
Kybernetika

Milan Šimánek
The factor automaton

Kybernetika, Vol. 38 (2002), No. 1, [105]--111

Persistent URL: http://dml.cz/dmlcz/135449

Terms of use:
© Institute of Information Theory and Automation AS CR, 2002

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/135449
http://project.dml.cz

K Y B E R N E T I K A — VOLUME 38 (2 0 0 2) , NUMBER 1, P A G E S 1 0 5 - 1 1 1

THE FACTOR AUTOMATON1

MILAN ŠIMÁNEK

This paper concerns searching substrings in a string using the factor automaton. The
factor automaton is a deterministic finite automaton constructed to accept every substring
of the given string. Nondeterministic factor automaton is used to achieve new operations
on factor automata for searching in non-constant texts.

1. INTRODUCTION

The amount of information processed by computers grows very dramatically. Now
every application should contain an information searching engine. Let us deal with
exact substring matching for one pattern-text pair. There are a lot of pattern
matching algorithms with the same function but each of them is optimal in different
field.

Standard algorithms (Aho-Corasick or Boyer-Moore) sequentially compare given
pattern with a text to be searched in. These algorithms are relatively slow but they
need not any precomputed data structures and have small memory complexity. Time
complexity is typically from O(n-r-m) to 0(n*m) where n is the size of the searching
text and m is the size of the pattern. The space complexity is equal to the size of the
text and the pattern. Algorithms in this category are useful for applications with
small texts or in applications which source text changes too often.

Another category of searching algorithms prefer preprocessing the base text and
extremely fast searching in special data structures. The most useful data structure
is directed acyclic word graph sometimes called DAWG. In this case the searching
engine is a finite automaton with the same structure as DAWG has. The space
complexity is also 0(n) but implementation of this automaton is approximately 4
times larger than algorithms in previous category. The main benefit is the fastest
possible searching speed. The time complexity is linear with respect to the size of
the pattern, not depending on the size of the searched text. However, the source text
must be preprocessed. The preprocessing is an operation with the time and space
complexity linear with respect to the size of the text. Any change of the source
text causes a new reinitialization of the data structure (or structure of the finite
automaton). It seems the cost of this reinitialization is too high but recently the

xThis research is supported by Grant 201/98/1155 of the Grant Agency of the Czech Republic.

106 M. ŠIMÁNEK

algorithms has been found which can modify internal data structure (or the finite
automaton structure) according to changes of the source text. It seems that this
algorithms are fast enough if the difference in source text is enough simple.

Algorithms in this category are useful in applications with constant source text
with special emphasis on speed (library searching tools, genetics, e tc) . They may
be used also with non constant source text in conjunction with algorithms changing
their internal data structures.

2. THE FACTOR AUTOMATON

The factor automaton is a finite automaton accepting the set of all substrings of the
string. The set of all substrings (factors) of the string text is Fac(text). Each factor
automaton is related to some String text. The language accepted by automaton is
Fac(text).

The factor automaton is basically nondeterministic It is very simple and there
is simple formal description of the automaton. The main disadvantage is that it
cannot be directly implemented. It can be only simulated but simulation lose the
searching speed.

A theorem from automata theory says that each nondeterministic automaton can
be converted into the deterministic one with possible exponential grow of the size.
The factor automaton also can be converted to the deterministic form but the grow
of the size stay linear because the language of the automaton is always a set of
related strings (strings are the substrings of the source text). Deterministic factor
automaton is suitable for implementation.

2.1. Nondeterministic factor automaton

We can get the nondeterministic automaton accepting all substrings of the string
ai«2 • • • an from simple automaton accepting only one string a\a<i... an by adding
epsilon transitions from the initial state to all other states and making all states
final.

^ ^ ҺMЭ^КD^"

Fig. 1. Finite automaton accepting string aia2a3 ... an.

The number of states of the nondeterministic factor automaton for string S =
a\a2a^ . . . an is n + 1. Total number of transitions in the automaton is 2n. There
is only one state with nondeterministic transitions - the initial state go- There are
possible several modifications of this automaton. It may have no epsilon transitions
but all of the states may be initial states. It means that the automaton is configured
in all states before start of pattern matching. Another modification is replacing
epsilon transitions by regular ones.

The Factor Automaton 107

Fig. 2. Nondeterministic factor automaton.

