
Kybernetika

Miroslav Balík
Implementation of directed acyclic word graph

Kybernetika, Vol. 38 (2002), No. 1, [91]--103

Persistent URL: http://dml.cz/dmlcz/135448

Terms of use:
© Institute of Information Theory and Automation AS CR, 2002

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/135448
http://project.dml.cz

K Y B E R N E T I K A — VOLUME 38 (2002) , NUMBER 1, P A G E S 9 1 - 1 0 3

IMPLEMENTATION OF DIRECTED ACYCLIC WORD
GRAPH

MIROSLAV BALÍK

An effective implementation of a Directed Acyclic Word Graph (DAWG) automaton is
shown. A DAWG for a text T is a minimal automaton that accepts all substrings of a text
T, so it represents a complete index of the text. While all usual implementations of DAWG
needed about 30 times larger storage space than was the size of the text, here we show an
implementation that decreases this requirement down to four times the size of the text.
The method uses a compression of DAWG elements, i. e. vertices, edges and labels. The
construction time of this implementation is linear with respect to the size of the text, a
search for a specific pattern is done in a linear time with respect to the size of the pattern.
This implementation preserves both good properties of the DAWG automaton.

1. INTRODUCTION

String matching is one of the most frequently used tasks in text processing. With the
increased volume of processed data, which usually consists of unstructured texts, the
importance of data qualification technologies is increasing. This is the reason why
indexing structures are constructed for static texts that support pattern matching
in a linear time with respect to the length of the pattern.

Although some indexing structures have a linear size with respect to the length of
the text, this size is high enough to disable practical implementation and usage. This
size depends on implementation details, on the type of the text and on the type of
the automaton used. For suffix tree the size is rarely smaller than lOn bytes, where
n is the length of the text. Other structures are a Directed Acyclic Word Graph
(DAWG) automaton (size about 30n bytes) and its compact version CDAWG (size
about lOn bytes). Stefan Kurtz in [10] shows a number of known implementations of
these automata together with experimental evaluations and a number of references.

Other types of indexing structures are usually smaller, suffix arrays [6] (size 5n
bytes), level compressed tries [2] (size about l l n bytes), suffix cactuses - a combi­
nation of suffix trees and suffix arrays [9] (size 9n bytes), and suffix binary search
trees [8] (size about lOn bytes).

An automaton is usually stored as a graph, vertices represent states of the au-

92 M. BALÍK

tomaton and edges represent transitions. A state is then represented by an index
into a transition table or as a memory position referenced by edges. Edges are stored
as a part of the vertex they start from. Thus it is possible to locate an edge with a
specific label in a constant time with respect to the number of vertices and edges.
Each edge contains an information about the vertex it leads to, and its label, which
is one symbol in the case of DAWG, or a sequence of symbols in the case of CDAWG
and suffix trees. Every sequence used as a label is a substring of a text, so it can be
represented by a starting and ending positions of this substring.

An implementation presented in this paper uses a compression of elements of the
graph representing the automaton to decrease space requirements. The 'compres­
sion' is not a compression of the whole data structure, which would mean to perform
decompression to be able to work with it, but it is a compression of individual ele­
ments, so it is necessary to decompress only those elements that are necessary during
a specific search. This method is applicable for all homogeneous automata1 and it
can be generalized to all automata accepting a finite set of strings.

The whole graph is a sequence of bits in a memory that can be referenced by
pointers. A vertex is a position in the bit stream where a sequence of edges originat­
ing from the vertex begins. These edges are pointers into a bit stream, they point to
places where the corresponding terminal vertices are located. Vertices are stored in
a topological ordering2, which ensures that a search for a pattern is a one-way pass
through the implementation of the graph structure.

Each vertex contains an information about labels of all edges leading to it and
the number of edges that start from it. Since it is possible to construct a statistical
distribution of all symbols in the text, we can store edge labels using a Huffman
code [7]. We can use it also to encode the number of edges starting from a vertex
and because the most frequent case is when only one edge starts from a vertex, it is
dealt with as a special case.

