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ON T H E C O M P U T A T I O N 
OF T H E E X A C T D I S T R I B U T I O N 
OF P O W E R D I V E R G E N C E T E S T STATISTICS 

MARCO A. MARHUENDA, YOLANDA MARHUENDA AND DOMINGO MORALES 

In this paper we introduce several algorithms to generate all the vectors in the support of 
a multinomial distribution. Computational studies are carried out to analyze their efficiency 
with respect to the CPU time and to calculate their efficiency frontiers. The proposed 
algorithm is used to calculate exact distributions of power divergence test statistics under 
the hypothesis of uniformity. Finally, several exact power comparisons are done for different 
divergence statistics and families of alternatives to the uniformity hypothesis. 

Keywords: multinomial distribution, algorithms, goodness-of-fit divergence tests, power 
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1. INTRODUCTION 

The problems of goodness of fit to a distribution on the real line, H0 : F = F0, 

are frequently treated by partitioning the range of data in disjoint intervals and by 

testing the hypothesis H0 : p = p° about the vector of parameters of a multinomial 

dis fribution. 

Let {-4i};--:i,...,m be a partition of the real line R into ra intervals. Let p = 

(Pi, • • • ,Pm) and p° = (p i , . . . ,pm) be the true and the hypothetical probabilities of 

the intervals A{, i = 1,... ,ra; in such a way that p{ = F(A{) and.p? = F0(A{). Let 

Y\,..., Yn be a random sample from F and let N{ = N{(YU..., Yn) = YJj=i ^Ai (Yj) 

and pi = Ni/n, i = 1, . . . , ra, be the absolute and relative frequencies of the intervals. 

Cressie and Read [3] (see also Read and Cressie [8]) proposed to test H0 : p = p° 

with the power divergence statistics 

Ttm(Р>Р) = 

2n m 

Y^Pi (1.1) \(PJ\X i =-^—TN- (*Y-
W+^)^yi[\PiJ \ A(A + 1)fe 1 W J 

where -oo < A < oo, and they recommended A = 2/3. In this paper we are mainly 

interested in A = - 2 , - 1 , -1/2,0,2/3,1, i. e. 
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1. Л = -2 (Neymaiťs modified test) 

\2 

1=1 i V í i = l P í 

2. A = - 1 (A -+ -1) (Loglikelihood ratio modified test) 

m / 0 \ m / 0 \ 
T-m(p,P°) = 2 ^ i V , I n ( ^ ) = 2 n ^ p ° l n ( | ) 

3. A = — ^ (Freeman-Tukey's test) 

^ W ) = 8n (l - £ yjtipj = 8n (l - £ ^ ) . 

4. A = 0 (A -> 0) (Loglikelihood ratio test) 

Km<P,P°) = 2±Ntln ( * ) = 2 „ £ > l n ( | ) . 
t=i \nPi/ i = i VPi/ 

5. A = | (Cressie-Read's test) 

T n ^ ( p , p ° ) = ^ ^ i + f : p i ( | ) 2 / 3 ) . 

G. A = 1 (Pearson's x2 test) 

t = l ^ t = l P * 

The continuity criterion is used when A = — 1, —2,0, 0 < p® < 1 and pi = 0, i.e. 
the limits pi -» 0 are taken to obtain the following rules: 

1. If A = - 2 , then {Pi -Pi) is substituted by limx._>0+
 {pi x) = +oo. 

"Pi X 

0 0 

2. If A = - 1 (A -+ — 1), then /r?ln ?- is substituted by lima^n-i- In ^- = +oo. 

3. If A = 0 (A -» 0), then pi In % is substituted by lima^n-i- xlnx = 0. 

A more general family of statistics, containing (1.1) as a particular case, is 

TÍ„(P,P) = ^ | W ( | ) , (1..) 
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where 0 is a real convex function defined on [0, oo), twice continuously differentiable 
in a neighborhood of u = 1, satisfying 0(1) = cj)'(l) = 0, 0"(1) > 0, 00(0/0) = 0 
and 0(/>(u/0) = l im^oo ^ - . Divergences appearing in (1.2) have been introduced 
by Csiszar [4] and Ali and Silvey [2] and extensively studied by Liese and Vajda [6]. 

Cressie and Read [3] proved that T^m(p,p°) - ^ xm-i (*n law) under H0 : p = 
p° for any A E R. Zografos et al [10] proved that T*m(p,p 0) --+ x m - i (-n law) 
under H0 : p = p° for any </> verifying the above cited properties. Therefore if sample 
sizes are large enough one can use the asymptotic quantile Xm-i.i-a* defined by the 
equation P(xm-i < X m - i , i - a ) = 1 - a, to establish the decision rule: "reject H0 

if T$m(p,p°) > Xm - i , i -a"- However, this approximation is not justified for those 
values of m and n for which there are algorithms to calculate efficiently the p-value 
Ppo (r*TO(p>PP) > t) for any observed t of T* m (p > P

0 ) . 

In this paper we introduce several algorithms to generate all the vectors in the 
support of a multinomial distribution. We compare the algorithms to the one pro­
posed by Kulmann [5], we make computational studies to analyze their efficiency 
with respect to the CPU time and to the number of generated vectors and we de­
fine and calculate efficiency frontiers. To obtain exact distributions of tests, we 
restrict ourselves to power divergence statistics T^m(p,p°) in the equiprobable case 
p° = ( 1 / m , . . . , 1/m). In the Appendix, we give the critical values t„ m 1_a for the 
first kind error a = 0.05, m = 4,6,8, n = 1 , . . . ,50 and A = - l /2 , 'o , '2 /3 ,1 . We 
make several exact power comparisons for different power divergence statistics and 
families of alternatives to the uniformity hypothesis. Finally, some recommendations 
about power divergence test statistics are given. 

2. ALGORITHMS TO GENERATE THE VECTORS IN THE SUPPORT 
OF A MULTINOMIAL DISTRIBUTION 

In this section we propose an algorithm to generate the set of vectors 

Am = {xm = (xu..., xm) e[NU {0}]m /x1 + ... + xm=n,neN], 

with cardinal (number of elements in the set) 

Card(Am)=CRm = 
(m + n - l)(m + n - 2) • • • m 

ni 

The proposed algorithm is compared with two recursive algorithms that generate 
supersets of Am and a recursive algorithm that generates the set Am. The first 
two algorithms follow the backtracking and branch-and-bound design techniques 
respectively. The last algorithm is implemented by making a slight modification to 
the second algorithm. 

