
Kybernetika

Miroslav Balík
Implementation of directed acyclic word graph

Kybernetika, Vol. 38 (2002), No. 1, [91]--103

Persistent URL: http://dml.cz/dmlcz/135448

Terms of use:
© Institute of Information Theory and Automation AS CR, 2002

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/135448
http://project.dml.cz


K Y B E R N E T I K A — VOLUME 38 ( 2002 ) , NUMBER 1, P A G E S 9 1 - 1 0 3 

IMPLEMENTATION OF DIRECTED ACYCLIC WORD 
GRAPH 

MIROSLAV BALÍK 

An effective implementation of a Directed Acyclic Word Graph (DAWG) automaton is 
shown. A DAWG for a text T is a minimal automaton that accepts all substrings of a text 
T, so it represents a complete index of the text. While all usual implementations of DAWG 
needed about 30 times larger storage space than was the size of the text, here we show an 
implementation that decreases this requirement down to four times the size of the text. 
The method uses a compression of DAWG elements, i. e. vertices, edges and labels. The 
construction time of this implementation is linear with respect to the size of the text, a 
search for a specific pattern is done in a linear time with respect to the size of the pattern. 
This implementation preserves both good properties of the DAWG automaton. 

1. INTRODUCTION 

String matching is one of the most frequently used tasks in text processing. With the 
increased volume of processed data, which usually consists of unstructured texts, the 
importance of data qualification technologies is increasing. This is the reason why 
indexing structures are constructed for static texts that support pattern matching 
in a linear time with respect to the length of the pattern. 

Although some indexing structures have a linear size with respect to the length of 
the text, this size is high enough to disable practical implementation and usage. This 
size depends on implementation details, on the type of the text and on the type of 
the automaton used. For suffix tree the size is rarely smaller than lOn bytes, where 
n is the length of the text. Other structures are a Directed Acyclic Word Graph 
(DAWG) automaton (size about 30n bytes) and its compact version CDAWG (size 
about lOn bytes). Stefan Kurtz in [10] shows a number of known implementations of 
these automata together with experimental evaluations and a number of references. 

Other types of indexing structures are usually smaller, suffix arrays [6] (size 5n 
bytes), level compressed tries [2] (size about l l n bytes), suffix cactuses - a combi­
nation of suffix trees and suffix arrays [9] (size 9n bytes), and suffix binary search 
trees [8] (size about lOn bytes). 

An automaton is usually stored as a graph, vertices represent states of the au-
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tomaton and edges represent transitions. A state is then represented by an index 
into a transition table or as a memory position referenced by edges. Edges are stored 
as a part of the vertex they start from. Thus it is possible to locate an edge with a 
specific label in a constant time with respect to the number of vertices and edges. 
Each edge contains an information about the vertex it leads to, and its label, which 
is one symbol in the case of DAWG, or a sequence of symbols in the case of CDAWG 
and suffix trees. Every sequence used as a label is a substring of a text, so it can be 
represented by a starting and ending positions of this substring. 

An implementation presented in this paper uses a compression of elements of the 
graph representing the automaton to decrease space requirements. The 'compres­
sion' is not a compression of the whole data structure, which would mean to perform 
decompression to be able to work with it, but it is a compression of individual ele­
ments, so it is necessary to decompress only those elements that are necessary during 
a specific search. This method is applicable for all homogeneous automata1 and it 
can be generalized to all automata accepting a finite set of strings. 

The whole graph is a sequence of bits in a memory that can be referenced by 
pointers. A vertex is a position in the bit stream where a sequence of edges originat­
ing from the vertex begins. These edges are pointers into a bit stream, they point to 
places where the corresponding terminal vertices are located. Vertices are stored in 
a topological ordering2, which ensures that a search for a pattern is a one-way pass 
through the implementation of the graph structure. 

Each vertex contains an information about labels of all edges leading to it and 
the number of edges that start from it. Since it is possible to construct a statistical 
distribution of all symbols in the text, we can store edge labels using a Huffman 
code [7]. We can use it also to encode the number of edges starting from a vertex 
and because the most frequent case is when only one edge starts from a vertex, it is 
dealt with as a special case. 

The approach presented here creates a DAWG structure in three phases. The 
first phase is the construction of the usual DAWG (Section 3), the second phase 
is topological ordering (or re-ordering) of vertices (Section 4), which ensures that 
no edge has a negative "length", where length is measured as a difference of vertex 
numbers. The final phase is encoding and storing the resulting structure. Encoding 
of each element is described in Section 5. 

