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K Y B E R N E T I K A - V O L U M E Л ( 2 0 0 2 ) , N U M B E R 5, P A G E S 5 8 5 - 6 0 0 

SYSTEMS WITH ASSOCIATIVE DYNAMICS1 

R O N A L D К O R I N P E A R S O N , Ü L L E К O T T A AND S V E N N Õ M M 

This paper introduces a class of nonlinear discrete-time dynamic models that generalize 
familiar linear model structures; our motivation is to explore the extent to which known 
results for the linear case do or do not extend to this nonlinear class. The results presented 
here are based on a complete characterization of the solution of the associative functional 
equation F[F(x, y),z] — F[x, F(y, z)] due to J. Aczel, leading to a class of invertible binary 
operators that includes addition, multiplication, and infinitely many others. We present 
some illustrative examples of these dynamic models, give a simple explicit representation 
for their inverses, and present sufficient conditions for bounded-input, bounded-output 
stability. Finally, we propose a generalization of this model class and we demonstrate that 
these models have classical state-space realizations, unlike arbitrarily structured NARMA 
models. 

1. INTRODUCTION 

The class of finite-dimensional, time-invariant, discrete-time linear dynamic models 
provides the basis for many important practical results in control theory [10], system 
identification [11], statistical time-series analysis [3], and digital signal processing 
[12]. These models may be represented in various ways, including the ARMA(p, q) 
form: 

p Q 

yk = ^2 aiyk-i + X^ b*uk-i' (J) 
2 = 1 i=0 

In many applications (e.g., computer-based control of strongly nonlinear systems 
or the design of nonlinear digital filters), this linear dynamic model s tructure is 
inadequate but the development and characterization of nonlinear alternatives is a 
difficult problem. As a specific example, a recent survey of industrial applications 
of nonlinear model predictive control (NMPC) concludes tha t one of the principal 
reasons tha t N M P C has had so much less impact on industrial practice than its 
linear counterpart is the general difficulty of developing adequate nonlinear dynamic 

xThe results of Sections 1-7 are in Proceedings of 1st IFAC Symposium on System Structure and 
Control, Prague, Czech Republic, August 29-31, 2001, Paper No 077 and the material of Section 8 is 
in Proceedings of the Third International Conference on Control Theory & Applications, Pretoria, 
Republic of South Africa, 2001, Paper No. WP01-4. 
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models [17]. One of the reasons for this difficulty is that the term "nonlinear discrete-
time dynamic models" does not define a single, well-defined model class like the 
ARMA(p, q) models: instead, many very different model structures fall under the 
general umbrella of nonlinearity, and the qualitative behavior of these different model 
structures can vary over an enormous range [13]. To see this point, consider the 
following two nonlinear model structures: 

- the Wiener model W: 

Vk = g ( ] C aigl (yk~i)+ Yl6^*-* I 
\i=l i=0 J 

- the projection-pursuit model V: 

Vk = 9 f Yl aiyk-i + Yl biUk~i I • 
\i=l i=0 J 

The difference between these two models lies in the autoregressive terms in the 
first sum, but the differences in qualitative behavior between these two models is 
enormous. For example, if g(-) is continuous, the Wiener model is BIBO stable if 
the ARMA(p, q) model defined by Eq. (1) is stable, but the projection-pursuit model 
can exhibit amplitude-dependent stability [14, Fig. 1]. 

This paper explores an extension of linear systems based on the idea of replacing 
the addition operations in Eq. (1) with other binary operators that share certain 
important properties and for which a simple, complete characterization exists. 