The backtracking algorithm generates the set 
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with Card(/i m b a c k t r a c k i n g ) = VR™^ = (n + l ) m . The branch-and-bound algorithm 
generates the set 

b r a n c h - a n d - b o u n d = {xm = (xU. . . , Xm) G [_VU{0}]m / Xy + . . . + Xm < n, n G N) 

with Card(Amibranch.and.bound) = CRm+l. 

These two algorithms work similarly. The backtracking algorithm generates re­
cursively the vectors x m , with components X{ G {0,1,. . . ,n}. This algorithm starts 
with the generation of n + 1 vectors by assigning to their first component (i = 1) the 
values n, n — 1, . . . , 1,0, respectively. For each of the n + 1 vectors generated at step 
1, the algorithm generates n + 1 new vectors and assigns to the second component 
(i = 2) the values n, n — 1, . . . , 1,0. This process stops at step m, i. e. when the m 
components of all the generated vectors are assigned. 

The branch-and-bound algorithm assigns to each X{ a value in {0,1,..., r}, where 
r is the difference between n and the sum of the values of the already assigned 
components, i. e, r = n — Ylj<i xj- The algorithm starts with the generation of n +1 
vectors by assigning to their first component (i = 1) the values n,n — 1,... ,0. At 
the second step, the algorithm calculates r for each of the n + 1 generated vectors 
and generates new vectors by assigning to their second component (i = 2) the values 
r, r — 1,..., 0. The process of generating a vector stops when all its components are 
assigned or when the sum of its assigned components is equal to n. In the last case, 
the remaining components of the vector are assigned to 0. The algorithm ends when 
the m components of all the generated vectors have been assigned. 

Note that if we modified the branch-and-bound algorithm by only assigning one 
value, that is r, to the last component of the vector (i = m), we obtain a recursive 
algorithm which generates the set Am. This algorithm is called efficient branch-and-
bound algorithm. 

•Example. Let m = 3 and n = 4. At the beginning r = 4 and the algorithm 
generates the vectors (4, , ), (3, , ), (2, , ), (1, , ), (0, , ). For each of the vectors with 
assigned components not summing up to 4, the algorithm calculates r and assigns 
values from r to 0 to the component i = 2. If r = 0, the algorithm assigns 0 to the 
remaining components. 

(4, 

(3, 

(2, 

(1, 

(0, 

- > r = 4 - 4 = 0-> (4,0,0) 

- > г = 4 - 3 = l - * ( 3 , l , ).(3,0, ) 

^ r = 4 - 2 = 2->(2,2 , ),(2,1, ),(2,0, ) 

- * r = 4 - l = 3 - > (1,3, ), (1,2, ), (1,1, ), (1,0, ) 

-4 r = 4 - 0 = 4 -> (0,4, ), (0,3, ), (0,2, ), (0,1, ), (0,0, ). 

The process is repeated for i = 3. In this case only one value, that is r, is 
assigned to the actual component since the algorithm is in the last position of the 
vector (i = m). 
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(3,1, ) - > r = 4 - ( 3 + l ) = 0 - > (3,1,0) (3,0, ) - > r = 4 - ( 3 + 0) = l - > (3,0,1) 

(2,2, ) - > r = 4 - ( 2 + 2) = 0-> (2,2,0) (2,1, ) - > r = 4 - ( 2 + l) = l - > (2,1,1) 

(2,0, ) - > r = 4 - ( 2 + 0) = 2-> (2,0,2) (1,3, ) - > r = 4 - ( l + 3 ) = 0-> (1,3,0) 

(1,2, ) - > r = 4 - ( l + 2) = l - + (1,2,1) (1,1, ) -> r = 4 - (1 + 1) = 2 -> (1,1,2) 

(1,0, ) - > r = 4 - ( l + 0) = 3 -> (1,0,3) (0,4, ) - > r = 4 - ( 0 + 4) = 0-> (0,4,0) 

(0,3, ) - > r = 4 - ( 0 + 3) = l - > (0,3,1) (0,2, ) - > r = 4 - ( 0 + 2) = 2 - » (0,2,2) 

(0,1, ) - > r = 4 - ( 0 + l) = 3 -> (0,1,3) (0,0, ) - > r = 4 - ( 0 + 0 ) = 4 - > (0,0,4) . 

Finally, we implement an iterative algorithm to generate the set Am. Before 
describing this algorithm, we introduce several concepts in order to define a total 
order relationship on the set Am. This is done by means of functions next and 
previous, which generate the elements of Am in an ordered way. Proofs of results 
presented below are straightforward and can be found in Marhuenda et al [7]. 

Definition 1. Let xm and ym be two elements in Am, then 

(a) xm = ym <=> Xi = yi Vz = 1,2,..., m. 

(b) xm ^ ym <=> 3i G {1 ,2 , . . . , m} such that x{ / y{. 

(c) xm > ym 4=> 3ie {1 ,2 , . . . , m) with x{>y{ and Xj >yj VjG{l ,2 , . . . , z - l } . 

(d) xm > ym <=> xm > ym or xm = ym. 

(e) xm < ym <=> 3ie {1,2, . . . , m } with Xi<y{ and Xj <yj, V , e { l , 2 , . . . ,2-1}. 

(f) xm < ym 4=> xm < ym or xm = ym. 

Note that xm < ym holds when xm > ym does not hold and vice versa. 

Proposition 1. The relation > is a good order in Am, i.e. the reflexive, anti­
symmetric and transitive properties hold, and also 

1. Vzm ,2/m G .4m , xm > ym or ym > xm. 

2. \/Bm C Am, Bm # 0, 3xm e Bm such that ym > xm Vym G Bm. 

The relation < is also a good order in Am. 

Definition 2. The first element, pm, of Am is pm = ( p i , . . . , p m ) , where px = 
...= pm-i =0,pm = n. 

Definition 3. The last element, um, of Am is u m = (w i , . . . ,u m ) , where m = n, 
u2 = ... = um = 0. 
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Corollary 1. The following statements hold. 