We have used six files in the experiments. The former three files are texts on 
UNIX. This files are written in English. The later three files are randomly generated 
texts. This texts have similar properties as DNA sequences. 

2. BASIC DEFINITIONS 

An alphabet is a finite set of symbols. A string over a given alphabet is a finite 
sequence of symbols. An empty sequence of symbols is called an empty string and 
it will be denoted as e. Let T = t\ti... tn be a string (text) over a given alphabet 

1 Homogeneous automata have all transitions to a specific state labeled with the same symbol. 
2 A topological ordering of a vertex is such a numbering of vertices that ensures that each edge 

starts from a vertex with a lower number and ends at a vertex with a higher number. 
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A. A pattern P = pip2 .. . p m is a substring of a text T iff such two natural numbers 
i> h 3 = i + m + 1> i > 0, j < n exist such that P = ^ + 1 . . . tj. To answer whether 
a pattern P is a substring (subpattern, subword, factor) of a text T is a pattern 
matching problem. 

The major advantages of DAWG are: 

— it has a linear size limited by the number of vertices ,which is less than 2\n\ — 2; 
the number of edges is less than 3|n|—4, where n > 1 is the length of the text [4], 

— it can be constructed in 0(n) time [4], 

— it allows to check whether a pattern occurs in a text in 0(m) time, where m 
is the length of the pattern. Pattern matching algorithm is shown in Figure 1. 

1. State q := r/o; i := 1; 
2. while((i < m + 1) and (q 7- NULL)) 
3. do q := Successor(q, P[i])] i := i + 1; end 
4. if(i < m + 1) then N O / / Pattern does not occur in Text 

else YES / / Pattern occurs in Text 

Fig. 1. Matching Algorithm. 

Index i points to the processed symbol of the pattern, function Successor(q, P[i]) 
returns successor of state q using the edge labeled by symbol P[i]. If there is no 
edge from state q labeled by this symbol, the NULL value is returned. 

The whole algorithm consists of the mail loop. The number of iteration is in the 
worst case m. In each iteration appropriate edge is searched. This search depends 
only on the size of the input alphabet, it is independent on the number of edges in 
the whole graph. The resulting time complexity of the algorithm is 0(m). 

3. CONSTRUCTION OF DAWG 

There are many ways of constructing DAWG from text, more details can be found 
for example in [4]. The method used here is the on-line construction algorithm. An 
example of DAWG constructed using this algorithm for an input text T = aabbabb 
is shown in Figure 2. 

During this phase a statistical distribution of symbols in the text is created. A 
statistical distribution of the number of edges at respective vertices is also created. 

4. TOPOLOGICAL ORDERING 

The DAWG structure is a directed acyclic graph. This means that its vertices can 
be ordered according to their interconnection by edges. Such an implementation 
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Fig. 2. DAWG for the text T = aabbabb. 

that keeps all the information about edges starting from a vertex only in the vertex 
concerned while storing the vertices in a given order guarantees that every pattern 
matching will result in a single one-way pass through this structure. 

The problem of such topological ordering can be solved in linear time. At first, for 
each vertex its input degree (the number of edges ending at the vertex) is computed, 
next a list of vertices having an input degree equal to zero (the list of roots) is 
constructed. At the beginning, this list will contain only the initial vertex. One 
vertex is chosen from the list, gets the next number in the ordering and for all 
vertices accessible by an edge starting at this vertex their input degree is decreased 
by one. Then such vertices that have a zero input degree are inserted into the 
list. And this goes on until the list is empty. The order of the vertices, which 
determines the quality of the final implementation, obtained this way depends on 
the strategy of choosing a vertex from the list. Several strategies were tested and 
the best results were obtained using the LIFO (last in - first out) strategy, because 
using this strategy for vertices with only one outgoing edge gets its successor next 
number (if this successor has been inserted into the roots list). With the vertices 
having only one edge, and this edge points to the successor in topological ordering, 
is dealt as a special case, see Section 5. 

The original DAWG shown in Figure 2 has been topologically ordered using the 
LIFO strategy and the resulting graph is depicted in Figure 3. 

