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CONVERGENCE THEOREMS FOR MEASURES 
WITH VALUES IN RIESZ SPACES 

DOMENICO CANDELORO 

In some recent papers, results of uniform additivity have been obtained for convergent 
sequences of measures with values in /-groups. Here a survey of these results and some of 
their applications are presented, together with a convergence theorem involving Lebesgue 
decompositions. 

1. INTRODUCTION 

This short note is an overview of some recent results, obtained by the Author in 
some joint papers with A. Boccuto, concerning convergence theorems for sequences 
of measures, of the type of Vitali-Hahn-Saks. 

Prom these results, other relevant theorems are deduced, such as Schur-type the­
orems, Dieudonne-type theorems, and also some theorems concerning Lebesgue-type 
decompositions for convergent sequences of measures. 

We recall the so-called Vitali-Hahn-Saks (V-H-S) theorem (see [12]): 
Given a sequence of a-additive measures, defined on some a-algebra B of subsets 

of some abstract set X, from pointwise convergence of these measures on all elements 
of B it follows that they are uniformly er-additive, and the limit function is still <r-
additive on B . 

This theorem has been generalized in many directions since then. We shall only 
mention [1, 2, 6, 7, 8, 9]. However, in the framework of Riesz-space-valued measures 
the results were not sufficiently general, mainly because in such spaces in general 
there is no topology inducing the usual (O)-convergence. 

In some recent papers, ([3, 4, 5]), a new instrument has been introduced, which 
allows to obtain sufficiently general convergence theorems for Riesz-space valued 
measures. 

The basic tool is an equivalent formulation of order convergence, named (D)-
convergence, which is then used to formulate a suitable condition of convergence 
for sequences of functions taking values in a Riesz space: such condition (which we 
call (RD)-convergence) is formally stronger than pointwise order convergence, and 
substantially weaker than uniform order convergence. 

Here, we shall outline the main results obtained in [3, 4, 5], and then we prove a 
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convergence theorem involving the Lebesgue decompositions of a sequence of mea­
sures (/in), (with respect to a scalar non-negative measure A), assuming that the 
measures (jin) are (-RD)-convergent. 

This result is simply meant as an application of the Vitali-Hahn-Saks theorem, 
without aiming at full generality. 

2. PRELIMINARIES 

We begin recalling the following: 

Definitions 2 .1 . A Riesz space R is said to be Dedekind complete if every nonempty 
subset of i?, bounded from above, has supremum in R. 

A sequence ( r n ) n in R is Said to be order-convergent (or (o)-convergent) to r if 
there exists a sequence (pn)n in R such that pn | 0 and |rn — r\ < pn, Vn G N : 
this will be written (o) limn rn = r. Order convergence can be formulated simply as 
coincidence of liminf r n and l imsuprn , as soon as (rn) is bounded (see also [13]). 

A bounded double sequence (a^i)^ in R is called (D)-sequence or regulator if for 
all i G N we have a^j I 0 as / —• -f oo. 

We say that b G R, b > 0, dominates a sequence ( r n ) n of elements of R if there 
exists no G N such that | rn | < b for n > no. Moreover, given a regulator (aiyi)iyi, we 
call bound of (ai,z)i,z every element b of the type b = V ^ i ai)ip^, for some (^Gff . 

A sequence ( r n ) n in R is said to be (D)-convergent to r G R (and we write 
(D)limn rn = r) if there exists a regulator (ai^i)iyi whose every bound dominates 
the sequence (rn — r ) n . 

In general, order-convergence implies (D)-convergence, while the converse is false, 
unless R is wealciy a-distributive, according with the following definition. 

A Riesz space R is said to be weaMy a-distributive if for every (Z?)-sequence 
(o>i,i)i,i we have: 

^eN" \t=i / 

Prom now on R will denote a weakly cr-distributive and Dedekind complete Riesz 
space: therefore order convergence and (D)-convergence shall be considered as equiv­
alent. 

This is not a sharp requirement: one can easily see that weak <r-distributivity is 
a necessary and sufficient condition for uniqueness of the (D)-limit. 

The main motivation for working with (-D)-convergence, rather than ((^-conver­
gence, in a weakly cr-distributive Riesz space, is contained in the following concept. 

Definition 2.2. If E is any nonempty set, we say that a sequence ( / n ) n of elements 
of RE (RD)-converges to f G RE if there exists a regulator whose every bound 
dominates every sequence of the type (fn(x) — f(x))n, with x G E. Analogously, we 
say that ( / n ) n (UD)-converges to f if there exists a regulator whose every bound 
dominates the sequence (\/xeE \fn(x) — f(x)\) . 
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We remark here that (I?.D)-convergence is somewhat stronger than pointwise (D)-
convergence (which in our context is equivalent to pointwise (O)-convergence), while 
of course (c7.D)-convergence corresponds to uniform convergence. However (RD)-
convergence can be shown to be equivalent to pointwise (O)-convergence, as soon as 
the latter is topological. 

