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OBSERVATILITY AND OBSERVERS 
FOR NONLINEAR SYSTEMS WITH TIME DELAYS1 

L u i s A L E J A N D R O M Á R Q U E Z , C L A U D E M O O G , A N D M A R T Í N V E L A S C O - V I L L A 

Basic properties on linearization by output injection are investigated in this paper. 
A special structure is sought which is linear up to a suitable output injection and under a 
suitable change of coordinates. It is shown how an observer may be designed using theory 
available for linear time delay systems. 

1. INTRODUCTION 

In modern control theory, it has been a common practice to use ordinary differ­
ential equations to model dynamic systems. However, most of real systems have 
delays associated -normally introduced by natural response time (of sensors, actua­
tors, etc, . . .) , and transport (of information, mass, etc, . . .) phenomena- and a more 
accurate model would require the use of functional-differential equations. A lot of 
examples have been reported in the literature in a wide variety of applications like 
obtaining models in biological sciences (ecology, epidemiology, immunology, phys­
iology, . . . [see, e.g. [3] and references therein]), engineering (cold rolling mills, 
artificial neural networks, optimal control of flow [traffic, water resources systems], 
shunted transmission lines, information transmission over the internet, . . . [see, e. g. 
[9, 11, 17] and references therein]) chemistry [2, 10, 16], just to name some. 

These systems - which are referred to as time-delay systems - have been attracting 
an increasing number of researchers in recent years. In fact, some general results 
are already available specially in the linear case. Some results are also available 
when dealing with nonlinear time-delay systems in particular for control problems 
like feedback linearization, disturbance decoupling, and noninteracting control - see 
contributions in [6, 18, 21]. However, the proposed solutions assume that the full 
state variables are available for measurement and can be used in the control design. 
Such a request is seldom fulfilled in practice and one issue then consists in the design 
of a nonlinear observer. For linear time-delay systems, the observability has been 
widely investigated [5, 15, 22]. However, in the nonlinear case, and despite a couple 
of contributions [1, 7], this important problem remains open. 

!This work was performed while the first author was at the IRCCyN, in Nantes, France. 
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In the present work, structural properties of nonlinear time-delay systems are 
investigated, and preliminary steps on observability and observer design are given. 
As it is the case in the situation of nonlinear systems without delays, one important 
issue goes through the search of so-called linearizing coordinates, that is, a state 
space representation in which the given system is described by linear dynamics - up 
to additive nonlinear output injections. Such a structure, whenever it exists, displays 
the interesting feature to switch to linear theoretic arguments for the effective design 
of a stable observer (with linear dynamics with time delays). 

A major concern in this paper is about the theoretical framework which shows 
to be adequate for the general analysis of nonlinear time-delay systems and more 
specifically for the analysis of observability or the observer design. For instance, 
in the current literature,^ several non equivalent definitions of coordinate transfor­
mations exist; the transformation which is defined in Section 2.2 is invertible and 
general enough to involve the time-shift operator. 

In Section 2 we introduce both the mathematical setting for the analysis of nonlin­
ear time-delay systems and basic transformations as state transformations. Section 3 
is devoted to observability and observer design. An illustrative academic example is 
displayed in Section 4. Final remarks are presented in Conclusions. 

2. PRELIMINARIES 

2.1 . Class of systems 

A time-delay system is a dynamic system whose evolution in time depends not only 
on its actual state but also.on the past. Mathematically, a time-delay system is 
described by means of a set of delay-differential equations [8]. 

Consider the class of systems given by 

( x(t) 

M 

f(x(t),x(t-l),...,x(t-т)) 
T 

+ E 9i(x(t),x(t - 1) , . . . , x(t - т))u(t - i) 
i=0 

y(t) 

{ <t) 

h(x(t),x(t-l),... ,x(t-т)) 

џ>, u(t) =u0, Vť Є [t0 - т, t0] 

where only a finite number r G l V o f constant time delays occur. The state x G IRn, 
the control input u and the output y G M. The entries of / and gi are meromorphic 
functions of their arguments, ip is a continuous function of initial conditions. 

For simplicity, the following notation will be used. 