2. ASSOCIATIVE BINARY OPERATORS 

The binary operators o considered here may be viewed as a mapping from some 
domain D = I x I into 7, where I is an interval of real numbers that may be finite or 
infinite but must be open on at least one side. Further, o is associative if it satisfies 

(xoy)oz = xo(yoz), (2) 

for all x, y, and z in I. Equivalently, this binary operation may be written as 
xoy — F(x,y), reducing Eq. (2) to the associativity equation [1, Ch. 7]: 

F[F(x,y),z] = F[x,F(y,z)], 

for all x, y,z E / . Further, o is continuous if the map F : / x I -» I is continuous, 
and cancellative if either of the following conditions implies t\ = ti'. t\ o z = ti o z 
or z o t\ = z o t2. It has been shown [1, Thm. 1, Ch. 7] that the binary operator o is 
continuous, associative, and cancellative on / if and only if 

xoy = <f>-1[<f,(x)+<t>(y)], (3) 
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where (/)(-) is strictly monotonic and continuous on I. The most common examples 
are addition, corresponding to (f)(x) = x, and multiplication, corresponding to 0(x) = 
lnx; the other examples are the parallel combination x\\y, defined as: 

M xy 

x\\y = x + y 

arising from the parallel combination of resistances in electrical networks and defined 
by the function (j)(x) = 1/x, and the projective addition operation © defined as 

Oifi — 1 

in [20] which corresponds to the function (j)(x) = j5y. 
For convenience, the class of all associative, continuous and cancellative binary 

operators o will be denoted A. It follows from Eq. (3) that any binary operator o in 
A is also commutative: x o y = y o x, and, as a consequence, the combination: 

ф Xi = xi o x2 o • • • o xn = ф l 

i=l 

J2Ф(XІ) 
i=l 

is invariant under arbitrary permutations of the n terms {xi}. 
Another extremely useful consequence of the representation (3) is that the binary 

operation o is invertible, with an inverse operation o given explicitly by: 

x«y=4>-x[m-m]- (4) 

It follows directly from Eqs. (3) and (4) that (xoy)oy = x. When o denotes addition 
or multiplication, the inverse operations of subtraction and division are well-known. 
As less obvious examples, note that the inverses of the parallel combination x\\y and 
the projective addition operation x © y are given by: 

xy x — y 
x J_ y = , xQy = xy-2y + l 

3. THE CLASS OF ASSOCIATIVE SYSTEMS 

The class of associative systems is defined by replacing all additions in Eq. (1) with 
arbitrary binary compositions o from A: 

p q / p q \ 

2/* = ( B °>iyk-i ° 0 biUk-i = c/)~l ( ^ (j)(aiyk-i) + ^ (f)(biUk-i) J . (5) 
i=l z=0 \ t= l i=0 J 

As a specific example, Figure 1 shows four step responses for the model with p = 1 
and q = 0 obtained by taking a\ = —0.8, bo = 0.2 and <j)(x) = ex — 1. For small 
amplitude inputs, the behavior is quite similar to the linearized model obtained from 
the approximation ex — 1 c.. x, a point seen clearly for step amplitudes A = ±0.2. In 
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contrast, the behavior changes dramatically with increasing input amplitude: posi­
tive step responses become progressively less oscillatory and negative step responses 
become more oscillatory. In addition, this model exhibits input-dependent stability: 
negative step inputs larger than approximately 1.24 in amplitude result in unstable 
responses, as do positive steps larger than approximately 3500, a result that further 
illustrates the dramatic asymmetry of this model's responses. 

Fig. 1. Amplitude dependent step responses. 

4. INVERSE MODELS 

One noteworthy feature of the linear ARMA(p, q) model class is the existence of 
a simple, explicit form for the inverse model relating the output sequence {yk} to 
the input sequence {uk}, a result with practical significance in control [5], spectral 
estimation and system identification (through the use of prewhitening filters [18]), 
and a variety of other applications: this inverse is simply the ARMA(g,p) model 
obtained by interchanging the poles and zeros of the original model. An analogous 
result may be developed for the general class of associative models using the inverse 
binary operator o defined in Section 2. Specifically, Eq. (5) may be rearranged to: 

ф b i U к - i =Уü<>0QiУк-i => b0uк = Ук o ф a i У k - i °фhuк-i- (6) 
i=0 i=l i=l i=l 