The next Lemma shows a further feature of such a kind of convergence, see [14]. 

L e m m a 2.3. Let (afj) be any countable family of regulators. Then for each fixed 
element u G R there exists a regulator (aiyj) such that, for every i ^ E l f one has 

fc=i \ , = i / i= i 

We now introduce the following: 

Definitions 2.4. Let ft be any infinite set, A C V(il) be an algebra, and £ C A 
be any non-empty sub-family of A . Given a finitely additive bounded measure (or, 
in short, mean) m : A -> .R, we define the £-semivariation vs(m) : A -> R by: 

ve(m)(A) = sup \m(B)\, MA e A. 
Be£,BcA 

When £= A, we get the semivariation of m : 

v(m) := vA(m) 

A mean m : A -> R is said to be a-additive (or, in short, measure ) if there exists 
a (-D)-sequence (uiyi)i}i such that, V^Grf 1 and for every decreasing sequence (Hs)s 

in A, Hs 4- 0, there exists s: 

CO 

vA(m)(Hs) < \J uiMi). 
2 = 1 

If a sequence of measures mj : A -> R, j E N, is given, uniform a-additivity is 
defined as above, but with s independent of j (see also [3]). 
A finitely additive measure m : A —> R is said to be (s)-bounded in £ or simply 
£-(s)-bounded, if there exists a (-D)-sequence (wiyi)iyi such that, V(/?G r f and for 
every disjoint sequence (Hs)s in £ there exists s: Vs > s, 

v£{m)(Hs) < \J WÍ^Í). 
І=l 

If £ is as above, we say that the maps mj : A -> R, j G N, are £-uniformly (s)-
bounded if the above condition holds, but with s independent of j (see also [3]). 
When £ = A we simply speak of (s)-boundedness or uniform (s)-boundedness. 
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Given a sequence of means (ra;)jeNu{o}; mj : A —> I?, we say that the m / s (RD)-
converge to mo in £ if the sequence of functions (mj : £ —r i?) j (i?F))-converges to 
m0 . 

Let now fi, i? and 4̂ be as above. Prom now on, we assume that T, Q C A are 
two fixed lattices, such that the complement (with respect to fi) of every element of 
T belongs to Q. 

Definitions 2.5. A mean m : A —r R is said to be regular if there exists a ( r e ­
sequence (7i,0t,; -n -R s u c h that for each A e A and W £ T there exists sequences 
(F n ) n , (.F£)n in T, (Gn)n, (G'n)n in 0, such that 

Fn C F n + i C A C G n + i C Gn Vn, (1) 

I ^ C ^ C G I C F : Vn, (2) 

and the sequences (vJ\(m)(Gn\Fn))n and (vA(m)(G'n\W))n (I7)-converge to 0 
with respect to (jij)ij. 

The means mj : A —> R, j G N, are said to be uniformly regular if there exists a 
(.D)-sequence (7i,/)i,z in R such that V_4 € A and V W G .T7 there exist sequences 
(Fn)n, (Gn)n> (Fn)n, (Gn)n satisfying (1) and (2), and such that the sequences (t/)n)n, 
(wn)n of elements of i?N, defined by setting 

*Pn(J)=vA(mj)(Gn\Fn), (3) 

un(j)=vA(mj)(G'n\W) n , j G N , 

(C/Z))-converge to 0 with respect to (7i,z)i,j. 

We now introduce the concept of absolute continuity in our setting. 

Definition 2.6. Let m be any R-valued finitely additive measure on A Given any 
other finitely additive measure v : A —> WQ , we say that m is absolutely continuous 
with respect to v (and write m <^ v) if there exists a (D)-sequence (fli,/)*,/ such that, 
whenever (Hk)k is a sequence from A satisfying lim^ v(Hk) = 0, for every ( ^ G l f 
an integer k can be found, such that \m(Hk)\ < V S i ai,y(i)> f° r a ^ k > k. 
In case v is fixed, and (mj)j is a sequence of finitely additive measures on A, uniform 
absolute continuity of the m / s with respect to v can be defined in a similar way, 
but clearly the integer k must be independent of j . 

One can easily see that, in case m and v are cr-additive and non-negative, this 
definition of absolute continuity is equivalent to the so-called (0-0) one: 

fi <C v if and only if v(A) = 0 implies m(A) = 0. 