Xij = 
xi(t~j), 

Uj = u(t-j), i = 1.. .n, 

Уз = y(t-з), > j = 0 , l , . . 

x i = \xl,j* • • • ixnjj keN 

z i = \Xj,Uj,Ujj . . . yUj j á 
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We also define 
x = {x 0 , x i , . . . , x r } . 

z, u and y are defined in a similar way. 
Let /C denote the field of meromorphic functions depending on a finite number in 

{z}. Any element a of /C can be denoted by 

a (z 0 , . . . , z r ) . 

Denote by £ the vector space spanned over /C : 

£ = span^ {df, £ G /C} 

where d is the standard differential operator. 
Define the shift operators 5 and V as: 

Ja(z 0 , . . . zs) 

Va(z 0 , . . . ,z в) 

Vd 

= a ( z ь . . . , z s + i ) 

= a (z i , . . . ,z в +i)V (1) 

= dő. 

Let /C[V] denote the ring of polynomials of the operator V with coefficients over 
the field /C. 

The differential of any function ip(z) may then be written as 

dV>(z) dz 0 . 

M. is defined as the left module over the ring /C[V]: 

M = s p a n K : [ v ] { d ^ | ^ G / C } . 

By taking the differential of x(t) one gets the so-called linearized tangent system: 

{ dx0 

dyo 

F(V)dx0 + ø(V)du0 

/г(V)dx0. 

2.2. Change of coordinates 

Definition 1. (Change of coordinates) Consider system S with state coordinates 
xo- £o = ^ ( x ) i ^ G /Cn is a causal change of coordinates for system S if there exist 
a function /0~1(*) € /Cn and a delay r e N such that 

xr = r 1 « 0 ) . 

It is a bicausal change of coordinates if r = 0. 
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Definition 2. (Unimodular matrix) A matrix A G Knxn[V] is said to be unimod-
ular if it has an inverse A - 1 G Knxn[V]. 

Whether a matrix is unimodular may be tested with the algorithm provided in 
Appendix B. 

Remark 1. 

- If the linear map T[V] G iRnxn[V] is causal then 

Smith{T[V]} = d iagjV^}, and (2) 

- If £0 = </?(x) is a bicausal change of coordinates, then the matrix 5[V] defined 
by 

dx0 - S[V]d£0, 

is unimodular. 

2.3. Closure 

We end this section by recalling the notion of closure, introduced in control theory 
in [4] for the study of linear time-delay systems. 

Let M be a module defined over a ring R. The i?-closure or closure over R of a 
submodule A C M, noted C1SR{A}, is defined as 

clsR{A} := {x G M | 3P G R, Px G .A} 

When a submodule A is equal to its i?-closure, one says that it is closed over R. 

3. OBSERVABILITY FOR NONLINEAR TIME-DELAY SYSTEMS 

System S is said to be observable when the state x(t) can be expressed as a function 
of the derivatives of the output and the input, and their forward shifts: 

x(t) = iP(yW(t + T),uW(t + a),k,£,T,ae]N). 

Definition 3. Assume that system E is observable; then it is said to be linearizable 
by additive output injections if the output may be written under the form [23] 

^^E^Cy.u). (3) 
j=1 

For nonlinear time-delay systems, this may be checked with a straightforward 
adaptation of the algorithm given in [24], presented in [19]. For the sake of com­
pleteness, this algorithm is recalled in Appendix A. 
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3.1. Observat ion scheme 

Assume that system S is observable. In this section we will consider a transformation 
that will be helpful to construct an observer for the original nonlinear time delay 
system S. Assume that the system £ is linearizable by additive output injections 
(cf. Appendix A). Then at each step k of the linearization algorithm we define 

k 

dMx) = dy? )-X>fk- i )(y,u)- (4) 
i=l 

Let {d£i,o, • • • , d£n,o} be a basis for 

cISfl[V]{clMx),... ,d/in(x)}, 

so we have 

" d/ц " 

= T[V] 

" díi.o " 

d/гn _ d£n,o 
т[v] є мnxn[w}. (5) 

From this point we will assume that {d£0} is a causal change of coordinates for dx0. 
Taking the time derivative of functions £fc,o we have, from equation (4), 

6,.o = a*(V)£o + 0jfe(y,u) 

icing the new representa 

€o = >4(V)€o + 0(y,u) 

Ky,u) is 

<Pi (y, u) 

0n(y,u) 

(6) 

with a*.(V) G /Cnx l[V], producing the new representation, 

£o = -
where .A(V) := [af (V) • • *«n(V)]T and </>(y,u) is the vector of functions given by 

</>(y, u) = 

3.2. Observer design 

From the previous section it is possible to define now the notion of an observer. 