@-^cШ)-^QD 

Fig. 3. The results of topological ordering. 
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5. ENCODING 

The DAWG graph is encoded element by element (elements are described later in 
this section). It starts with the last vertex according to the topological order (as 
described above) and progresses in the reverse order, ending with the first vertex 
of the order. This ensures that a vertex position can be defined by the first bit of 
its representation and that all edges starting at the current vertex can be stored 
because all ending vertices have already been processed and their address is known. 

Graph 

Elément 

Edges 

Address 

Fig. 4. Implementation - Data Structures. 

The highest building block is a graph. It is further divided into single elements. 
Each element consists of two parts: a vertex and an edge. A vertex carries out 
information on a label of all edges ending at it. A Huffman code is used for coding 
symbols of the alphabet. An edge is further split into a header and an address order. 
A header carries out information on the number of addresses - edges belonging to 
a respective vertex. A distribution of edge counts for all vertices can be obtained 
during the construction of DAWG. This makes possible to use a Huffman code for 
header encoding, but Fibonacci encoding ([12]) is sufficient as well, though one must 
expect a substantial amount of small numbers. An address is the address of the first 
bit of the element being pointed to by an appropriate edge. It is further split into 
two parts, one describing the length of the other part, which is a binary encoded 
address. ^ 

5.1. Symbol encod ing 

A code of an element (vertex and corresponding edges) starts with a code of the 
symbol for* which it is possible to enter the vertex. The best code is the Huffman 
code. The following table shows experimental results. The second column shows the 
size of text. The Huffman code can be based either on counts of symbol occurrences 
in the text (third column), or proportionate representation at individual vertices in 
the DAWG graph (fourth column). The latter better suits the implementation. 
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File Name |X| Symbol Count 
|Bits | 

Pгoportionate Repгe. 
|Bits | 

File Name |X| 

|SymЬol| ISymbol] 

TEXTl 21818 4.771186 4.770672 
TEXT2 53801 4.264782 4.264746 
TEXTЗ 81054 4.588081 4.587633 
RANDOMIК 1000 7.532672 7.531844 
RANDOMЮК 10051 7.809383 7.807136 
RANDOMЮOК 100447 7.831894 7.831680 

The average number of bits necessary to store one symbol is calculated for symbols 
representing the vertices of the graph. It can be observed that the two methods of 
encoding provide similar results. For example, using the latter method for encoding 
the file TEXT3 will result in improvement of only 0.00045 bits per symbol, which is 
0.0098 % with respect to the value obtained using the first method. 

Decoding begins at the root of the coding tree, and follows a left edge when a '0' 
is read or a right edge when a T is read. When a leaf is reached, the corresponding 
symbol is output. 

5.2. E n c o d i n g of n u m b e r of edges 

The code of the number of edges is another item. Even this value can be obtained 
prior to encoding. A typical example of a distribution of numbers of edges for two 
input text files is shown in Figure 5. 

< • 

80 
1 Í 
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50 • - - • - • TextЗ 

40 P RaпdomЮOК 
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20 

10 s$h 
*• 

0 0 1 2 3 4 5 6 7 ß 9 1 0 

Number of edges 

Fig . 5. Edge count distribution ( # of edges, # of vertices in percent). 

In Figure 5 vertices with just one edge starting at them were further divided 
into two groups: the first group is formed by vertices having just one edge leading 
to the next vertex according to given vertex ordering (included in the group Edge 
count = 0), and the second group is formed by vertices having just one edge leading 
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anywhere else (Edge count = 1). The first group can be easily encoded by the value 
of Edge count. 

The figure also shows that more than 84 % of all vertices belong to the first group. 
This means that the codeword describing this fact should be very short. It will be 
only one bit long using Huffman coding. Other values of edge counts are represented 
by more bits according to the structure of the input text. 

The smallest element of DAWG represents a vertex with just one edge ending 
at the next vertex. For TEXT3 it is 5.6 (4.6 per symbol + 1 bit per edges) bits 
on average. The fact that DAWG consists mainly of such elements was used in the 
construction of the Compact DAWG structure (CDAWG) derived from the general 
DAWG, more details can be found in [5]. 

The process of decoding of Number of edges is similar to Symbol decoding. 

5.3. Edge encod ing 

The last part of the graph element contains references to vertices that can be ac­
cessed from the current vertex. These references are realized as relative addresses 
with respect to the beginning of the next element. The valid values are non-negative 
numbers. To evaluate them it is necessary to know the ending positions of corre­
sponding edges. This is why the code file is created by analysing DAWG from the 
last vertex towards the root in an order that excludes negative edges. If we wanted 
to work with these edges, we would have to reserve an address space to be filled in 
later when the position of the ending vertex is known. 