The following theorem will be needed in the sequel. (See [3], Theorem 4.8.) 
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Theorem 2.7. Let (mn)n be any sequence of uniformly bounded, uniformly s-
bounded R-valued finitely additive measures on an algebra E. If the measures mn are 
absolutely continuous with respect to the same finitely additive measure v : £ —> WQ, 
then they are uniformly absolutely continuous. 

We shall also need the notion of singularity. 

Definition 2.8. Assume that ra and v are as in Definition 2.6. We say that m 
and v are singular if there exist a regulator (at,')*,* and a sequence (Ak)k from A 
such that limit v(Ak) = 0 and such that for every ip G F^ an integer fcn can be found, 
satisfying v(m)(Ac

k) < V ^ i ^ ( i ) - for all k>k0. 
When this is the case, we write ra _L v (or also v ± m). 

A concept of uniform singularity for a sequence of measures rrij can be introduced, 
by means of the same formulation as in Definition 2.8, but requiring that the integer 
k0 does not depend on j G N. 

Proposition 2.9. Assume that m and v are cr-additive and non-negative. Then m 
and v are singular if and only if there exists a set A G A such that m(A) = 0 = v(Ac). 

P r o o f . Of course, just the "only i f part needs proving. So, assume m ± l/, 
and let (Ak)k and (atJ)i,z be the sequence and the regulator related to singular­
ity according with Definition 2.8. Without loss of generality, we can assume that 
J2 v(Ak) < oo. Thus, if A denotes the set A := limsup-Aj., we have v(A) = 0. On the 
other hand, m(Ac) = (O) — \imm(Bk), where Bk = U^kAj, because of cr-additivity 
of m. As m(Bk) < m(Ak) for each integer k, we obtain m(Ac) = 0. • 

3. THE VITALI-HAHN-SAKS THEOREM 

In this section, we shall report the main results of [3], in the formulation we need 
later. 

We first deal with the cr-additive case. 

Theorem 3.1. Let (mn)n be any sequence of uniformly bounded, cr-additive mea­
sures, defined on the cr-algebra A and taking values in R. Let Q be any lattice in 
A, and assume that Q is closed under countable disjoint unions. 

If the measures ran are (-RD)-convergent in Q, then they are uniformly Q-s-
bounded. 

Of course, if Q coincides with A, from (RD)-convergence in A it follows uniform 
s-boundedness. 

A typical consequence of the Vitali-Hahn-Saks theorem is the so-called Schur 
theorem. 
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Corollary 3.2. (Schur Theorem.) Let (rrik)k be a sequence of cr-additive mea­
sures, defined on V(N) and taking values in R. 

If the measures are (jRjD)-convergent to some measure m, then they are (UD)-
convergent (see Definition 2.2). 

In finitely additive setting, we need a further assumption, in order to obtain a 
result of the type of Vitali-Hahn-Saks. Moreover, for the sake of simplicity, we shall 
assume (i?.D)-convergence in the whole cr-algebra A. 

Theorem 3.3. Let (mn)n be any sequence of uniformly bounded, finitely additive 
measures, defined on a cr-algebra A. If the measures mn are all absolutely continuous 
with respect to a finitely additive measure v : A -> KQ" and if they are (RD)-
convergent to some limit ran, then the measures ran are uniformly s-bounded and 
uniformly absolutely continuous with respect to v. 

4. THE DIEUDONNE THEOREM 

In this section we list some formulations of the Dieudonne-type theorems proved 
in [5]. 

We assume, as usual, that A is a cr-algebra of subsets of a set £2, and that J7, Q 
are two sublattices of A, such that the complement of every element F e T belongs 
t o g -

The following Lemma is crucial: it states that uniform s-boundedness on Q im­
plies, for a sequence of regular means, uniform s-boundedness in A. The proof is in 
[5]. 

Lemma 4.1. Under the same hypotheses and notations as above, let (rrij : A —r 
R)j be a sequence of uniformly bounded, regular and (/-uniformly (s)-bounded 
means. Then the ra/s are .4-uniformly (s)-bounded, and uniformly regular. 

Theorem 4.2. (Dieudonne) Let fi, i?, Q, T be as above, and assume that Q is 
stable under countable disjoint unions. Suppose that (rrij : A -» R)j is a sequence 
of uniformly bounded regular cr-additive measures such that there exists 

mo = (RD) lim rrij in Q. 

Then we have: 

i) The measures ra^, j G N, are ^-uniformly (s)-bounded and uniformly regular, 

ii) There exists in R the limit ran = (RD) lim./ raj in A. 

hi) The ra/s are uniformly cr-additive. 

iv) ran is regular and cr-additive. 
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The p r o o f is an easy consequence of Theorem 3.1 and of the previous Lemma 4.1. 

