where 
Qd = Q + Qda 

then the necessary and sufficient conditions (23) hold. 

An algorithm to handle the LQR problem with a static structurally constrained 
feedback can be stated as follows. 

Algorithm B. 

Step 1. Set i = 1,L0 = 0,,Ko = 0,P0 = I-

Step 2. Compute 
Qdi = Q + Qdai> 

Step 3. Calculate P{ = PT > 0 from the following ARE 

ATPiA -Pi- ATPiB(BTPiB + R)~1BTPiA + Qdi = 0. 

Step 4. Compute the gain matrix Ki 

Ki = -\(BTPiB + R)-lBTPiA. 

Step 5. For given matrices Ki,C, using Lemma 2 calculate the matrices Fi and Li. 

Step 6. Calculate 
er = \\Li-Li-1\\ 

if er < error stop, else set i = i + 1 and go to Step 2. 

If the sequence LQ, L\,... converges, say to L, the gain matrix K is given by (25). 
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3.2. Static output feedback design 

In this subsection we will present new procedures to design a static output feedback 
controller for a continuous and discrete time system. The main results for a con­
tinuous time system with a static output feedback are summarized in the following 
theorem. 

T h e o r e m 3. Let the linear continuous time system (1) be given. Then, the fol­
lowing statements are equivalent. 

1. System (1) is static output feedback stabilizable. 

2. There exists a symmetric and positive definite matrix P and a matrix F sat­
isfying the following matrix inequality 

(A + BFC)TP + P(A + BFC) < 0. (26) 

3. There exist positive definite matrices P and R and a matrix F satisfying the 
following matrix inequalities 

cj)u = -(ATP + PA - CTFTRFC - PBR~lBTP) > 0 (27) 

(RFC + BTP)(j)-1 (RFC + BTP)T - R < 0. (28) 

P r o o f . The proof of this theorem goes in the same way as for Theorem 1. • 

Theorem 4. Let the system (1) be given. Then the following statements are 
equivalent. 

- The system (1) is static output feedback stabilizable with guaranteed cost 

poo 

/ (x(t)TQx(t) + u(t)TRu(t)) dt < xTPx0 = J* (29) 
jo 

and P > 0. 

- There exist matrices F > 0 , R > 0 , Q > 0 and a matrix F such that the following 
inequality holds 

(A + BFCfP + P(A + BFC) + Q + CTFTRFC < 0. , (30) 

- There exist matrices P > 0 , . R > 0 , Q > 0 and a matrix F such that the following 

inequalities hold 

ATP + PA- PBR~1BTP + Q < 0 (31) 

(BTP + RFC)<f>Zx (BTP + RFC)T -R<0 (32) 
where 

(j>u = -(ATP + PA- PBR~1BTP + Q). 
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P r o o f . Let the control algorithm with output feedback be given as 

u(t) = Fy(t) = FCx(t), 

then for the closed loop system one obtains 

x= (A + BFC)x(t). 

For V = x(t)TPx(t), the time derivative of V along system (1) is 

^ = xT[(A + BFCfP + P(A + BFC)]x. 

If inequality (30) holds, then there exist matrices P > 0, R > 0,Q > 0 and F such 
that 

^ < -x(t)T(Q + CTFTRFC) x(t) < 0. 
at 

Therefore the closed loop system is asymptotically stable. Furthermore, by integrat­
ing both sides of the inequality from 0 to T and using the initial condition rrn, we 
obtain 

V(0) - V(T) > I x(t)T(Q + CTFTRFC) x(t) dt. 
Jo 

As the closed loop system is asymptotically stable if T —> oo, then 

x(T)TPx(T) -> 0. 

Hence, we get 
/•OO 

x(t)T{Q + CTFTRFC) x(t) dt < xTFx0 (33) / 
J0 
lo 

and the control algorithm u = Fy is a guaranteed cost control law and 

J = XQ IXQ 

is a guaranteed cost function for uncertain closed loop system. The equivalence of 
the second and third statements is proved in Theorem 3. • 

Define S = P~l and using the Schur complement formula the inequality (31) is 
equivalent to the following linear matrix inequalities 

SAT + AS-BR~1BT SVQ 
VQS -I 

jKS (34) 

where 7 > 0 is some non-negative constant. When one knows P = 5 " 1 , inequality 
(32) can be rewritten as follows 

-R BTP + RFC 
(BTP + RFC)T -ct>u 

< 0 

< 0. (35) 

The algorithm for static output feedback stabilization of system(l) with a guar­
anteed cost (33) and non-iterative LMI approach is given as follows. 
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Algorithm C. 

Step 1. Using LMI based algorithm calculate S from inequalities (34), P = S~l. 

Step 2. Via LMI based algorithm calculate F from inequalities (35). 

Step 3. If the solution (34) is not feasible, system (1) is not stabilizable, and if (35) 
is not feasible and the closed loop system(5) is not stable, change Q and R. 