The address space for a given edge depends on the number of bits representing 
the elements (vertices) lying between the starting and ending vertices. As the size of 
these elements is not fixed (the size of the dynamic part depends mainly on element 
addresses), it is impossible to obtain an exact statistical distribution of values of 
these addresses, which we obtained for symbols and edges. A poor implementation 
of these addresses will result in the fact that elements will be more distant and the 
value range broader. 

Yet it is possible to make an estimation based oil the distribution of edge lengths 
(measured by the number of vertices between the starting and ending vertices). In 
this case the real address value might be only g-times higher on average, where q is 
an average length of one DAWG element. The first estimation of optimal address 
encoding is based on the fact that the number of addresses covered by k bits is the 
same for k = 1,2,. . . , t, where t is the number of bits of the maximum address. We 
will use an address consisting of two parts: the first part will determine the number 
of bits of the second part, the second part will determine the distance of the ending 
vertex in bits. The simplest case is when the addresses are of a fixed length, then 
the length of an average address field is r = s + 1 , where 8 = 0, which means that 
r = t actually. Another significant case is a situation when the number of categories 
is £, then s = |"log2 i]. 

When s is chosen from arf interval s G (0, |"log2 t"|), the number of categories is 
2s, the number of address bits of the ith category is ^-. An average address field 
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length is then 
2Я 

r = s + E 
t * i 

i=l 

When we rearrange this formula, we obtain 

2 s + 1 
r = s + t-2«+i 

When the address length is fixed and the number of categories varies, this function 
has a local minimum for 

o * _ i l n 2 

" ~ 2 ~ -

If we know t, we can calculate s as 

s = log 2(tln2) - 1 

Table 1. Address encoding. 

S t Optimal |X| 
1 6 ЗB 

1 a n d 2 8 U B 
2 12 171B 

2 a n d З 16 2.7kB 
3 23 350kB 

З a n d 4 32 180MB 
4 46 2.9TB 

4 and 5 64 8 • 101 7B 
5 92 2 • 10'^B 

Table 1 shows optimal values of t for given values of s as well as address limits 
when it does not matter if we use a code for s or 5 + 1 categories. The estimation 
of the input file length assumes that the code file is three times greater than is 
the length of the input text, and that the code file contains the longest possible 
edge, which connects the initial and the last vertices. This observation is based on 
experimental evaluation. 

It can be seen that the value s = 3 is sufficient for a wide range of input text 
file lengths, which guarantees a simple implementation, yet it leaves some space for 
doubts about the quality of the approach used. Or is it so that edge lengths are not 
spread uniformly in the whole range of possible edge lengths (1 to the maximum 
length)? The answer can be found in Figure 6. { 

Figure 6 does not contain edges ending at the next vertex (with respect to the1 

actual vertex) as they are dealt with in a different way. It can be clearly observed. 
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Length (bits) 

Fig. 6. Edge Length Distribution (Length - bits, # of edges in percent). 

that the assumption of uniformity of the distribution is not quite fulfilled. Neverthe­
less categories can be constructed in the way that supports the requirement of the 
minimal average code word length. Figures 7 and 8 depict the real distribution of 
address lengths for two ways of encoding. The first is a code with two categories, one 
encoding addresses with 15 bits, the other with 30 bits. The second way regularly 
divides address codes into eight categories by four bits. 

Both ways of address encoding provide similar results. .The relevancy with respect 
to the statistical distribution of edges is obvious, the peaks being shifted by three 
or four bits to the right. 

Edge decoding depends on the number of categories used for encoding. When 
eight categories are used, three bits are used for symbol length code - s = 3. We 
read these three bits as an integer n. Then we calculate the number of bits that 
represent an edge address as t := (n + 1) * const, where const is based on the length 
of CodeFile. Then, we read n bits from CodeFile as an integer, and this number is 
the address. 

Figure 9 shows the contribution of individual parts to the overall length of the 
resulting code. 