1. Let pm be the first element of Am. If xm G Am is such that xm ^ p m , then 

Pm < Xm-

2. Let um be the last element of Am. If xm G Am is such that xm ^ urn, then 
um > xm. 

3. The minimum element of the relation < is pm. 

4. The maximum element of the relation < is um. 

Definition 4. (next function) Let xm = ( x i , . . . ,x m ) G Am such that Xi ^ 0 for 
some i G {1, . . . , m} and Xj = 0 Vj G {i 4- 1, . . . , m}. Suppose that xm ^ ixm (last 
element). We distinguish the following two cases in order to define ym = next(xm) = 
( y i , . . . , < / m ) : 

1. If i < m, then 

Уk 

xk if 1 < k < i - 2 
Xi-i -F 1 if k = i — 1 
0 if i < fc < m - 1 
XІ — 1 if k = m. 

2. If i = m, then 
Xfc ií 1 < k <m — 2 

У* = ^ Zm-1 + 1 1f k = m-l 
xm — 1 if k = m. 

Definition 5. (previous function) Let x m = (x i , . . . , x m ) G _4m such that Xi / 0 
for some i G {1, . . . ,m} and Xj = 0 Vj G {i 4- 1,... ,m}. Suppose that x m ^ pm 

(first element). We distinguish several cases in order to define the components of 
the previous element of x m , ym = previous(xm) = (j/i,... , i/ m ): 

1. If i < m — 1, then 

Уk = < 

z* if 1 < k<i-1 
Xj — 1 if A; = i 
1 if A; = i + 1 
0 if i + 2 < k < m. 

2. If i = m — 1, then 

Уfc = 

a:k if 1 < A ; < m --2 
%rn — 1 - 1 if A; = m — 1 
1 if Ä; = m. 

3. If i = m, x m 7̂  Pm? then 3j G { 1 , . . . , m - 1} such that Xj ^ 0 and x̂  = 0 W G 
{j + 1 m - 1 } . We consider two cases 
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(a) If j < m - 1, then 

Уk = < 

xk if 1 < k < j - 1 
x j — 1 if k = j 
xm + 1 if k = j + 1 
0 if j + 2 < k < m. 

(b) If j = m - 1, then 

Xk if l<Km-2 
yk = { z m _ i - 1 if k = m-l 

xm + 1 if k = m. 

Corollary 2. The following statements hold. 

1. If xm G Am, xm T-- um and ym = next(xm), then ym G Am. 

2. If xm G Am, xm ^ pm and ym = previous(xm), then ym G Am. 

3. If ym = next(xm), then ym> xm. 

4. If ym = previous(xm), then ym < xm. 

5. Let xm,ym G Am, such that ym = next(xm), then ym is the immediate 
successor of xm, that is, ym > xm and flzm G Am such that y m > zm and 

6. Let xm,ym G A m , such that j / m = previous(xm), then y m is the immediate 
predecessor of xm, that is, ym < xm and ^zm G A m such that ym < zm and 

7. Let xm,ym G .Am, then t/m = next(xm) ^=> xm = previous(ym). 

We now describe the iterative algorithm. This algorithm starts with the first 
element pm of Am and generates the remaining elements in Am by applying the 
next function to the last generated element. This process continues until the last 
element um is generated. 

Algorithm can also be applied in a descending order. In this case, the algorithm 
begins with the last element um, it applies the previous function to the last generated 
element and stops when the first element pm is generated. 

Example. Let m = 3 and n = 4. We use the next function to generate the set 
A\. We begin with the first element pm = (0,0,4) and apply the next function to 
the last generated element. The process ends when this function generates the last 
element um = (4,0,0). 
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P„. = (0.0,4) 
next((0,0.4)) = (0,1.3) 
nexr((0,l,3)) = (0,2,2) 
nex(((0.2.2)) = (0,3,1) 
next((0,3,1)) = (0,4,0) 
nex<((0,4,0)) = (1,0,3) 
nexf((l,0,3)) = (1,1,2) 
next((l , l ,2)) = (1,2,1) 

nexť((l,2,l)) = (1,3,0) 
nexí((l,3,0)) = (2,0,2) 
nexí((2,0,2)) = (2,1,1) 
nexř((2,l,l)) = (2,2,0) 
nexí((2,2,0)) = (3,0,1) 
nexí((3,0,l)) = (3,1,0) 
nexť((3,l,0)) = (4,0,0) = ur 

In Figure 1 the flow diagrams corresponding to the iterative algorithm using the 
ascending and descending order are presented. Algorithms have been written in 
standard C and can be found in Marhuenda et al [7]. 

Ascending Descending 

( BEGГN ^ ^ 4 

x ! ( . j г . . <- 0 

Xя 4-П 

1 

Ѓ 

' \л 
JĄ 

' 

T 

/ / 

T 

/ eпrit x. / 

T 

yя *- nexKxJ) 

Xm*-yя 

' 
T 

yя *- nexKxJ) 

Xm*-yя 

1 

S * ^ X 

' 
T 

i L 

CJEL> 

Fig. 1. Flow diagrams corresponding to the iterative 
algorithm with ascending and descending order. 

3. COMPARISONS BETWEEN ALGORITHMS 

In this section, we analyze the efficiency of the algorithms described in the previous 
section in relation to the CPU time that each algorithm uses to generate the set A1^. 
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We calculate the efficiency frontier for the iterative algorithm. 
The four algorithms have been implemented in C and run on a Pentium II 350MHz 

biprocessor workstation with 512MB RAM, under the LINUX operating system. 
The CPU time depends on many factors, such as, the programming language, 

the compilation options and the hardware. Due to the fact that LINUX uses 
multitasking and supports multiple users, the CPU time is the sum of the user 
and system times which have been obtained by using the time command. In ad­
dition, the algorithms have been run 25 times for each m and n and the aver­
age of CPU time calculated. Figure 2 shows the results for m = 5,6 and n = 
5,10,15,20,25,30,35,40,45,50. The CPU time values obtained for the backtrack­
ing and branch-and-bound algorithms are not represented because they are greater 
than the values obtained for the others algorithms. For instance, the CPU times 
obtained for n = 30, m = 5 are 4.04 and 0.08 seconds, respectively. 

10 15 20 25 30 35 40 45 50 

Sample size (n) 

10 15 20 25 30 35 40 45 50 

Sample size (n) 

Fig. 2. CPU time for the efficient branch-and-bound 
and iterative algorithms for m = 5,6 cells. 

Let tm^n be the CPU time that a given algorithm uses to generate all the elements 
in Am. At a level of t0 seconds, its efficiency frontier is defined by the set {(m,nm>to) : 
m = 2 , 3 , . . . } , where 

nmM = max{n G N : tm>n < t0}. 