Writing this inverse model in terms of the function </>(•) yields the more explicit 
representation: 

uk = b0

l(j) M (f)(yk) - ^2 ^iVk-i) ~ ^2 WM-i) (7) 
І=l І=l 
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In contrast to the linear case, the general associative class is not closed under 
model inversion, although there are two important exceptions. First, if bo = 1 and 
(f)(-x) = —(f)(x), Eq. (7) may be rearranged into the associative model: 

/ V Q \ Q P 

Uk = 0" 1 I Yl <t>(PiV>k-i) + Yl (t>(oLiyk-i) = 0 PiUk-i o 0 QLiyk-u (8) 
,Ż=I i=0 i=l i=0 

where a 0 = 1, a* = -a* for i = 1,2,... ,p, and /?* = -bi for i = 1,. . . , q. The second 
case where the inverse model remains associative is that of associative homomorphic 
systems. 

5. HOMOMORPHIC SYSTEMS 

If (j)(aiyk-i) is replaced with ai(j)(yk-i) and (f)(biUk-i) is replaced with Pi(j)(uk-i) in 
the second line of Eq. (5), we obtain the class of homomorphic systems [12, Ch. 10]. 
A block diagram of these systems is shown in Figure 2 and important examples 
include the nonlinear mean filters [16], obtained by restricting the linear block in 
Figure 2 to be a weighted average, i. e.: yk = (j)~l ( E L o PiHuk-i)), Z)Lo A = 1-

Uk ф(-) • H(z) • -ф~Ч-) Уk 

Fig. 2. Representation of a homomorphic system. 

As an important specific case, note that restricting consideration to Uk > 0, 
taking (j)(x) = lnx and /% = l/(q +1) yields a moving-window geometric mean filter. 
Similarly, taking <fi(x) = 1/x and Pi = l/(q + 1) yields the harmonic mean filter. 

It is extremely interesting to ask what is contained in the intersection of these 
two classes-associative systems and homomorphic systems. First, note that this 
intersection contains the class of linear ARMA(p, q) systems, obtained by taking 
(j)(x) = x. More generally, membership in both classes requires the following equation 
to be satisfied: 

4(ax) = ^(a)(j>(x), (9) 

for some function ip(-) and all x. In fact, we can obtain a simple explicit solution to 
this equation by first noting that, setting x = 1 implies ip(a) = <f)(a)/'(j)(l). Dividing 
Eq. (9) through by (f)(1) then yields: 

ф(ax) 

~Ш 
ф(a) 

ф(x) 

0(1) 
=-> ijj(ax) = ip(a)xp(x). 

This equation is Cauchy'spower equation [2, p. 29], which has only three solutions 
that are continuous at any point: I/J(X) = 0, \x\v', Ix^ signx. Of these solutions, only 
the last is invertible and then only if v ^ 0; further, note that these invertible 
functions are continuous at zero if and only if v > 0. 
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Hence, the class of associative homomorphic systems corresponds to subset of the 
associative systems obtained by restricting consideration to the functions (j)(x) -= 
a\x\v signx for v > 0. A particularly interesting characteristic of these systems is 
that they are homogeneous, a result that follows most easily from Cauchy's power 
equation and the block diagram representation for the homomorphic systems (Fig­
ure 2). In particular, if Uk is scaled by A, it follows that </)(uk) -» <f>(Xuk) = 
<t)(\)(j)(uk). The effect of this modification of the input of the linear block H(z) 
in Figure 2 is to simply scale the output by (f)(X). Defining Zk as the output of this 
linear block in response to the unsealed input Uk, it follows that the output of the 
homomorphic system is: 

yk=<t>-1(<f>Wzk) = \<f>-1(zk), 

a result that follows from the fact that, if (/>(•) is invertible and satisfies the Cauchy 
power equation, then so does 4>~1(')- The class of homogeneous systems is discussed 
further in [13, Ch.3]. Finally, note that the inverse of any homomorphic system 
is simply the homomorphic system based on the same nonlinear function </>(•) and 
the inverse linear model H~1(z), a result that follows immediately from the block 
diagram representation. Hence, if (f)(x) = a\x\u signx for some v > 0, the resulting 
homomorphic system is an associative system with an associative inverse. 