The biggest portion is occupied by edge encoding, even though the majority of 
edges is included in the edge count encoding. The test was performed for encoding 
with eight address categories. 
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0 2 4 6 8 10 12 14 16 18 20 22 

Length (bits) 

Fig. 7. Address length distribution - Two categories (Length - bits, # of addresses in 
percent). 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

Length (bits) 

Fig. 8. Address length distribution - Eight categories (Length - bits, # of addresses in 
percent). 
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Fig. 9. The influence of code lengths to the overall length of the code file The influence 
of code lengths to the overall length of the code file. 

5.4. Match ing algorithm over the implementation 

The matching algorithm over the implementation is shown in Figure 10. Each ele­
ment (symbol labeling, number of edges encoding, edge encoding) is decoded in the 
moment of use. 

Variable Ptr points to the implementation, each bit of the implementation is 
addressable using Ptr. The beginning of the implementation has the value Ptr = 0. 
Function DecodeNum(Ptr) decodes number of edges. Decoding process starts from 
the root of Huffman tree, the input bit stream is taken from the position Ptr. The 
number of used bits is stored for the function Update(Ptr). The executing process 
in function DecodeLabel(Ptr) is analogical, but for decoding is used Huffman tree 
constructed for edge labeling instead of Huffman tree constructed for number of 
edges. 

If the appropriate edge from the currently processed vertex is searched there are 
all possible vertices visited. Each symbol by the visited vertex is compared with the 
labeling of the appropriate edge. The maximal number of visited vertices equals to 
the maximal number of edges from a vertex, to the size of the input alphabet. The 
time complexity of execution of this function is 0(m). 

5.5. Complexity 

DAWG can be created using the on-line construction algorithm in 0(n) time [4]. 
Vertex re-ordering can be also done in 0(n) time, encoding of DAWG elements as 
described above can also be done in 0(n) time. Moreover, vertex re-ordering can 
be done during the first or third phase. This means that the described DAWG 
construction can be performed in 0(n) time. 

The time complexity of searching in such an encoded DAWG is 0(m), see [3]. 
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1. Build decoding trees from the implementation] 
2. Ptr := 0; //Ptr . . .pointer into the implementation 
3. i := 1; 
4. initialize Stack; 
5. while((i < m + 1) and (Ptr ^ NULL)) do 
6. begin num := DecodeNum(Ptr); Update(Ptr)\ 
7. if (num = "Only one edge to the next vertex") then Push(Stack, 0); 
8. else while(num > 0) do 
9. begin Push(Stack,DecodeEdgeLength(Ptr))\ 

10. Update(Ptr)] 
11. num := num — 1; 
12. end; / /end while 
13. found := FALSE] 
14. while((Empty(Stack) ^ TRUE) and (found ^ TRUE)) do 
15. begin P t r := Ptr + Pop(Stack)\ 
16. if(DecodeLabel(Ptr) = P[i\) then 
17. begin Update(Ptr); 
18. i := i + 1; 
19. /oimd := TRUE; 
20. initialize Stack] 
21. end; / /end if 
22. end; / /end while 
23. if (found = FALSE)then Ptr := NULL] 
24. end; / /end while 
25. i / (z < m + 1) then N O / / Pattern does not occur in Text 
26. else YES / / Pattern occurs in Text 

Fig. 10. Matching Algorithm over the implementation. 

6. RESULTS 

The following table shows the results for the set of test files. 

File Name |X| |Yil |Y.I W IY2I 
|X| 

TEXT1 21818 602928 500385 345.4% 286.7% 
TEXT2 53801 1459973 1201342 339.2 % 279.1% 
TEXTЗ 81054 2304026 1906376 355.3 % 294.0% 
RANDOMIK 1000 25687 23258 321.1% 290.7% 
RANDOMЮK 10051 244703 219157 304.3 % 272.6 % 
RANDOMЮOK 100447 3843810 3177465 478.3 % 395.4% 

The size of the text is denoted as X. The size of the code file for two sets 
of addresses is denoted as |Yi|, IY2I is relevant for the code using eight address 
categories. Both values are in bits and do not contain information on the Huffman 
encoding used. The size of these data does not depend on the size of the input file. 
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7. CONCLUSION 

The results show that the ratio of code file size vs. the input file size is 3:1. This 
number changes very little with the rising size of the input file to the detriment of 
the code file. If the ratio rose as high as 4:1, a CD-ROM with the capacity of 600MB 
could contain one code file for an text of the maximal size up to 150MB, which is a 
more than seven-times better result than the one obtained by the classical approach. 
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