Definition 4. The dynamic system 

£o = 7(£,y,u) 

(Tx0 = </>(£, y ,u) , 

is said to be an observer for system S if eT(t) -> 0 as t 
STx0 — o*rxo, for some r G W. 

oo, where eT(t) := 

A characteristic of this general observer is that, as in the linear time-delay sys­
tems, we may obtain the estimation of the state at time t — r. This characteristic is 
related in the linear case with the well-known notion of weak observability [15]. 

From system (6) it is possible to propose a compensator that gives the estimation 
£0 of the transformed state £0. This can be done as follows. 
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Theorem 1. Assume that system £ is linearizable by <^;(y,u)-injections. If 

(i) £ is a bicausal change of coordinates for x : 

£o=<^(x), x0 = </?~1(0> and (7) 

(ii) Smith{T[V]} = diag{V^}, for some /Vs, T[V] given by (5), 

then 

. ko = MV)L + 0(y, u) - *(V)(y0 - C(V)|o) (8) 

xo =- V-'iO 

with A(V) + A;(V)C(V) an stable matrix, is an observer for system S. 

The p r o o f of Theorem 1 follows from the above and is left to reader. Stability 
of a matrix A(V) is meant in the sense that any solution of 

x = i (V)x , 

is stable for any initial condition. 
Note that (i) does not depend on the choice of basis for cisjR[y] because any two 

basis of the same submodule are related by an unimodular transformation matrix. 

4. ILLUSTRATIVE EXAMPLES 

As a first example, consider the system 

ii ,o = ^o 

2/0 = - E l . O + Z l . l 

for which /ii = xi.o + £1,1 ar-d </>i = u0 + ^i- The state of this system may not 
be recovered from the measurement of its output, unless the initial conditions are 
known. This is displayed by choosing £i,o = #i,o and writing 

d/ii,0 = [l + V]d6,o. 

Because condition (2) is not satisfied, we cannot go any further. 

Now consider the system 

xi,o = 0.2xi,i + 0.1x2,i + 0.5x2,1X2,2 + 0.2x^2 + ^1 

£2.0 = -0.25x2,i (9) 

2/0 = ^1 ,1 - ^ 2 , 2 -
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In this case, we have 

2/o = 

2/o = 

2/o = 

X i , i — X 2 2 

(0.2y2 + U2) + 0.1x2,2 

( 0 . 2 ý 2 + w 2 ) - 0.025x2,3 

(0.2ý2 + ú2) - 0.255ÍJ/0 - (0.2Í/2 + u2)) 

— (-0.25yi + 0.2j/2 + u2) + 0.25(0.2</3 + u3), 

so 
c

2 ,2 
/ l l =-- X i ^ i — X2 

h2 = 2/0- (-0.252/! +0.2i/2+<x2) 

= 0.25(zM - x\2) + 0.1x2,2. 

We choose {6,0 = ^1,0 - ^2 ,1,6,0 = £2,o} as a basis for clsjfi\y]{hi,h2}. Then 

Һ V 0 6 
h2 _ 0.25V 0.1V2 

6 
By computing the Smith's normal form for the transformation matrix, we find that 
the invariant polynomials are {V, V 3}, so condition (2) is fulfilled. Also, condition 
(7) is satisfied: 

£i,o = 6,0 + 6,1 

z2,o = 6,o-

Under the new coordinates, the system reads 

and 

€0 

2/0 

ło 

0 0.1V 
0 -0.25V Čo + 

= [V O]*,, 

0 O.IV 
0 -0.25V Čo + 

(2/0 - £1,0) 

-0.25yo + 0.2J/1 + щ 
0 

-0.25y0 + 0.2г/i + щ 
0 

*i(V) 
k2(V) 