6. STABILITY CONDITIONS 

It is possible to establish some useful sufficient conditions for the stability of associa­
tive systems. In particular, we present conditions under which these systems exhibit 
the following behavior: 

BIBO stability: 

A system S{uk} -> {yk} is bounded-input, bounded-output stable or 
more simply, BIBO stable if, for any 0 < M < co, \uk\ < M for all k 
implies the existence of 0 < IV < co such that \yk\ < N for all k. 

The first of these stability conditions is: 

Cond it ion A: 

The functions </>(•) and </>_1(') map compact sets into compact sets. 

This condition is satisfied by invertible functions that are continuous on R, but 
it is also satisfied by discontinuous functions like: 

*>={-*£!; . , (10) 

which is its own inverse: 0_1(2/) = ^(v)- Conversely, this condition is not satisfied 
by singular functions like <j)(x) = 1/x. 
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For the special case p = 0, it follows immediately that the associative model 
defined by Eq. (5) is BIBO stable if </>(•) satisfies Condition A. Similarly, Condition 
A is also sufficient to guarantee the BIBO stability of associative homomorphic 
systems, a result that follows directly from the block diagram: if {uk} is uniformly 
bounded, so is {(j)(uk)}] if H(z) is stable, the output sequence {zk} is also uniformly 
bounded, ultimately implying the output sequence {yk = (t>~l(zk)} is bounded. 
Conversely, for the general case, an additional condition is required that extends the 
usual restriction on the coefficients {a^} in stable linear models [6, Ch. 4]. Here, we 
introduce the following modified Lipschitz condition: 

Condit ion B: 

The function (/)(•) satisfies 0(0) = 0 and there exists a function i/j : R —r 
R+ such that |0(ax)| < ip(a)\(/)(x)\ for all x G R and all a G S where S 
is a specified subset of R. 

Theorem 1. Suppose (/>(•) satisfies Conditions A and B on some set S. The 
associative system defined by Eq. (5) is BIBO stable if a; G S for i = 1,2,... ,p and 
the following linear system C is stable: 

Xk = Y^*Ф((ii)xk-i +uк. 
ѓ = l 

P r o o f . Applying </>(•) to Eq. (5) yields: (/)(yk) = £ L i <K°i2/*-i)+£?=o <f>(biuk-i) 
=* WV*)I < E L i \<K<*iVk-i)\ + EjLo WiUk-i)V K K l < M for all *, it follows 
from Condition A that there exists a finite upper bound N for the second of these 
sums; further, by Condition B: 

Ml/*)l < X>(ai)|</>(y*-i)|+iV. 
i=l 

If |0(i/j)| < Xj for all j < k, it follows by induction that \(j>(yk)\ < f̂c- Hence, if 
the system C is stable, its response to a unit step of amplitude N defines a finite 
overbound on \<j)(yk)\ for all &, establishing the BIBO stability of the associative 
system. • 

Note that, since the linear system C in this theorem is causal, finite-dimensional, 
and time-invariant, it follows that BIBO stability is equivalent to l\ stability (i.e., 
absolute summability of the impulse response coefficients {hk}) [6, p. 339], which 
implies asymptotic stability. Further, asymptotic stability is equivalent to exponen­
tial stability for causal, time-invariant, finite-dimensional linear systems [14, p. 166], 
and it is easy to show that exponential stability implies t\ stability: 

oo ^ 

\hk\ < Cak,0 <a<l^Y, \hk\ ^ f T ^ < °°' 
k=o 
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Hence, the stability of the system C required in this theorem may be taken as any 
of the equivalent forms: BIBO, £i, asymptotic, or exponential. 