Under suitable additional conditions, we can also state a finitely additive version 
of Dieudonne's theorem. 

Theorem 4 .3 . Let fi, I?, A, Q, T be as usual, and assume that Q is stable under 
countable disjoint unions. Suppose that (mj : A —» R)j is a sequence of uniformly 
bounded regular finitely additive measures, absolutely continuous with respect to a 
real-valued, nonnegative, finitely additive measure v on A. Assume that there exists 

ran = (RD) lim mj in Q. 

Then we have: 

i) The means raj, j G N, are ,4-uniformly (s)-bounded, uniformly regular and uni­
formly absolutely continuous with respect to v. 

ii) There exists in R the limit ran = (RD) liuij mj in A. 

iii) ran is (s)-bounded, regular and absolutely continuous with respect to v. 

5. CONVERGENCE OF LEBESGUE DECOMPOSITIONS 

In this section, under a further condition on the Riesz space i?, we shall see that, 
assuming (-RD)-convergence of a sequence (mn) of measures, it is possible to deduce 
(i?I})-convergence of their absolutely continuous and singular parts, with respect to 
a given scalar non-negative measure v. 

We first introduce a definition. 

Definition 5.1. We say that a complete Riesz space is super-Dedekind complete 
if, for every subset A C R, bounded from above, there exists a countable subset 
A0 c .A, such that sup_4 = sup An-

It is well-known that, under this assumption, a Lebesgue decomposition holds, 
for R-valued measures. (See [10, 15]). So, from now on, R will be assumed to be 
super-Dedekind complete. However, we shall need a particular formulation, so we 
prefer to state it explicitly. 

Theorem 5.2. Let ra : A -r R be any non-negative rj-additive measure, defined 
on the cr-algebra A, and let v : A -» MQ be any cr-additive measure. Then there 
exists a set V G A such that the measure m\y _L v and ra|yc < v. 

P r o o f . Defined := {H G A : m(H) / 0,v(H) = 0}, and put h := s u p ^ ^ m(H). 
As R is super-Dedekind complete, there exists a sequence (Hn)n in H such that 
h = supnGNra(iiIri). Without loss of generality, we can assume (Hn)n to be increas­
ing. Thus, the required set is V := Une^Hn. Indeed, it is clear that m\v is singular 
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with respect to z/, and we can easily see that m|yc <^ v, because for any set K 
disjoint from V, v(K) = 0 and m(K) > 0 would contradict maximality of V in W.B 

The measures m|yc and m\v are called respectively the absolutely continuous 
part and the singular part of m with respect to v. 

Now, assume that (nij)j is any sequence of cr-additive measures on the cr-algebra 
A, and taking values in the positive cone of R. For every cr-additive measure v : 
A -» MQ" it is possible to find a unique set V G A such that 

mj\v -L v, mj\vc <C ^ * 

indeed, denoting by V} the set corresponding to the measure vrtj according with 
Theorem 5.2, it is enough to set V := Uj^Vj. 

R e m a r k 5.3. It is obvious that, in the situation here described, the measures 
mj\v are uniformly singular with respect to v. However, in general, the measures 
mjlv* are not uniformly absolutely continuous, even when R = E : it is enough to 
choose v as the usual Lebesgue measure on the unit interval, and mj := j ^ L i i . 
As mj <̂C v for all jy clearly V = 0; however, the measures ntj are not uniformly 
absolutely continuous. 

Of course, uniform absolute continuity of the absolutely continuous parts, m ^ c , 
is ensured as soon as the sequence (mj)j is uniformly s-bounded. The following 
theorem deals with such situation. 

T h e o r e m 5.4. Assume that (mj)j is a sequence of cr- additive measures, defined 
on the same cr-algebra A and taking values in the positive cone of R. Let v : A -» IRQ" 
be any cr-additive measure. 

If the sequence (vrtj)j is (-R-D)-convergent to some measure m, then the abso­
lutely continuous and singular parts of mj respectively converge to the absolutely 
continuous and singular parts of m. 

P r o o f . Convergence, and non-negativity, imply uniform boundedness of the mea­
sures mj. Thanks to Theorem 3.1, the measures mj are uniformly s-bounded, hence 
also the measures mj\v and mj|yc are. This also implies that the absolutely contin­
uous parts, mj|yc, are uniformly absolutely continuous. As to convergence, it's clear 
from the hypotheses that (RD)limjmj\v^ = m|yc and (RD)Ym\jmj\v = m\v-

From the (0-0) definition of absolute continuity,it is clear that m|yc <C v, while 
v(V) = 0 immediately implies that m\v Lv. • 

(Received January 30, 2002.) 
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