The approach presented here creates a DAWG structure in three phases. The
first phase is the construction of the usual DAWG (Section 3), the second phase
is topological ordering (or re-ordering) of vertices (Section 4), which ensures that
no edge has a negative "length", where length is measured as a difference of vertex
numbers. The final phase is encoding and storing the resulting structure. Encoding
of each element is described in Section 5.

We have used six files in the experiments. The former three files are texts on
UNIX. This files are written in English. The later three files are randomly generated
texts. This texts have similar properties as DNA sequences.

2. BASIC DEFINITIONS

An alphabet is a finite set of symbols. A string over a given alphabet is a finite
sequence of symbols. An empty sequence of symbols is called an empty string and
it will be denoted as e. Let T = t\ti... tn be a string (text) over a given alphabet

1 Homogeneous automata have all transitions to a specific state labeled with the same symbol.
2 A topological ordering of a vertex is such a numbering of vertices that ensures that each edge

starts from a vertex with a lower number and ends at a vertex with a higher number.

Implementation of Directed Acyclic Word Graph 93

A. A pattern P = pip2 .. . p m is a substring of a text T iff such two natural numbers
i> h 3 = i + m + 1> i > 0, j < n exist such that P = ^ + 1 . . . tj. To answer whether
a pattern P is a substring (subpattern, subword, factor) of a text T is a pattern
matching problem.

The major advantages of DAWG are:

— it has a linear size limited by the number of vertices ,which is less than 2\n\ — 2;
the number of edges is less than 3|n|—4, where n > 1 is the length of the text [4],

— it can be constructed in 0(n) time [4],

— it allows to check whether a pattern occurs in a text in 0(m) time, where m
is the length of the pattern. Pattern matching algorithm is shown in Figure 1.

1. State q := r/o; i := 1;
2. while((i < m + 1) and (q 7- NULL))
3. do q := Successor(q, P[i])] i := i + 1; end
4. if(i < m + 1) then N O / / Pattern does not occur in Text

else YES / / Pattern occurs in Text

Fig. 1. Matching Algorithm.

Index i points to the processed symbol of the pattern, function Successor(q, P[i])
returns successor of state q using the edge labeled by symbol P[i]. If there is no
edge from state q labeled by this symbol, the NULL value is returned.

The whole algorithm consists of the mail loop. The number of iteration is in the
worst case m. In each iteration appropriate edge is searched. This search depends
only on the size of the input alphabet, it is independent on the number of edges in
the whole graph. The resulting time complexity of the algorithm is 0(m).

3. CONSTRUCTION OF DAWG

There are many ways of constructing DAWG from text, more details can be found
for example in [4]. The method used here is the on-line construction algorithm. An
example of DAWG constructed using this algorithm for an input text T = aabbabb
is shown in Figure 2.

During this phase a statistical distribution of symbols in the text is created. A
statistical distribution of the number of edges at respective vertices is also created.

4. TOPOLOGICAL ORDERING

The DAWG structure is a directed acyclic graph. This means that its vertices can
be ordered according to their interconnection by edges. Such an implementation

94 M. BALÍK

Fig. 2. DAWG for the text T = aabbabb.

that keeps all the information about edges starting from a vertex only in the vertex
concerned while storing the vertices in a given order guarantees that every pattern
matching will result in a single one-way pass through this structure.

The problem of such topological ordering can be solved in linear time. At first, for
each vertex its input degree (the number of edges ending at the vertex) is computed,
next a list of vertices having an input degree equal to zero (the list of roots) is
constructed. At the beginning, this list will contain only the initial vertex. One
vertex is chosen from the list, gets the next number in the ordering and for all
vertices accessible by an edge starting at this vertex their input degree is decreased
by one. Then such vertices that have a zero input degree are inserted into the
list. And this goes on until the list is empty. The order of the vertices, which
determines the quality of the final implementation, obtained this way depends on
the strategy of choosing a vertex from the list. Several strategies were tested and
the best results were obtained using the LIFO (last in - first out) strategy, because
using this strategy for vertices with only one outgoing edge gets its successor next
number (if this successor has been inserted into the roots list). With the vertices
having only one edge, and this edge points to the successor in topological ordering,
is dealt as a special case, see Section 5.