This stability result is quite similar to that for the class of structurally additive 
models [13, p. 178]: yk = Yn=i fi(yk-i)+Yj\=o 9i(u>k-i)- There, a sufficient condition 
for stability of the nonlinear model is the stability of a related linear model, derived 
from the Lipschitz constants of the functions fi(-). An interesting feature of both of 
these results is that they relate stability of the original nonlinear system to that of a 
linear positive system, for which very strong stability results are available [7, Ch. 5], 

Finally, note that one class of functions satisfying Condition B with S = R are 
those defined by Eq. (9), which satisfy the defining condition with equality. As 
a consequence, the stability of associative homomorphic systems follows, but this 
result may be obtained more easily from the block diagram argument presented 
earlier. Hence, it is of particular interest to explore non-homomorphic cases where 
Condition B is satisfied, as in the following example. 

7. A DISCONTINUOUS EXAMPLE 

The solution of the associativity equation described here leads to the explicit rep­
resentation for o given by (3) where the function </>(•) is continuous. In this final 
example, we relax this condition, considering the discontinuous function defined in 
Eq. (10). Taking the same first-order linear dynamic model as in the previous exam­
ple with ai = 0.8 and bo = 0.2 gives a model whose responses to various amplitude 
steps is shown in Figure 1; these plots show the strongly amplitude-dependent dy­
namic character of this model. Here, however, the stability conditions presented in 
Secion 6 apply since (j)(x) satisfies: \(f>(x)\ = |x| ---!> |0(aa;)| = \ax\ — \a\-\(j)(x)\. Hence, 
so long as the first-order linear model on which this system is based is stable, so too 
is the overall nonlinear system. 

Another interesting feature of this example is that because the function (j>(x) is 
piecewise linear, the associative model may be expressed as an affine multimodel 
[13, Ch.6]. The basis for this result is the observation that 

-x-y |x|, |s/| < 1 

-x + y \x\ < 1 , |y| > 1 

x-y \x\ > 1, |s/| < 1 

x + y |x|, \y\ > 1. 

ф(x) + ф(y) = < 

This result leads ultimately to an affine multimodel representation involving the 
four local models ±a\yk-\ ± b0uk and rather complicated selection conditions. For 
example, the local linear model yk = a\yk-i+b0uk is selected if either of the following 
two conditions are satisfied: 

1: K2/fc-i| < 1, IMfcl < 1> Ks/fc-i + b0uk\ < 1 

2: \a\yk-i\ > 1, \b0uk\ > 1, \axyk-i +b0uk\ > 1. 

Similar selection criteria hold for the other three local linear models. 
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Amplitude +1.00 Amplitude+1.05 

50 100 150 200 50 100 150 200 

Amplitude +2.50 Amplitude +5.01 

>- V 1 

50 100 150 200 50 100 150 200 

k k 

Fig. 3. Step responses, discontinuous model. 

8. GENERALIZED ASSOCIATIVE MODELS AND 
STATE-SPACE REALIZATIONS 

The class of empirical NARMA models is defined by the nonlinear input/output 
relation 

Уt+n = f{Уt,---,Уt+n-l,Щ,---,Щ+n-l) (11) 

These models are quite popular, both because they are easier to develop than 
fundamental first-principles models and because they are better suited to applica­
tions like model-based control. Conversely, many control system design and analysis 
procedures assume the existence of a state-space realization, but not all nonlinear in­
put/output models of the form (11) exhibit such realizations [16,17]. Consequently, 
it is advantageous to consider a subset of the NARMA class defined by Eq. (11) for 
which state-space realizations can be shown to exist. 