£1,0 = 6,0 + 6,1 

£2,0 = 6,0 

is an observer for system (9) if the matrix w y j -0 25V ls stable. Prom [12], we 
find fci(V) = —0.25V and fc2(V) = —0.1V. A numerical simulation was carried out 
using Matlab-Simulink software, considering the initial conditions x(t) = [5 10], 
and x(t) = [0 0] for t G [—2,0]. A square signal (peak-to-peak amplitude = 1 , 
frequency = 0.5 Hz, mean = 0.5 duty cycle = 50 %) was set as input signal. The state 
evolution (for the system (xi,o,x2,o) and the observer (xi,o,£2,o)) and converging 
errors (ei := x i j 0 - £1,0 and e2 := x2jU — £2,o) are depicted in Figure 1. 
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(a) (b) 

Fig. 1. (a) Actual and observed state; (b) Convergence error. 

5. CONCLUSIONS 

A class of time delay systems has been considered, which includes time delays on 
the input and the state variables. This frame is general enough to model complex 
systems. It is closed under state feedback transformations. Note that the framework 
is also adequate and necessary for systems which display time delays in the input 
only since a delay free state feedback will naturally introduce delays on the state 
variables of the closed loop system. The proposed approach has been used to study 
the observability of nonlinear time-delay systems. A definition of observability and a 
methodology to construct an observer for systems satisfying a checkable condition are 
presented. It goes through a generalized notion of linearization via output injections, 
which has been a key issue for almost 20 years in the design of observers for nonlinear 
systems without delays [13, 14]. 

APPENDIX A. ALGORITHM FOR LINEARIZATION BY ADDITIVE 
OUTPUT INJECTIONS 

Define 

E° = 0 

Ek = s p a n ^ l d y W , . . . ^ ^ - 1 ) ^ ) ^ ^ ) , . . ^ ^ - 1 ) ^ ) } . 

Then, if (3) holds, it follows that 

dy<n> = d [*! (y, i i )] ( n-1 } + • • • + d$n(y, u). (10) 

Assume also 

dim^ [ v ] E
n = 2n. (11) 
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Then, the following algorithm gives a way to check (10). 

Algorithm 1. (Linearization by additive output injections) 

Initial check: dyW G En. If no, stop! Otherwise, denote ui — dy^. 
Step 1: 
Pick functions fi,0i G /C[V] such that 

wi - £idy ( n _ 1 ) - 0idix(n_1) e En-\ (12) 

Define the differential one-form Qi as 

£>i = £idy + 9idu. 

Check: dcDi = 0. If no, stop! 

Step I (.£ = 2 , . . . , n ) : 

Let $^_i(y,u) be such that d$^_i = Ot-i-
Denote ut as 

ut = ut-i-d$\nr1
i+l). 

Choose &,0/ G /C[V] such that 

U£ _ &dy<n-'> - OiduS*-') G En~(-. 

Define the differential one-form Qt a s 

&t — itdy — 9tdu. 

Check: du>t = 0. If no, stop! 

This algorithm allows to check whether a system can be written as (10). The 
conditions are stated in terms of integrability conditions of some differential one-
forms. 

Lemma 1. (cf. [19]) Under assumption (11), dyW G £ may be written under the 
form (10) if and only if dy(n) G En and 

dOi = 0, i = l , . . . , n . (13) 
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AFPENDIX B. INVERSION OF MATRICES WITH ENTRIES IN /C[V] 

A lgorithm 2. Matrix inversion 

SetЛ=[A | /] 
foг i = 1 to n do 

if \ai = 0 then 
Problem has no solution. Algorithm ends. 

else 
Swap rows of A to have pol.d°(au) < mm{pol.d°(aji), j > i, a^ ^ 0} 
while 3 j > i such that aji ^ 0 do 

Swap rows i + 1 and j of A 

Find P, Q,R,Se /C[V]\{0} such that ' P Q 

R S 

Set Л 

where d[V] is the left-g.c.d. of an and ajj. 

J.-i (0) 
E Q 

(0) J„_i_i 
end wh i le 
if an ^ /C then 

Problem has no solution. Algorithm ends. 

else 
Divide (from the left) row i of A by an. 

-an 

Idi-i : 
Set A 

end if 
end if 

end for 

—a%-\,i 
i 

(0) 

(0) 

(0) 
Лn-i-1 

лjг 

d[V] 
0 

(Received June 27, 2001.) 
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