If the solutions (34) and (35) are feasible with respect to S and F , then system (1) 
is quadratically stable with a guaranteed cost control algorithm 

u(t) = Fy(t) 

and 
J z=

 XQ IXQ 

is a guaranteed cost for uncertain closed loop system. Theorem 3 implies the follow­
ing corollary. 

Corollary 3. Let the system (1) be given. Then the following statements are 
equivalent: 

- The system (1) is static output feedback stabilizable. 

— There exist positive definite matrices Q > 0,R > Q,P > 0 and a matrix F 

satisfying the following matrix inequalities. 

ATP + PA- PBR~1BTP - CTFTRFC + Q<0 (36) 

(BTP + RFC)®-1 (BTP + RFC)T -R<0 (37) 
where 

$ 5 = -(ATP + PA- PBR~1BTP - CTFTRFC + Q). 

^From Corollary 3 one obtains the following design procedure for static output 
feedback stabilization of system (1) based on V-K LMI iterative algorithm. 

Algorithm D. 

Step 1. Set j = 1,F0 = 0. 

Step 2. Using the LMI based algorithm calculate Sj = P " 1 > 0 from inequality 
(36). 

Step 3. Using LMI based algorithm calculate the gain matrix Fj from inequality 
(37). 

Step 4. Calculate er = ||Ej — E,_i ||, if er < error stop else j = j +1 and go to Step 
2. 
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Step 5. If there is no solution, change Q and R. 

The philosophy of Algorithm D is very closely related to the V-K iteration algorithm 
proposed in [4], The V-K iteration algorithm is based on an alternative solution of 
the two convex LMI optimization problems, obtained by either fixing the matrix P 
or the gain F. This algorithm is guaranteed to converge, but not necessarily to the 
global optimum of the problem depending on the starting condition of matrix F. If 
Algorithm D is feasible, for the closed loop system the following cost is guaranteed 

/•OO 

/ x(t)TQx(t)dt < x%Px0. 
Jo 

The main results for discrete time system (2) and output feedback are summarized 
in the following theorem. 

Theorem 5. Let the linear discrete time system (2) be given. Then the following 
statements are equivalent. 

1. The system (2) is static output feedback stabilizable. 

2. There exist a symmetric and positive definite matrix P and a gain matrix F 
satisfying the following inequality 

(A + BFC)TP(A + BFC) - P < 0. (38) 

3. There exist matrices P = PT > 0, R = RT > 0 and a gain matrix F satisfying 
the following inequalities 

-*d<0, Gd^
lGT-K0 (39) 

where 

$ d = ~(ATPA - P - ATPB(BTPB + R)~1BTPA - CTFTRFC) (40) 

Gd = (BTPB + R)~2BTPA + (BTPB + R)i FC. (41) 

P r o o f . The proof of this theorem goes the same way as for Theorem 2. • 

Corollary 4. Approximate solution of (39) can be given as a solution of the fol­
lowing two matrix equality. 

ATPA - P - ATPB(BTPB + R)~1BTPA + Q = 0 (42) 

F = -(BTPB + R)-1BTPACT(CCT)~1. (43) 

Equations (42), (43) directly determine the Lyapunov matrix P = PT > 0 which 
satisfies the condition of (39). The gain matrix F is only an approximate solution 
of the second inequality of (39). Hence, the sufficient and necessary conditions (39) 
for (43) may not be fulfilled in some cases. 

An algorithm to handle the static output feedback can be stated as follows. 
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Algorithm E. 

Step 1. Set 2 = 1, F0 = 0 . 

Step 2. Compute 

Qdi = Q — C Fi_1RFi-1C. 

Step 3. Solve ARE 

ATPiA -Pi- ATPiB{BTPiB + R)~1BTPiA + Qdi 

for Pi = PT > 0. 

Step 4. Compute 
FІ = -{B1 PІB + Щ-^B1 PІAC1 (CC1 Г 1 . 

Step 5. Calculate 
er = | | P i - P i _ i | | 

if er < error stop else increase i by one and go to Step 2. 

Step 6. Check the stability of closed loop system A + BFC or the inequality 

BTPA{I - CT{CCT)-1)Q^1{I - CT{CCT)-1C)TAPB - {BTPB + R)<0 

if it holds stop else change Q, R and go to Step 2. 

4. EXAMPLES 

As a first concrete example we have taken the problem of the design of a PI controller 
to control a small DC motor rotation. A continuous model of the DC motor is given 
by (1) where 

A = 
-4.701 1 0 " ' -.0721 
-8.2986 0 0 , в = 15.0218 
1 0 0 0 

c 
1 0 0 
0 0 1 

The results of gain matrix calculation employing the derived algorithms are summa­
rized as follows. 
Algorithm A. Structurally constrained state feedback. Let the matrix F be described 
as 

F = [h /2] 

and 
K = [Kn K12 K13], L=[Ln L12 L 1 3 ] . 