The fundamental reason that general NARMA models do not necessarily exhibit 
classical state-space realizations is that the nonlinear function /(•) in Eq. (11) admits 
arbitrary combinations of the variables yi-i and ut-j for all time lags i and j . 
Alternatively, by restricting the coupling permitted between these variables, it is 
possible to guarantee the existence of a state-space realization. For example, a 
subclass of NARMA models is considered in [16] that is guaranteed to have an 
observable state-space realization. This subclass is specified by requiring the function 
/(•) in Eq. (11) to be a sum of component functions /;(•), each depending on a 
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specified subset of the arguments appearing in Eq. (11). The simplest special case 
of this realizable model is the additive NARMA (ANARMA) class, in which the 
arguments are pairwise decoupled: 

yt+n = fl(yt,Ut) + . . . + / n ( ^ + n _ i , ^ + n _ i ) . (12) 

In general, / can be a sum of fewer than n component functions, each being a 
function of more than two arguments 

yt+n = fi(yt,...,yt+k,ut) + f2(yt+1,... ,yt+k+i,u>t+i) + . . . 
(13) 

+fn-k(yt+n-k-l, • • .,2/£+n-l,U£+7i-k-l) 

for any k = 0 , 1 , . . . , n — 1. 

The purpose of this section is to extend the result of [19] by applying associative 
binary operations other than addition to decouple the different time lags. The class 
of generalized associative models is obtained by replacing the addition operations in 
ANARMA model (12) with arbitrary binary operators o from A defined in Section 2: 

yt+n = [l-[fl(yt,V>t)ox f2(yt+1,Ut+i)]o2 . . . ] O n _ i / n ( ^ + n _ ! , u * + n _ i ) ] (14) 

where xo{y — (j)Tl [(j)i(x)-\-(j)i(y)]. Note that although all operations ô  are individually 
associative and commutative, these conditions do not hold for their combinations. 
For example, (/io1f2)o2f3 ^ fxo(/2o2/3) generalizes the familiar situation where ox 

is defined to be addition and o2 multiplication. For that reason (14) is understood to 
mean that we first apply operator ox, then o2 and so forth so the order of associative 
operators is not allowed to change. 

Of course, the general structure (14) accommodates the case were all operations 
Oj are identical 

yt+n = (f)~l ( Y^<t>(fi(yt+i-iiUt+i-i) J • (15) 

In the special case where fi(yt+i-Uut+i-i) = aiyt+i-iobiUt+i-i = 0~1[0(a i?/ i+ i_i)+ 
4>(biUt+i-ij] in (15) yields the associative model class studied in Section 3. When 
(j)(x) = x, fi(yt+i^uut+i-i) = a,iyt+i-i + biUt+i-i + Ciyt+i-iut+i-i, we obtain the 
diagonal bilinear model [22]. 

The class of generalized associative models is shown to have a classical state 
space realization. Once the associative structure of the model is recognized, the 
state model construction is direct, allowing a simple translation from input-output 
model to state-space model. However, it is not always easy to recognize the general­
ized associative model structure in (11) since it depends on the existence of certain 
function 0, not specified in advance. The problem of determining this function is only 
briefly considered here; a complete solution remains a subject for future research. 

An algorithm is now given to check if (11) can be written in the form (14). This 
algorithm permits computation of the required functions /*, i = 1,2,... , n — 1 step 
by step, whenever they exist. The algorithm is constructive up to integrating some 
one - forms which is very common in the nonlinear setting. As noted, additional 
study is necessary to find 0;'s, i = l , 2 , . . . , n - l and to check if fa's are strictly 
monotonic and continous. 
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Algorithm. Calculate for i = 1,2,..., n 

df(-) _ df(-) 
Ut+n-i = o dyt+n-i + Q dut+n-i (16) 

oyt+n-i out+n-i 

Check: 
diot+n-i A c j i + n _ i = 0 (17) 

If not, stop; otherwise 

Vt+n-i = ^n-i-l(yti- • • ,2 /M-n- l ,^ , - •• , Ut+n-l) dfn-i+\ (yt+n-i, Ut+n-i). (18) 

As in [19], we assume that the function /(•) defining the NARMA model is 
meromorphic, since these functions and their derivatives can only vanish at isolated 
points. 