The original DAWG shown in Figure 2 has been topologically ordered using the
LIFO strategy and the resulting graph is depicted in Figure 3.

@-^cШ)-^QD

Fig. 3. The results of topological ordering.

Implementation of Directed Acyclic Word Graph 95

5. ENCODING

The DAWG graph is encoded element by element (elements are described later in
this section). It starts with the last vertex according to the topological order (as
described above) and progresses in the reverse order, ending with the first vertex
of the order. This ensures that a vertex position can be defined by the first bit of
its representation and that all edges starting at the current vertex can be stored
because all ending vertices have already been processed and their address is known.

Graph

Elément

Edges

Address

Fig. 4. Implementation - Data Structures.

The highest building block is a graph. It is further divided into single elements.
Each element consists of two parts: a vertex and an edge. A vertex carries out
information on a label of all edges ending at it. A Huffman code is used for coding
symbols of the alphabet. An edge is further split into a header and an address order.
A header carries out information on the number of addresses - edges belonging to
a respective vertex. A distribution of edge counts for all vertices can be obtained
during the construction of DAWG. This makes possible to use a Huffman code for
header encoding, but Fibonacci encoding ([12]) is sufficient as well, though one must
expect a substantial amount of small numbers. An address is the address of the first
bit of the element being pointed to by an appropriate edge. It is further split into
two parts, one describing the length of the other part, which is a binary encoded
address. ^

5.1. Symbol encod ing

A code of an element (vertex and corresponding edges) starts with a code of the
symbol for* which it is possible to enter the vertex. The best code is the Huffman
code. The following table shows experimental results. The second column shows the
size of text. The Huffman code can be based either on counts of symbol occurrences
in the text (third column), or proportionate representation at individual vertices in
the DAWG graph (fourth column). The latter better suits the implementation.

96 M. BALÍK

File Name |X| Symbol Count
|Bits |

Pгoportionate Repгe.
|Bits |

File Name |X|

|SymЬol| ISymbol]

TEXTl 21818 4.771186 4.770672
TEXT2 53801 4.264782 4.264746
TEXTЗ 81054 4.588081 4.587633
RANDOMIК 1000 7.532672 7.531844
RANDOMЮК 10051 7.809383 7.807136
RANDOMЮOК 100447 7.831894 7.831680

The average number of bits necessary to store one symbol is calculated for symbols
representing the vertices of the graph. It can be observed that the two methods of
encoding provide similar results. For example, using the latter method for encoding
the file TEXT3 will result in improvement of only 0.00045 bits per symbol, which is
0.0098 % with respect to the value obtained using the first method.

Decoding begins at the root of the coding tree, and follows a left edge when a '0'
is read or a right edge when a T is read. When a leaf is reached, the corresponding
symbol is output.

5.2. E n c o d i n g of n u m b e r of edges

The code of the number of edges is another item. Even this value can be obtained
prior to encoding. A typical example of a distribution of numbers of edges for two
input text files is shown in Figure 5.

< •

80
1 Í

70

60

50 • - - • - • TextЗ

40 P RaпdomЮOК

30

20

10 s$h
*•

0 0 1 2 3 4 5 6 7 ß 9 1 0

Number of edges

Fig . 5. Edge count distribution (# of edges, # of vertices in percent).

In Figure 5 vertices with just one edge starting at them were further divided
into two groups: the first group is formed by vertices having just one edge leading
to the next vertex according to given vertex ordering (included in the group Edge
count = 0), and the second group is formed by vertices having just one edge leading

Implementation of Directed Acyclic Word Graph 97

anywhere else (Edge count = 1). The first group can be easily encoded by the value
of Edge count.

The figure also shows that more than 84 % of all vertices belong to the first group.
This means that the codeword describing this fact should be very short. It will be
only one bit long using Huffman coding. Other values of edge counts are represented
by more bits according to the structure of the input text.