2.1.1. Formal description

Let M = (E,Q,(S, J, F) is nondeterministic finite automaton, S is the alphabet, Q
is the set of states, S is transition function S : (g, a) »-> P where q G Q, a E S and
P C Q. I is the initial set of states and F is the set of final states. The configuration
of the automaton is a pair (F;, s\s2 ... Sk) where Pi C Q is the set of active states
and s\s2...Sk is the string to be read. Automaton pass from the configuration
(Pi,sis2s3 ...Sk) to the configuration (Fj,s283 •••sk) iff Pj = \JqePi <K<I,8i)-

The nondeterministic factor automaton for string S = a\a2a^ ... an is the nonde­
terministic finite automaton with n +1 states Q -= {go, <Zi, <12, • • •, Qn}- The alphabet
S is the same as the alphabet of the searching string. The transition function S is
defined as

1. S(qi,ai+1) = te+i} for all i > 0,

2- S(q0,e) = {qi\qi eQ,qi^ <Io},

3. S(q,a) = 0 otherwise.

I = {qo} is the set containing only one initial state2 and F is the set of all states
F = Q because all states are final.

The automaton being configured in set a = {qSl, qS2, qS3,... qs.} of the active
states (a C Q and 0 < i < n) after reading pattern P = p\p2pz .. .pj means that
pattern P occurs in string S z-times at positions s\ — j , 52 —j, ss—j,...Si—j. This
nondeterministic factor automaton provides parallel pattern matching at all possible
positions in string S at the same time.

2.2. Determinis t ic factor a u t o m a t o n

Nondeterministic factor automaton can be split into n chains (one chain per each
epsilon transition). First transition of each chain is an epsilon transition starting in
the initial state qo and leading into a state with only one successor. These transitions
can be replaced by regular ones (see Figure 3).

This tree factor automaton is still nondeterministic in the initial state because
any two characters in string 5 may be equal. If the string S contain two or more
same characters then the starting part of the corresponding chains can be joined in
common prefix (see example on Figure 4). This automaton is deterministic while
its searching speed remains the fastest possible. Data structure of this automaton
is called suffix tree.

2 Sometimes it is useful to cut out epsilon transitions and to define the initial set of states as the
set of all states I = Q.

108 M. SIMANEK

. . ^чКCч.)

^ Q ^ . . . -ъ-ц

Fig. 3. Nondeterministic tree factor automaton.

ю-̂ -ю-̂ -ю w

Fig. 4. Example of nondeterministic tree and deterministic suffix tree factor automaton
for string ababc.

The suffix tree factor automaton has optimal time complexity but it is unnec­
essary large. Each chain is a suffix of the main (the longest) chain. Isomorphic
subtrees (branches) can be joined together. The result is acyclic graph representing
deterministic factor automaton so-called DAWG (see example on Figure 5).

Another way to get a deterministic version of the factor automaton is to construct
all accessible subsets of states of the nondeterministic factor automaton [3]. Total
number of all subsets of the states is 2 n but only a few of them are accessible from the
initial state. Each subset of states of the nondeterministic automaton relates to one
state of the deterministic automaton. However, the initial state of the deterministic
automaton relates to the set of all states of the nondeterministic automaton (because
of epsilon transitions).

Fig . 5. Example of directed acyclic word graph (DAWG) for S = ababc.

The Factor Automaton 109

Both direct construction methods are equivalent because the results are isomor­
phic and the constructions have asymptotically same complexity. Another type of
construction is offered in [1] and [2].

The number of states of the deterministic factor automaton is greater then n and
less than 2n. Total number of transitions of the deterministic automaton is greater
or equal to n and less then 3n. The proof is in [1, Theorem 6.1].

2.3. The fail function

Let Fail(q) be a fail function defined for each state q of the deterministic factor
automaton which is used by some algorithms. The value of this function is a state
with this characteristics:

Fail(qi) — qj iff 3uv G Fac(S) that 6*(q0,uv) = qi and 6*(q0,v) = qj and v is
the longest suffix of string uv for which qi ^ qj (see Figure 6).

•5SK
FaU..-

^Ĺ-"

Fig. 6. The fail function.

This means that the factor automaton being in state qj accepts each suffix which
is accepted in state qi.

3. OPERATIONS ON FACTOR AUTOMATON

An operation on the factor automaton is an operation which make some changes to
the factor automaton in order to reflect the changes in searching string.

We can define elementary operations on factor automata for all elementary opera­
tions on string. The table below collects basic operations on factor automaton. Each
operation has an implicit argument factor automaton for old string and it may have
other arguments. The result of the operation is factor automaton for new string.