Because we are often interested in various system theoretic properties that can 
be characterised by the non- vanishing of specific functions defined by the system 
equations, this restriction allows us to characterise generic system properties that 
hold on an open and dense subset of some suitable domain of definition. The dis­
tinction between such generic characterisations and global characterisations is that 
the latter are required to hold everywhere, without exception. In connection with 
the problem of integrating one forms, by focusing on generic properties, we require 
that the one-forms be integrable everywhere except possibly at a set of isolated sin­
gular points. Note that the class of meromorphic functions is closed with respect 
to division and the four examples of binary operation given in Section 2 also be­
long to the class of meromorphic functions, but this is not the case for piecewise 
linear function 0 given in Section 7. Therefore, the algorithm only applies to the 
meromorphic class of systems and at the moment we do not have the procedure to 
check whether non-meromorphic functions can be rewritten in the form (14). But of 
course, the realization procedure in the paper is more general and can be applied to 
(14) independently of which class the functions / 1 , . . . , / n and (j)\,..., </>n_i belong. 

The realization problem is to construct the state equations 

x+ = f(x,u) 
(19) 

y = h(x) 

for the input-output difference equation (14). Note that the superscript + notes the 
one step forward time shift, i.e. x+(t) = x(t + 1). The sequences {ut,yt,t > 0} 
generated by (19) (for different initial states) have to be equal to the sequences 
{ut,yt,t > 0} satisfying equation (14). Then (19) will be called a realization of (14). 
A system is said to be realizable in the classical state space form if there exists a 
realization of the form (19). 

The main goal of this section is to show that (14) admits a classical state space 
realization, and to obtain the corresponding state equations. Our analysis is based 
on the choice of the state coordinates [19] for the ANARMA model (12): 
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xl = yt 

x2 = yt+i - fn(yt,ut) 

X3 = yt+2 - fn(yt+i,ut+i) - fn-i(yt,ut) (2 0) 

Xn = yt+n-1 - fn(yt+n-2,Ut+n-2) ~ ••• ~ / . ( . I t , ^ ) 

that will yield the state equations 

X+ = X2+fn(xUu) 

X% = X3 + fn-l(xi,u) 

(21) 

C„_! = Xn + f2(xUu) 

Xt = /l( .5l,u). 

The only difference is that the addition and subtraction operations are replaced 
by the operators ô  and ô  respectively, and taking care to preserve the correct order 
of these operators. Hence, we choose the state coordinates as 

xi = yt 

x2 = yt+i o n _ i fn(yt,ut) 

X3 = [yt+2 O n - l fn(yt+l,Ut+l)] On_2 fn-i(yt,Ut) 

xn = [• • • [[yt+n-1 On_i fn(yt+n-2,Ut+n-2)] On-2 fn-i(yt+n-3,Ut+n-3)] ° n - 3 • • •] 

oif2(yt,ut). 

(22) 
This will yield the state equations 

xt = x2 on_! fn(xi,u) 

x2 = x3on_2fn_1(xi,u) 

4- : , / N (23) 

-rn_i = xno1f2(xuu) 

xn = fi(xi,u) 

y = xi-
If all o^'s, i = 1 , . . . , n — 1 are taken to be the addition operations, and all o's the 

subtraction, equation (23) reduces to the well-known [19] result for the ANARMA 
case. 
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9. EXAMPLE: NONLINEAR ENGINE MODEL 