In Figure 3 the efficiency frontier of the iterative algorithm for 1 second of CPU time 
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(to = 1) and the hardware and operating system described above is presented. 

500 
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S зoo 
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N 
• 250 
o 
"5. 
E 200 i-

<8 
150 

100 

50 

0 
I ІI 

4 5 6 7 8 9 10 11 12 13 14 15 

Number of cells (m) 

Fig. 3. Efficiency frontier of the iterative algorithm for 1 second of CPU time. 

It is interesting to observe that for mi < 7712 

U < fcmi.n ^ r n i , n — l ^ £777,2,n. t m 2 ) n - l -

For instance, the CPU time difference between (m = 14, n = 10) and (m = 14, n = 
11) is 0.183, whereas between (m = 15, n = 10) and (m = 15, n = 11) is 0.350 
seconds. 

4. UNFORMITY TESTS WITH EXACT DISTRIBUTIONS 

In this section, power divergence test statistics T£m(p,p°) are used to test the 
hypothesis HQ : p = p°. Exact quantiles t„m x_a are calculated for the probability 
of first kind error a = 0.05 and for A = ' - 2 , - 1 , - 1 / 2 , 0 , 2 / 3 , 1 . The continuity 
criterion is used when A = — 1, —2,0 and pi = 0, i.e. we take limits pi -» 0 in order 
to evaluate the test statistics. 

The distribution function of T„m = T^m(p,p°) under the null hypothesis H0 : 
p = p° is 

FTrГ,m(p,Po) W = PP° Km(P,P°) <.) = - - - > (TA

m(p,P°) > 0 , 
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where 

Pp° ( r^ | m(p,P°) > t) = Y, PP° {N1=xu..;,Nm = xm), 
(zi,...,xm)eA^>t 

Am,t = { (* i i • • • ,*m) 6 [AT U {0} ] m /x_ + . . . + :rm = n - T ^ f o p 0 ) > t } 

and 

Ppo (N! = XU...,Nm = xm) = ^ — T ( P Ï Г ...(PГ ОY" 
-^1 • • • • -Cm: 

••A The set of upper tail probabilities of T n m is 

U^m = { « € (0,1) : 3t > 0 with Ppo (Tn
A

jm(p,p°) > t) = a} . 

Quantiles tnml_a of T n m are obtained for any a G Unm through the equation 

a = Ppo(T^m(py)>tnymA_a). 

If a G (0,1) - Unm, we consider 

a i = a(n,m, A, a) = max {an G (0, a] : 3t > 0 with Ppo (Tnm(p,p°) > t) = a 0 } , 

so that tnml_ai is defined as the approximate quantile of order a. We calculate 
the approximate quantiles for a = 0.05, m = 2 , . . . , 10, n = 1 , . . . , 50 and the above 
specified A. This process can be divided into four steps: 

Step 1. Generate all the elements xm = (xly... ,xm) of Am by using the iterative 
algorithm and calculate the corresponding probabilities Ppo(x1,... ,xm). 

Step 2. For each xm G Am , calculate the test statistics Tn m with the special con­
siderations for A = —2, —1,0 and pi = 0. 

Step 3. Put T n m and Ppo (x1,..., xm) in increasing order with respect to the values 

0 f T n V ' 

We have used internal and external classification in this step. In the internal 
classification the ordination takes place in the main memory of the computer, where 
it is possible to use random access to the data. In this case, the values of the test 
statistic and the probability of each xm are stored in the main memory. We have 
implemented the quicksort algorithm specified in Aho, Hopcroft and Ullman [1] to 
order the data. This algorithm is recursive and has a complexity in the average case 
of 0(A;log2 fc), where k = Card(Am). 

The external classification is used when there is not enough main memory avail­
able to store the data and secondary storage devices are needed. We have imple­
mented the files intercalation algorithm specified in Aho, Hopcroft and Ullman [1]. 
This algorithm needs \log2(k/£)] repetitions, where k = Card(Am) is the number 
of elements to be ordered and £ is the initial size of an ordered block of data which 
depends on the computer main memory capacity. The complexity of the algorithms 
in the better, worse and average cases has been investigated by Aho, Hopcroft and 
Ullman [1] and Weiss [9]. 



66 M. A. MARHUENDA, Y. MARHUENDA AND D. MORALES 

Step 4. Calculate the approximate quantile tnml_a of order a = 0.05. 

We use randomized tests in order to decide with probability 7* m a the rejection 
of the hypothesis # 0 when the test statistic takes the value tx

 m 1 _ Q . Let <f)(Tnm) 
be a function giving the probability of rejecting # 0 when Tnm is observed. This 
function is defined by the formula 

1 u ^n^m ^ ln,m,l-ai 

Ф(Km) = < -YA if Tx =tx 1 Í4 1) 
ln,m,a lL -Ln,m vn,m,l—a\ \^m±J 

0 if Tnm < tnmì_ai 

a = Epo (ct>(Tx,m)) = lPpo (FA
m > tx^_ai) + 7

A,m,Q • Ppo (TA
m = < m > 1 _ a i ) 

A _ a ~ Pp° [Tn,m > * n , m A - a i ) 

rP° l / ^ m — ln,m,l-a1) 

Using the previous process, approximate quantiles tnml_ai and probabilities 
7n,m,Q a r e calculated for the uniform distribution p° = ( 1 / m , . . . , 1/m), with a = 
0.05,'n = 1, . . . ,50, m = 2 , . . . , 1 0 a n d A = - 2 , - 1 , - 1 / 2 , 0 , 2 / 3 , 1 . In Tables 1-4 of 
the Appendix, computed values for the Freeman-Tukey (A = —1/2), loglikelihood 
(A = 0), Cressie-Read (A = 2/3) and Pearson's \ 2 (A = 1) test statistics and m = 
4,6,8 are presented. The rest of the computed values can be found in Marhuenda 
et al [7]. 

In addition to the memory limitations in Step 3, there are limitations related to 
the maximum size of a file. The operating systems that we have used, SUSE Linux 
6.0 with kernel 2.2.7 and Linux Mandrake with kernel 2.2.13.7, allow a maximum 
size of 2GB (2,147,483,648 bytes) for a file. This value is insufficient to store all the 
values of the test statistics and probabilities calculated for each xm G Am when m 
and n are large. For example, for m = 10, n = 30, the number of elements of the 
set Am, Card(Am), is 211,915,132. The implemented program stores the value of 
the test statistic as a float data type with 4 bytes and the probability as a double 
data type with 8 bytes, so we would need an ordered file of 211,915,132 x (4 + 8) = 
2, 542,981,584 bytes > 2GB. For that reason, Steps 1-3 have been slightly modified. 
If p° = ( 1 / m , . . . , 1/m), the function g(p) = Tnm(p,pQ) is not one to one, i.e. there 
are sets { p , , . . . ,p8) of probability vectors such that g(px) = . . . = g(p8). In this 
case, we only store the values of the test statistics which are different, and their 
corresponding total probabilities. 