The smallest element of DAWG represents a vertex with just one edge ending
at the next vertex. For TEXT3 it is 5.6 (4.6 per symbol + 1 bit per edges) bits
on average. The fact that DAWG consists mainly of such elements was used in the
construction of the Compact DAWG structure (CDAWG) derived from the general
DAWG, more details can be found in [5].

The process of decoding of Number of edges is similar to Symbol decoding.

5.3. Edge encod ing

The last part of the graph element contains references to vertices that can be ac­
cessed from the current vertex. These references are realized as relative addresses
with respect to the beginning of the next element. The valid values are non-negative
numbers. To evaluate them it is necessary to know the ending positions of corre­
sponding edges. This is why the code file is created by analysing DAWG from the
last vertex towards the root in an order that excludes negative edges. If we wanted
to work with these edges, we would have to reserve an address space to be filled in
later when the position of the ending vertex is known.

The address space for a given edge depends on the number of bits representing
the elements (vertices) lying between the starting and ending vertices. As the size of
these elements is not fixed (the size of the dynamic part depends mainly on element
addresses), it is impossible to obtain an exact statistical distribution of values of
these addresses, which we obtained for symbols and edges. A poor implementation
of these addresses will result in the fact that elements will be more distant and the
value range broader.

Yet it is possible to make an estimation based oil the distribution of edge lengths
(measured by the number of vertices between the starting and ending vertices). In
this case the real address value might be only g-times higher on average, where q is
an average length of one DAWG element. The first estimation of optimal address
encoding is based on the fact that the number of addresses covered by k bits is the
same for k = 1,2,. . . , t, where t is the number of bits of the maximum address. We
will use an address consisting of two parts: the first part will determine the number
of bits of the second part, the second part will determine the distance of the ending
vertex in bits. The simplest case is when the addresses are of a fixed length, then
the length of an average address field is r = s + 1 , where 8 = 0, which means that
r = t actually. Another significant case is a situation when the number of categories
is £, then s = |"log2 i].

When s is chosen from arf interval s G (0, |"log2 t"|), the number of categories is
2s, the number of address bits of the ith category is ^-. An average address field

98 M . BALÍK

length is then
2Я

r = s + E
t * i

i=l

When we rearrange this formula, we obtain

2 s + 1
r = s + t-2«+i

When the address length is fixed and the number of categories varies, this function
has a local minimum for

o * _ i l n 2

" ~ 2 ~ -

If we know t, we can calculate s as

s = log 2(tln2) - 1

Table 1. Address encoding.

S t Optimal |X|
1 6 ЗB

1 a n d 2 8 U B
2 12 171B

2 a n d З 16 2.7kB
3 23 350kB

З a n d 4 32 180MB
4 46 2.9TB

4 and 5 64 8 • 101 7B
5 92 2 • 10'^B

Table 1 shows optimal values of t for given values of s as well as address limits
when it does not matter if we use a code for s or 5 + 1 categories. The estimation
of the input file length assumes that the code file is three times greater than is
the length of the input text, and that the code file contains the longest possible
edge, which connects the initial and the last vertices. This observation is based on
experimental evaluation.

It can be seen that the value s = 3 is sufficient for a wide range of input text
file lengths, which guarantees a simple implementation, yet it leaves some space for
doubts about the quality of the approach used. Or is it so that edge lengths are not
spread uniformly in the whole range of possible edge lengths (1 to the maximum
length)? The answer can be found in Figure 6. {

Figure 6 does not contain edges ending at the next vertex (with respect to the1

actual vertex) as they are dealt with in a different way. It can be clearly observed.

Implementation of Directed Acyclic Word Graph 99

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Length (bits)

Fig. 6. Edge Length Distribution (Length - bits, # of edges in percent).

that the assumption of uniformity of the distribution is not quite fulfilled. Neverthe­
less categories can be constructed in the way that supports the requirement of the
minimal average code word length. Figures 7 and 8 depict the real distribution of
address lengths for two ways of encoding. The first is a code with two categories, one
encoding addresses with 15 bits, the other with 30 bits. The second way regularly
divides address codes into eight categories by four bits.