Elsewhere, we will report the development of an empirical model for the dynamics 
of an internal combustion engine. The structure chosen for this model is 

yt+A = PlUtyt+2yt+3 + P2V>tU>t+2yt+3 + P3Utyt+2Ut+2yt+3 , x 

(24) 
+PAUt+iyt+2Vt+3 + P^t+lUt+2yt+3 + P6Ut+lUt+2yt+2yt+3 

where the input Uk is the idle-speed air-bleed valve position and the output yk is 
the engine speed in RPM. This model structure was chosen both on the basis of 
certain knowledge about the dynamic behavior of the engine (e.g., the inherent 
time delay in the response to input changes) and because it belongs to the class of 
generalized associative models described here. In particular, one can easily verify 
that condition (17) holds for i = 1, 2, 3, and 4; further, the one-forms are easily 
integrated in this case, from which it follows that the input/output model (24) has 
the structure (14) with f\(yt,ut) = 5ut, f2(yt+\,ut+\) = frt+i, f3(yt+2,^t+2) = 
ayt+2 + (3ut+2 + jyt+2Ut+2, fa(yt+3,ut+3) = kyt+3 where ox is addition and o2 

and o3 are multiplications. The coefficients 5, £, a, (5, 7 and k are related to the 
identified parameters p\,...,p6 via the following equations p\ = 5a, p2 = 5/3k, 
p3 = 5jk, p^ = £a, p5 = C/3 and p6 = C7&- The general result (22) then leads to the 
following choice of state coordinates: 

X\ — Уt 

= 
Уt+\ Уt+\ 

X2 = 
fa(yt,щ) kyt 

Уt+2 
xз = 

Уt+2 

fa(Уt+i,Щ+i)fз(Уt,щ) kyt+i(ayt + ßщ+ШЩ) (25) 

Vt+3 , / x 
^4 = T~7 TT7 T ~ f2\yt,ut) 

f4\yt+2,ut+2)f3(yt+i,ut+i) 

_ vt+3 . 

kyt+2(ot-yt+i + /3ut+i + jyt+iut+i) 

which will yield the state equations 

x+ = kx\x2 

x~2 = ax\x$ +/3xsu + 7X1X3W 

x+ = X4 + CU ( 2 6 ) 

xj = 5u 

y = x\. 
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10. CONCLUSIONS 

This paper has introduced a new class of discrete-time dynamic models, obtained by 
replacing the addition operation with a more general binary operation o, required 
only to be associative, continuous, and cancellative. These requirements then lead to 
a useful, simple representation for the operation o in terms of a continuous, strictly 
monotonic function </>(•). The spirit of this replacement is similar to that of systems 
based on max-plus algebras [4], where the addition and multiplication operations 
on which the standard algebra is based are replaced by the maximum and addition 
operators, respectively. Useful features of the associative system representation de­
scribed here are the existence of a simple, explicit inverse, analytically interesting 
connections with the class of homomorphic systems originally proposed for decon-
volution problems and other related applications, and the possibility of developing 
sufficient conditions for stability. In fact, the associative homomorphic systems rep­
resent a limiting case of the fundamental inequality on which this stability result is 
based (Condition B), raising the question of what other associative systems satisfy 
these conditions. One such system was described here, based on a discontinuous 
function </>(•) that still results in a system that is associative and analytically invert-
ible. Further, this system was also shown to belong to the class of affine multimodels, 
a class of significant interest in process modeling and one closely related to hybrid 
systems [13, p. 292]. 

Finally, in the last section we introduced a class of generalized associative models 
by replacing the addition operations in additive NARMA model with the associative 
binary operators which share some important properties with the addition operation; 
for our purpose the invertibility property (with an inverse operation given explic­
itly) is most useful. This property allows us to construct the state equations directly 
from the generalized associative input-output model, generalizing the subclass of re­
alizable NARMA models. A simple algorithm is given to check whether the class of 
generalized associative models accommodates a higher order input-output difference 
equation used to construct the state-space realization. Although it is easy to check 
this property, it is not always easy to convert the original NARMA equation into 
the form (14), since our algorithm is constructive only up to integrating some one-
forms. Moreover, additional study is necessary to find the functions 4>i that define 
the binary operations. 

The underlying "linear" structure of (14) should lead to simple characterizations 
of observability (note that (21) is the well known observer form), accessibility and 
dynamic feedback linearizability of (14), topics we plan to explore further. 
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