Although we have calculated the quantiles tnml_a and the probabilities 7^>rTl|a 

for the equiprobable distribution, the program is able to calculate quantiles and 
probabilities for nonequiprobable distributions since the whole set Am is generated. 
This fact is relevant when calculating exact powers in Section 5. The algorithm 
introduced by Kulmann [5] only calculates the different partitions of a number n 
in a vector of m positive natural numbers so that their sum equals to n and con­
siders that two partitions are equal if they differ only in the order of the numbers. 
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This assumption reduces significantly the .operations, but it can be only applied to 
equiprobable distributions. 

5. EXACT POWERS OF TESTS 

Let p = (P i , . . . ,Pm) be a probability vector. The exact power function of test 
0(Tn

A
)m), defined in (4.1), is 

/5* m(f>) =- Ep {<t>(Tlj) = I'Pp ( T * m > < m > 1 _ J + 7 i U , c / P P K m = t n , m . l - a _ ) • 

In this section, we calculate the exact powers of the tests (4.1) and the inef­
ficiencies for different families of alternatives to the uniformity hypothesis H0 : 
p = p 0 , with p° = (1 /m, . . . ,1/m). The power divergence statistics for A = 
- 2 , - 1 , - 1 / 2 , 0 , 2 / 3 , 1 , 2 , are considered for m = 6, n = 30,42, a = 0.05 and five 
families of alternatives. 

The first family is 

m—1—ô if i = 1 , . . . ,m — 1 
PY = \ ^ (5.1) 

{ 1±4 if t = m, 
v 771 ' 

where —l<5<m — l. Probability vectors p1,<5 of this family are calculated by 
adding -^ to pm = ^-, while the rest are adjusted so that they still sum to one. The 
following values of <!f are considered: 5 = -1.00, -0.98, -0.97, -0.95, -0.90, -0.80, 
-0.60, -0.30, 0.00, 0.50, 1.00, 1.50, 2.00, 2.25, 2.50, 2.75, 3.00. 

The second family is 

m-2-2<5 if i = 1 , . . . ,m — 2 
pY = \ ^ - 2 ) (5.2) 

{ -±-. if i = m-l,m, 

where — 1 < S < mf^- Probability vectors p2's of this family are calculated by adding 
— to pm = p<

m_i = —, while the rest are adjusted so that they still sum to one. The 
following values of (Tare considered: S = -1.00, -0.98, -0.97, -0.95, -0.90, -0.80, 
-0 .60, -0 .30, 0.00, 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00. 

The third family is 

i Ш— if i = i . . . . , m - i 
, , J m m-(m-l) ( g 3 ) 

1 l±i if * = m, 

w here - 1 < S < m/2. Probability vectors p3's of this family are calculated 
by adding £ to p°m = i and a ^ to p?, i = l , . . . , m - 1, and calculating a 
so that they still sum to one. The following values of 5 are considered: S = 
-1 .00 , -0 .98 , -0 .97 , -0 .95 , -0 .90 , -0 .80 , -0.60,-0.30, 0.00, 0.50, 1.00, 1.50, 2.00, 
2.25, 2.50, 2.75, 3.00. 
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The fourth family is 

4ІÔ if i = 1 , . . . ,m — 2 4,<5 I m m(m-l)(m-2) . . 

I -±- if i = m- l ,m, 

where - 1 < J < i n ^ - . Probability vectors p4'5 of this family are calculated by 
adding £ to p°, = p°,_. = i and a ^ to p?, t = l , . . . , m - 2, where a is 
selected so that Yl'iLi Pi' ~ L The following values of (5 are considered: 5 = 
-1 .00 , -0 .98 , -0 .97 , -0 .95 , -0 .90 , -0 .80 , -0 .60, -0 .30, 0.00, 0.25, 0.50, 0.75, 0.90, 
1.00, 1.10, 1.20, 1.25. 

The fifth family is 

f I _ M if i = l m. 

"' = U + s if. .=*+......-, (55) 

where —1/2 < (̂  < 1/2. Probability vectors p5,s of this family are calculated by 
splitting the set of cells in two and by adding or subtracting 28/m to the p\' 's of 
first or second subset respectively. Here, 5 = 0.00, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 
0.35, 0.40, 0.45, 0,50 are the values under consideration. 

The maximum power of the family / in the alternative 6 is 

Pm**(n,m,pf'6) = max {P^m(pf's)} . 

The inefficiency of the test T„m for the family / in the alternative 6 is 

in,m(pf'5A) = (3m*x(n,m,pf's) - ^m(pf's). 

The maximum inefficiency of the test T„ m for the family / is 

imax(n,m,/,A) = max {in,m(pf'S, A)} . 
s 

In Table 1, we present, for the five considered families, the number of times that 
each statistic can be recommended. These quantities are obtained by counting the 
three smallest imaxv^ra, / . A) for m = 6 and n = 30,42. The intermediate tables 
with the computed values of the powers and inefficiencies can be found in Marhuenda 
et al [7], 

From Table 1, we can give the following recommendations on which power diver­
gence tests one should use for / = 1 , . . . , 5, m = 6 and n = 30,42: 

• A = - 1 , - 1 / 2 , 0 for the families (5.1),(5.3), 

• A = 0,2/3,1 for the families (5.2),(5.5), 

• A = - 1 / 2 , 0 , 2 / 3 , 1 for the family (5.4), 
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so tha t A = —1/2 ,0 ,2 /3 ,1 are the most frequently recommended values. 

In Table 2, we present the sum of inefficiencies _Cn=30 42 -C/=i W x ( ^ ) ^ , / , A), 
for m = 6 and each considered A. Best results are obtained for A = — 1 , —1/2 ,0 ,2 /3 . 
Finally, we observe tha t power divergence statistics with A = —1/2 ,0 ,2 /3 are rec­
ommended with both criteria. 