Both ways of address encoding provide similar results. .The relevancy with respect
to the statistical distribution of edges is obvious, the peaks being shifted by three
or four bits to the right.

Edge decoding depends on the number of categories used for encoding. When
eight categories are used, three bits are used for symbol length code - s = 3. We
read these three bits as an integer n. Then we calculate the number of bits that
represent an edge address as t := (n + 1) * const, where const is based on the length
of CodeFile. Then, we read n bits from CodeFile as an integer, and this number is
the address.

Figure 9 shows the contribution of individual parts to the overall length of the
resulting code.

The biggest portion is occupied by edge encoding, even though the majority of
edges is included in the edge count encoding. The test was performed for encoding
with eight address categories.

100 M. BALÍK

0 2 4 6 8 10 12 14 16 18 20 22

Length (bits)

Fig. 7. Address length distribution - Two categories (Length - bits, # of addresses in
percent).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Length (bits)

Fig. 8. Address length distribution - Eight categories (Length - bits, # of addresses in
percent).

Implementation of Directed Acyclic Word Graph 101

60^-rГTT^s. Њ-
31% ^ щ щ щ g P ^ ^

fostЗ RondomlOOK

Addresses B Symbols #ofedg»» |

Fig. 9. The influence of code lengths to the overall length of the code file The influence
of code lengths to the overall length of the code file.

5.4. Match ing algorithm over the implementation

The matching algorithm over the implementation is shown in Figure 10. Each ele­
ment (symbol labeling, number of edges encoding, edge encoding) is decoded in the
moment of use.

Variable Ptr points to the implementation, each bit of the implementation is
addressable using Ptr. The beginning of the implementation has the value Ptr = 0.
Function DecodeNum(Ptr) decodes number of edges. Decoding process starts from
the root of Huffman tree, the input bit stream is taken from the position Ptr. The
number of used bits is stored for the function Update(Ptr). The executing process
in function DecodeLabel(Ptr) is analogical, but for decoding is used Huffman tree
constructed for edge labeling instead of Huffman tree constructed for number of
edges.

If the appropriate edge from the currently processed vertex is searched there are
all possible vertices visited. Each symbol by the visited vertex is compared with the
labeling of the appropriate edge. The maximal number of visited vertices equals to
the maximal number of edges from a vertex, to the size of the input alphabet. The
time complexity of execution of this function is 0(m).

5.5. Complexity

DAWG can be created using the on-line construction algorithm in 0(n) time [4].
Vertex re-ordering can be also done in 0(n) time, encoding of DAWG elements as
described above can also be done in 0(n) time. Moreover, vertex re-ordering can
be done during the first or third phase. This means that the described DAWG
construction can be performed in 0(n) time.

The time complexity of searching in such an encoded DAWG is 0(m), see [3].

102 M. BALÍK

1. Build decoding trees from the implementation]
2. Ptr := 0; //Ptr . . .pointer into the implementation
3. i := 1;
4. initialize Stack;
5. while((i < m + 1) and (Ptr ^ NULL)) do
6. begin num := DecodeNum(Ptr); Update(Ptr)\
7. if (num = "Only one edge to the next vertex") then Push(Stack, 0);
8. else while(num > 0) do
9. begin Push(Stack,DecodeEdgeLength(Ptr))\

10. Update(Ptr)]
11. num := num — 1;
12. end; / /end while
13. found := FALSE]
14. while((Empty(Stack) ^ TRUE) and (found ^ TRUE)) do
15. begin P t r := Ptr + Pop(Stack)\
16. if(DecodeLabel(Ptr) = P[i\) then
17. begin Update(Ptr);
18. i := i + 1;
19. /oimd := TRUE;
20. initialize Stack]
21. end; / /end if
22. end; / /end while
23. if (found = FALSE)then Ptr := NULL]
24. end; / /end while
25. i / (z < m + 1) then N O / / Pattern does not occur in Text
26. else YES / / Pattern occurs in Text

Fig. 10. Matching Algorithm over the implementation.