Due to (10) for entries of matrices F and L we obtain the following equations 

/ I C I I = K13 + L i 3 , /2C23 -= K13 + L13, 0 = K12 + L12. 
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The solution can be 

K12 = —Li2, L\\ — L\z — 0, f\ 
Kn 
On h 

Kiҙ 
C23 

For Q = diag{2 1 2} and R = 1 the gain matrix F and eigenvalues of the closed 
loop (OL) system are 

F = [.1763 1.4142]; eigCL = {-3.3446; -.6718 ±j2.429}. 

The above DC motor continuous model has been recalculated with sample period 
T = 0.1s to a discrete model. Results of the design of a PS controller are summarized 
as follows. For Q = diag{.2 .2 .2} and R = 10 the gain matrix F and eigenvalues 
of the closed loop system for Algorithm B are 

F = [-.0312 - .0675] eigCL = {.9857;.7886±j.1083}. 

The number of iterations = 21 and error of calculation = 2.0955.10-7 

From eqs. (42) and (43) one obtains the gain matrix 

E = [-.0847 -.1313] eigCL = {.9628 .801 ±j.0518}. 

Algorithm E gives the following results 

F = [-.089 - .0963] eigCL = {.9748;.7957±j.0623}. 

The number of iterations = 67 and error of calculation = 2.4117.10~7. 

As a second example we have taken the problem of the design of a decentralized 
PI controller for the system given by (1) where 

0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 

A 

0 — 2878 0 0 0 0 0 0 
1 — 7662 0 0 0 0 0 0 
0 0 0 1.485 0 0 0 0 
0 0 1 1.788 0 0 0 0 
0 0 0 0 0 — 6638 0 0 
0 0 0 0 1 1.2642 0 0 
0 0 0 0 0 0 0 -.1363 
0 0 0 0 0 0 1 -.5725 
0 1 0 1 0 0 0 0 
0 0 0 0 0 1 0 1 

B' = 
.2794 -.0582 0 0 -.3277 .0084 0 0 0 0 
0 0 .5725 -.0655 0 0 .2085 -.0371 0 0 

C = 

0 1 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
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The structure of the output feedback gain matrix F is given by the designer as 
follows 

" / l l 0 /13 0 
0 /22 0 /24 

The results of calculation for Algorithm A are as follows. For Q = diag{l},R = 
di'ag" {100} the gain matrix 

ғ = 

ғ = 
.02812 0 .080178 0 

0 .01058 0 .076501 

and 

eig CL = {-.12624 ± j 1.8422; -.12819; -.2866,..., -.89345 ± j.827}. 

The results of computation for LMI based Algorithm A are as follows. For Q = 
diag{7}, R = diag{50} and 7 = .03 the gain matrix 

ғ = 
.2623 0 .0345 0 
0 .0294 0 .0112 

The closed loop eigenvalues are 

eig CL = {-.0233 ± i.0049; -2769 ± j .2368;. . . ; -.8953 ± j.8261}. 

Guaranteed cost 

x(tf(Q + (K + L)TR(K + L)) x(t) dt < 6L7315||.ro|.2-/ 
J0 

For Algorithm C and Q = diag{l},R = diag{50} and 7 = .03 one obtains the gain 
matrix 

" 0.0268 0 .1013 0 
0 .0515 0 0.0831 

F = 

The eigenvalues of the closed loop system are 

eig CL = {-.1364 ± j.1968; -.216 ± j .0279;. . . ; -.8933 ± j.8263}. 

The guaranteed cost is 

Jo 
z lí) ' (Q + C1 FHFC) x(t) dí < 47.7658||.co|r 

Algorithm D for the same Q,R and 7 give the following results 

F = .0184 0 .083 0 
0 .0419 0 .072 

The eigenvalues of the closed loop system are 

eig CL = {-.1632 ± j.1791; -.1734 ± j .0217;. . . ; -.8935 ± .8263}. 

The guaranteed cost is 
/•CO 

x(ť)lQx(ť) at < 45.5703||x0||
2. / 

J0 
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5. CONCLUSION 

The main aim of this paper is to propose new methods for solving the problem of the 
controller design via stat ic output feedback for linear continuous and discrete t ime 
systems. In this paper new necessary and sufficient conditions have been proposed 
for s ta t ic ou tput feedback stabilizability for continuous and discrete t ime systems. 
These conditions are t ightly connected with the Lyapunov function and LQ opti­
mal s ta te feedback control gain matr ix design. For the proposed Algorithm A and 
non-iterative LMI Algorithm C and V-K iterative LMI based Algorithm D, the gain 
mat r ix s t ructure of stat ic ou tput feedback F could be prescribed by the designer 
including the decentralized case. The proposed algorithms are computationally sim­
ple. 
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