Table 1. Number of times that we recommend each A 
for / = 1 , . . . , 5, m = 6 and n = 30,42. 

A (5.1) (5.2) 
Family 

(5.3) (5.4) (5.5) Total 
- 2 0 
- 1 2 2 4 

- 1 / 2 
0 

2 
2 2 

2 
2 

1 
2 2 

5 
10 

2/3 
1 

2 
2 

2 
1 

2 
2 

6 
5 

2 0 

Table 2. Sums Cn=30,42 -E/=i w ( n , m, / , A) 

for m = 6 and each A. 

A = - 2 A = - l A = - 1 / 2 A = 0 A = 2/3 A = l A = 2 

1.76186 1.25244 0.93686 0.61648 1.59248 2.12815 3.37238 

(Received November 12, 2001.) 
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APPENDIX 

Tables wi th * = t^mfi,95 , q = ^ , m . , , 7 = 7n.m.o.05 

Table 1. Freeman-Tukey's test (A = -1/2) for a = 0.05 and p° = (1/m,. . . , 1/m) 

I"n^/2(P,P) = 8n ( l - £ ™ , \ l w ) , Qn^t = Ppo(T-lJ\p,P°) > 0-

m 4 6 8 

n t Я 7 t Я 7 t Я 7 

1 

2 

3 10.343145 .027778 .053333 12.172817 .015625 .104762 

4 10.143594 .015625 .183333 14.154319 .004630 .490000 16.545187 .001953 .878571 

5 13.167184 .003906 .786667 17.022934 .020062 .776000 16.396439 .025879 .235238 

6 14.547675 .018555 .715556 16.000000 .020062 .776000 19.273838 .025879 .313651 

7 11.169670 .046387 .117460 17.856834 .015775 .760381 18.583426 .049911 .003156 

8 11.388070 .033569 .267063 19.396900 .036280 .914476 20.686291 .025378 .585438 

9 12.382575 .038055 .258862 16.638773 .039781 .378413 22.544155 .033965 .677815 

10 13.768396 .034348 .542751 18.032267 .041989 .854273 23.717913 .046451 .360089 

11 13.763933 .040442 .361573 18.866249 .029978 .727918 21.729162 .045246 .292310 

12 14 750144 .032385 .888446 19.835539 .046651 .292241 23.355839 .041045 .880924 

13 14.848555 .043923 .282925 20.223293 .044391 .564673 24.165394 .046944 .367907 

14 15.950030 .035229 .982410 18.567375 .049695 .276108 25.105490 .047232 .718274 

15 16.427786 .036366 .967240 17.417574 .047839 .783221 22.654919 .049159 .387955 

16 9.372583 .049207 .118098 17.293797 .048288 .310222 22.467934 .049831 .023331 

17 9.138135 .045019 .582028 17.457148 .049193 .619598 23.459345 .045388 .800825 

18 8.776540 .044549 .636988 17.909870 .042137 .718459 23.880388 .042413 .878349 

19 8.919504 .045445 .522889 18.338568 .047260 .885368 24.365887 .049974 .026494 

20 8.850932 .043494 .768186 18.533375 .048647 .281070 24.652370 .047747 .527067 

21 9.25 1921 049871 .286302 18.729479 .048421 .491944 24.587753 .049153 .532693 

22 9.153990 .047480 .641225 18.765167 .048293 .483542 23.009394 .049814 .526356 

23 9.265980 .049365 .173985 19.034439 .047189 .830866 21.582781 .049109 .527600 

24 9.590574 .046720 .979581 19.255266 .047752 .797261 21.621170 .048502 .788311 

25 8 722542 .047371 .658219 19.055866 .049291 .582151 21.455919 .048973 .327600 

26 8.511540 .049017 .462688 18.633085 .049721 .117575 21.612207 .049767 .144514 

27 8.676909 048903 .477882 15.056806 .049860 .528413 21.842281 .049012 .297856 

28 8.523068 .047114 .592814 14.050842 .049538 .534529 21.999659 .049629 .878186 

29 8.724597 .049079 .574114 13.343666 .049696 .698018 22.028124 .049859 .087458 

30 8.658084 .047548 .518684 12.916054 .049753 .301181 22.131367 .049104 .312091 

31 8.771932 .049280 .613369 12.868749 .049012 .769778 22.310320 .049691 .330227 

32 8.513114 .049170 .368207 12.692142 .049930 .228703 22.285005 .049875 .240574 

33 8.494273 .018209 .606776 12.647284 .049977 .093743 22.200830 .049423 .991222 

34 8 391171 .049888 035789 12.550234 .049974 .059112 22.145418 .049934 .072150 

35 8.471379 .048041 .951717 12.572437 .049726 .665249 22.134418 .049137 .841801 

36 8.298555 049701 .085663 12.575457 .049146 .670702 21.937300 .049996 .839647 

37 8.492036 .048903 .339488 12.536434 .049497 .384135 21.668766 .048973 .728959 

38 8.531345 .048074 .878246 12.592931 .049684 .360248 21.015249 .049723 .425235 

39 8 186401 .048587 .576924 12.654531 .049865 .956881 19.140820 .049880 .797557 

40 8. П 1301 .047801 .987364 12.565123 .049758 .941215 17.918610 .049907 .839036 

41 8 384149 .048022 .866767 12.544221 .049535 .655761 17.310171 .049990 .229544 

42 8 312694 .048512 .605419 12.536637 .049805 .249698 16.983387 .049564 .901004 

43 8 282926 .049330 .458033 12.359401 .049960 .271974 16.595560 .049969 .123265 

44 8 466223 .049047 .807623 12.266216 .049982 .110829 16.408812 .049821 .878964 

45 8 353590 .048886 .641447 12.176671 .049799 .542256 16.239330 .049951 .219711 

46 8 185480 .049404 .440935 12.169446 .049700 .468714 16.175310 .049975 .153847 

47 8 251279 .049434 .427856 12.093030 .049895 .695503 16.056660 .049690 .516541 

48 8.323591 .049463 .946299 12.058262 .049937 .189933 16.021381 ..049928 .292185 

49 8 230300 049105 .627887 12.063498 .049800 .450911 15.960017 .049742 .653673 

50 8 404796 .049593 .731914 12.096867 .049971 .176057 15.875415 .050000 .001003 
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Table 2. Loglikelihood ratio test (A = 

T ° m ( P , p ) = 2n £ " , £ In ( | ) 

0) for а = 0.05 and p° = (í/m,..., 1/тn) 