Operation Argument Old string New string
append c Є S a\a2aз.. .an a\a2a$.. .anc
insert cЄ £ a\a2aз.. .an ca\a2as .. • an

R — delete — a\a2a^ . • • an—\an a\a2aз. ..an-\
L — delete . — a\a2az .. .an a2as .. .an

replace c Є S, 1 < i < n a\... ai-\aiai+\... an a\.. .ai-\cai+\ ...an

join Ъ\Ъ2...ЬmєZ* a\a2 ...an a\a2 ...anb\b2 ...bm

110 M. ŠIMÁNEK

4. ON-LINE CONSTRUCTION

The deterministic factor automaton can be constructed by operation append from
a trivial factor automaton for the empty string accepting only an empty string.
Let DAWG(S) be a deterministic factor automaton accepting the set all substrings
of the string S. Using operation append we can construct DAWG(S) for S =
a\a2a^ . . . an step by step:

DAWG(e) —> DAWG(ai) —> DAWG(aia2) DAWG(S).

This method of construction is discussed in [1, 6.3 On-line construction]. The time
complexity of construction DAWG(S) is n so that this algorithm has linear time
complexity. This algorithm uses fail function.

5. LZ77 AND SLIDING WINDOW

One of the famous compression algorithms is known as LZ77. Its working memory
is split into two regions - the sliding window and the buffer (see Figure 7).

The main part of this compression method scans the text in the sliding window
for a pattern contained in buffer. The longest prefix of the buffer found in the sliding
window is used for compression. After each search operation the matching prefix of
the buffer will be encoded to a single character. The sliding window will be shifted
to the left and buffer will be filled in from input stream. Then the next searching
operation will continue until the end of the input stream.

The size of the sliding window is constant in range of a few thousands bytes while
the size of the buffer is only a few characters. The searching speed of the standard
implementation is linear with respect to the size of the sliding window.

We can speed up the search operation applying the factor automaton. The pair
of L-delete and append operation enables fast moving of the sliding window without
recomputation of the factor automaton (see Figure 8).

Compressed sliding window buffer

output X X X a b c C X X a b c d e f g
> \

uncompressed

<• input

index of longest t
substring found [

internal data structures

^outputl the factor
automaton

pattern to be
searchedfor

Fig. 7. The LZ77 compression algorithm.

The Factor Automaton 111

Compressed
output

Compressed
output

<—

Compressed
output

< —

sliding window

X, *2 - J x. x, x l X , n-1 xл

L

X, *2 - J x. x, xв|
X , n-1 xл

11 L-deleíe operаtion

\2\\3 x. x. 4 x ,
n-1

x„

1 аppend operаtion

X; x̂ x. X, xи
X 1

n+1

new compressed
character

new compressed
character

new compressed
character

Fig. 8. Recomputation of the sliding window.

At first we apply fc-times operation append to get a deterministic factor automa­
ton for sliding window with size k characters. Then we will apply repetitively a
couple of operations L-delete and append and perform the searching operation by
factor automaton. We will get a moving window for fast searching in this part of
the text. The speed of searching is independent on size of the searching window
and depends only on the size of pattern looking for. The recomputation of factor
automaton (operations L-delete and append) take in average constant time per one
shift.

The main part of this algorithm has a linear-time complexity but the time com­
plexity is constant independent of the size of sliding window. It seems that the speed
up is essential. Moreover the size of sliding window can be increased to get better
compression while the time of the compression stay the same.

(Received May 12, 2000.)

REFERENCES

[1] M. Crochemore and W. Rytter: Text Algorithms, Chapter 6, Subword graphs. Oxford
University Press, Oxford 1994.

[2] M. T . Chen and J. Seiferas: Efficient and elegant subword tree construction. In: Com­
binatorial Algorithms on Words, NATO Advanced Science Institutes, Series F, vol.
12, Springer-Verlag, Berlin 1985, pp. 97-107

[3] B. Melichar: The construction of factor automata. In: Workshop'98, vol. 1, Czech
Technical University, Prague 1997, pp. 189-190.

[4] M. Simanek: Operations on factor automaton. In: Workshop '98, vol. 1, Czech Tech­
nical University, Prague 1997, pp. 207-208.

[5] M. Simanek: The factor automaton. In: Proceedings of the Prague Stringology Club
Workshop'98, Czech Technical University Prague, 1998, pp. 102-106.

[6] M. Simanek: Operations on Factor Automata. Postgraduate Study Report DC-PSR-
98-02, Czech Technical University Prague 1998, 38 pp.

Ing. Milan Simánek^ Department of Computer Science and Engineering, Faculty of Elec­
trical Engineering, Czech Technical University, Karlovo nám. 13, 121 35 Praha 2. Czech
Republic,
e-mail: simanek@fel.cvut.cz ,

		webmaster@dml.cz
	2015-03-24T22:50:37+0100
	CZ
	DML-CZ attests to the accuracy and integrity of this document