6. RESULTS

The following table shows the results for the set of test files.

File Name |X| |Yil |Y.I W IY2I
|X|

TEXT1 21818 602928 500385 345.4% 286.7%
TEXT2 53801 1459973 1201342 339.2 % 279.1%
TEXTЗ 81054 2304026 1906376 355.3 % 294.0%
RANDOMIK 1000 25687 23258 321.1% 290.7%
RANDOMЮK 10051 244703 219157 304.3 % 272.6 %
RANDOMЮOK 100447 3843810 3177465 478.3 % 395.4%

The size of the text is denoted as X. The size of the code file for two sets
of addresses is denoted as |Yi|, IY2I is relevant for the code using eight address
categories. Both values are in bits and do not contain information on the Huffman
encoding used. The size of these data does not depend on the size of the input file.

Implementation of Directed Acyclic Word Graph 103

7. CONCLUSION

The results show that the ratio of code file size vs. the input file size is 3:1. This
number changes very little with the rising size of the input file to the detriment of
the code file. If the ratio rose as high as 4:1, a CD-ROM with the capacity of 600MB
could contain one code file for an text of the maximal size up to 150MB, which is a
more than seven-times better result than the one obtained by the classical approach.

ACKNOWLEDGEMENTS

I would like to thank the referees for their valuable remarks to the original version of this
paper.

(Received May 12, 2000.)

REFERENCES

[I] J. Adamek: Coding. MVST XXXI, SNTL, Prague 1989 (in Czech).
[2] A. Anderson and S. Nilson: Efficient implementation of suffix trees. Software-Practice

and Expirience 25 (1995), 129-141.
[3] M. Balik: String Matching in a Text. Diploma Thesis, CTU, Dept. of Computer

Science and Engineering, Prague 1998.
[4] M. Crochemore and W. Rytter: Text Algorithms. Oxford University Press, New York

1994.
[5] M. Crochemore and R. Verin: Direct construction of compact directed acyclic word

graphs. In: CPM97 (A. Apostolico and J. Hein, eds., Lecture Notes in Computer
Science 1264), Springer-Verlag, Berlin 1997, pp. 116-129.

[6] G. H. Gonnet and R. Baeza-Yates: Handbook of Algorithms and Data Structures.
Pascal and C. Addison-Wesley, Wokingham 1991.

[7] D . A. Huffman: A method for construction of minimum redundancy codes. P roc IRE
40 (1952), 9, 1098-1101.

[8] R. W . Irving: Suffix Binary Search Trees, Technical Report TR-1995-7, Computing
Science Department, University of Glasgow 1995.

[9] J . Karkkainen: Suffix cactus: A cross between suffix tree and suffix array. In: Proc.
6th Symposium on Combinatorial Pattern Matching, CPM95, 1995, pp . 191-204.

[10] S. Kurtz: Reducing the Space Requirment of Suffix Trees. Software-Practice and
Experience 29 (1999), 13, 1149-1171.

[II] B . Melichar: Approximate string matching by finite automata. In: Computer Analysis
of Images and Patterns (Lecture Notes in Computer Science 970), Springer-Verlag,
Berlin 1995.

[12] B. Melichar: Fulltext Systems. Publishing House CTU, Prague 1996 (in Czech).
[13] B. Melichar: Pattern matching and finite automata. In: Proceedings of the Prague

Stringology Club Workshop '97, Prague 1997.

Ing. Miroslav Balik, Department of Computer Science and Engineering, Faculty of Elec­
trical Engineering, Czech Technical University, Karlovo nam. 13, 121 35 Praha 2. Czech
Republic,
e-mail: balikm@fel.cvut.cz

		webmaster@dml.cz
	2015-03-24T22:50:12+0100
	CZ
	DML-CZ attests to the accuracy and integrity of this document