, q°n,m,t = Pp°(TІm(p,p°)>t). 

m 4 6 8 

n t Я 7 t Я 7 t Я 7 

1 

2 

3 6.931472 .027778 .053333 8.657564 .015625 .104762 

4 6.591674 .015625 .183333 9.835395 .004630 .490000 12.136851 .001953 .878571 

5 8.858919 .003906 .786667 11.187478 .020062 .776000 11.291710 .025879 .235238 

6 8.997362 .018555 .715556 11.090355 .020062 .776000 12.816447 .025879 .313651 

7 8.259758 .046387 .117460 11.704834 .015775 .760381 12.959794 .049911 .003156 

8 7.776613 .033569 .267063 12.032619 .036280 .914476 13.862944 .025378 .585438 

9 8.089309 .038055 .258862 11.568596 .039781 .378413 14.515438 .033965 .677815 

10 8.858919 .037094 .447513 11.964197 .041989 .854273 14.404097 .047765 .141723 

11 8.610156 .041386 .325859 12.123654 .030633 .704108 14.633574 .045246 .292310 

12 8.997362 .036948 .658288 12.136851 .049434 .049384 15.222136 .041278 .858067 

13 9.217709 .045457 .986983 12.626974 .043871 .822739 15.469584 .047935 .937536 

14 9.109803 .044268 .381219 12.824656 .038820 .964788 15.334577 .046927 .797243 

15 9.091181 .049638 .089885 12.374017 .048706 .549137 15.459301 .046646 .742621 

16 9.051566 .049207 .118098 12.295287 .047739 .702443 15.414783 .049895 .362658 

17 8.349522 .047872 .248695 12.287928 .041578 .808005 15.419436 .048069 .335368 

18 8.089309 .047758 .261988 11.966402 .048958 .166544 15.534832 .046317 .426350 

19 7.895985 .048494 .172889 12.213305 .049541 .111306 15.677502 .045746 .565481 

20 7.960445 .049140 .236878 12.158443 .049479 .116521 15.714861 .048914 .357362 

21 8.237560 .045246 .748400 12.222190 .049573 .665637 15.790620 .048528 .655990 

22 7.878248 .046792 .459174 12.146267 .049426 .623931 15.632663 .049125 .638428 

23 8.223836 .047881 .421989 12.390699 .046786 .712544 15.558018 .048271 .805148 

24 8.317766 .045291 .658410 12.191055 .049103 .715715 15.557030 .048612 .730240 

25 8.376768 .047225 .694686 12.188744 .048399 .817770 15.585126 .049496 .495564 

26 8.413756 .046502 .942946 12.070373 .049868 .717257 15.488575 .048953 .697575 

27 8.038909 .049144 .205143 12.055545 .048791 .582495 15.283076 .049716 .550158 

28 7.924864 .048117 .902464 12.014827 .049649 .181110 15.254371 .049843 .198520 

29 8.026070 .049714 .075732 12.018681 .049577 .541749 15.324442 .049567 .488014 

30 8.030598 .048446 .457810 11.895776 .049423 .552595 15.409772 .049929 .174156 

31 8.120552 .048904 .352578 11.858018 .049782 .921822 15.344414 .049849 .974906 

32 8.043770 .047571 .745938 11.796326 .048740 .657929 15.378973 .049308 .730041 

33 8.003992 .049294 .239276 11.734163 .049311 .558682 15.248160 .049816 .680258 

34 7.986678 .049329 .240171 11.527147 .049952 .081610 15.272035 .049832 .542859 

35 7.974287 .048392 .586010 11.573995 .049596 .712986 15.250461 .049480 .255770 

36 7.983791 .049131 .690909 11.505684 .049692 .604079 15.216360 .049971 .097273 

37 8.012158 .048076 .808538 11.439818 .049416 .391334 15.184706 .049914 .194920 

38 7.973851 .049901 .043146 11.452411 .049840 .332598 15.128876 .049764 .580898 

39 8.091228 .047968 .979074 11.465799 .049947 .743498 15.086462 .049928 .183207 

40 8.084802 .048452 .753071 11.418536 .049968 .084939 15.033144 .049736 .746625 

41 7.911872 .048590 .669389 11.461734 .049848 .382713 15.063690 .049426 .922672 

42 8.035414 .048800 .638322 11.467292 .049902 .262389 14.971709 .049751 .799506 

43 8.009272 .049770 .247840 11.448422 .049630 .519989 14.944547 .049941 .175378 

44 7.964378 .049258 .392860 11.480868 .049859 .528743 14.884252 .049768 .817939 

45 8.030094 .048745 .709273 11.455256 .049862 .498734 14.875436 .049809 .781321 

46 7.977850 .048940 .641756 11.430017 .049722 .530468 14.815397 .049976 .154592 

47 7.989554 .049566 .527617 11.435036 .049904 .835209 14.793161 .049984 .277725 

48 7.867796 .049089 .539786 11.404029 .049997 .006885 14.738991 .049765 .803814 

49 7.903203 .049127 .565515 11.403136 .049811 .828221 14.724584 .049951 .491432 

50 7.942816 .049965 .023293 11.394898 .049600 .928820 14.668654 .049994 .074359 
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Tab le 3 . Cressie-Read's test (A = 2/3) for a = 0.05 and p° = ( 1 / m , . . . , 1/m) 

T^(p.p°) = §n (-1 + E n , p, ( | ) 2 / 3 ) , ql%, = Ppo(Tn
2£(p,p0) > 0-

ГU 4 6 8 

n t Я 7 t Я 7 t Я 7 

1 

2 

3 6.528753 .027778 .053333 9.050655 .015625 .104762 

4 5.832453 .015625 .183333 9.877344 004630 .490000 13.487729 .001953 .878571 

5 8.186238 .003906 .786667 10.137-394 .020062 .776000 11.290510 .025879 .235238 

6 7.406685 .018555 .715556 10.942863 .020062 .776000 11.910490 .025879 .313651 

7 8 000628 .020752 .950794 10.551720 .015775 .760381 13.134787 .033089 .603156 

8 6.912071 .033569 .267063 10.011272 .048282 .114476 13.057507 .025378 .585438 

9 6.716119 .045746 .092196 10.578651 .048449 .103365 12.802979 .040273 .411148 

10 7.564440 .037094 .895026 10.373855 .044490 .587606 13.790803 .034512 .785600 

11 7.931182 044785 .657624 10.283494 .039801 .370775 13.636891 .036541 .827495 

12 7.013424 .048278 .086859 10.332763 .046640 .244328 13.199595 .045509 .441770 

13 7.523954 .044076 .643491 10.181168 .048518 .716146 13.337181 .046960 .230065 

14 7.778836 .049638 .056178 10.678773 .043648 .548121 13.565905 .043765 .808825 

15 7.493391 045611 .290636 10.653409 .049530 .438282 13.723774 .039507 .968004 

16 7.484338 .048715 .106351 10.766731 .046698 .448725 13.684767 .045520 .619943 

17 7.808631 .044258 .670917 10.850686 .046429 .342589 13.540236 .048670 .779485 

18 7.752148 .045904 .478655 10.823076 .048405 .408138 13.495740 .048295 .493338 

19 7.785254 .044719 .519619 10.687827 .049376 .252176 13.587867 .049690 .543163 

20 7.648801 .049140 .236878 10.799223 .049810 .069042 13.529696 .049395 .177055 

21 7.878604 .049652 .130390 10.826941 .049241 .315334 13.775753 .048778 .762274 

22 7.682781 .048570 .292326 10.728228 .049041 .760598 13.635578 .049392 .394127 

23 7.656865 .048200 .281563 10.908513 .049858 .363168 13.715158 .047438 .808774 

24 7.618271 .049795 .037369 10.888792 .049747 .269601 13.695527 .048946 .443755 

25 7 534925 .048119 .282562 10.942719 .048991 .751788 13.822061 .048455 .936420 

26 7.892993 .048350 .800463 10.801972 .049391 .538145 13.693143 .049320 .905970 

27 7 592125 .049678 .077167 10.829724 .049581 .824008 13.771963 .049309 .668310 

28 7.721592 .048605 .343734 10.899413 .048316 .709148 13.850690 .049184 .600990 

29 7.781187 .048130 .635831 10.849152 .049961 .035938 13.779480 .049884 .875878 

30 7.841252 .046916 .706769 10.918189 .049882 .325992 13.821280 .049144 .596520 

31 7.701287 046909 .994414 10.938743 .049187 .644592 13.793759 .049738 .880784 

32 7.730276 .049353 .200826 10.932748 .049936 .214083 13.829432 .049969 .136098 

33 7.804358 .047167 .914029 10.925865 .049586 .894991 13.827413 .049789 .322664 

34 7.719558 .049049 .340171 10.983096 .049130 .587357 13.865377 .049846 .957221 

35 7.747585 .048803 .791066 10.884257 .049963 .066188 13.873819 .049643 .527057 

36 7.633397 .048405 .608779 10.896913 .049518 .557844 13.852202 .049898 .943450 

37 7.924823 .048617 .518706 10.929515 .049677 .338922 13.854171 .049934 .726282 

38 7 773402 049638 .113486 10.966085 .049690 .686060 13.865868 .049851 .209291 

39 7.873756 .047541 .947969 10.938794 .049745 .278796 13.904302 .049869 .481266 

40 7.665894 .048432 .604644 10.921140 .049869 .542582 13.892484 .049846 .678665 

41 7.720559 .049119 .418084 10.935411 .049933 .158188 13.896460 .049717 .731081 

42 7.703407 .049215 .371144 10.966731 .049607 .623283 13.903949 .049691 .780230 

43 7.581584 .049638 .218957 10.911161 .049919 .143260 13.930799 .049687 .935567 

44 7.830615 048318 .917993 11.005397 .049880 .238871 13.895043 .049964 .184122 

45 7.665408 .049341 .328786 10.970819 .049995 .182353 13.922244 .049944 .153918 

46 7.708618 .049825 .186054 10.986230 .049683 .825477 13.910903 .049928 .436694 

47 7.767457 .049327 .812295 10.997293 .049834 .793914 13.910409 .049999 .003250 

48 7.772820 .048273 .989889 10.977602 .049913 .691843 13.901153 .049894 .600499 

49 7.843343 049928 .103639 10.963706 .049888 .422450 13.921712 .049957 .489680 

50 7.807927 .049970 .015698 10.987567 .049968 .466902 13.943146 .049899 .717789 
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Table 4. Pearson's \2 test (A = 1) for a = 0.05 and p° = (1/m, . . . , 1/m) 

Tlm(p,p) = n Y X : ^ f ^ , «i.m,t = Ppo(r . . , m (p,p 0 ) > t) . 

m 4 6 8 

n t 7 t Я 7 t Я 7 

1 

2 

3 7.000000 .027778 .053333 10.333333 .015625 .104762 

4 6.000000 .015625 .183333 11.000000 .004630 .490000 16.000000 .001953 .878571 

5 8.600000 .003906 .786667 10.600000 .020062 .776000 12.600000 .025879 .235238 

6 7.333333 .018555 .715556 12.000000 .013632 .808000 12.666667 .025879 .313651 

7 8.428572 .020752 .950794 11.000000 .015775 .760381 14.714286 .021873 .716540 

8 7.000000 .033569 .267063 10.000000 .048282 .114476 14.000000 .019771 .634210 

9 6.555555 .045746 .092196 10.333333 .048449 .064603 13.222222 .040273 .411148 

10 7.600000 .037094 .895026 10.400000 .040322 .268453 14.000000 .034512 .633549 

11 7.545455 .044785 .657624 10.272727 .040718 .337442 14.454545 .027506 .889104 

12 7.333333 .048278 .101336 11.000000 .032887 .622164 13.333333 .042121 .264240 

13 7.615385 .037940 .786095 10.538462 .038585 .383066 13.461538 .043485 .334827 

14 7.714286 .045879 .289590 10.857142 .038461 .574466 13.428572 .045307 .187331 

15 •7.666667 .037556 .823969 11.000000 .041804 .663786 13.266666 .049275 .032838 

16 7.500000 .043345 .381320 11.000000 .035861 .794477 14.000000 .037668 .673599 

17 7.705883 .039979 .501822 10.882353 .040657 .553865 13.588235 .045595 .295591 

18 7.777778 .038935 .940321 10.666667 .046096 .230468 14.000000 .039982 .642410 

19 7.736842 .045058 .547072 11.000000 .038573 .734003 13.421053 .047959 .111137 

20 7.600000 .041518 .453763 10.600000 .047928 .150266 13.600000 .045306 .278618 

21 7.761905 .047384 .980730 10.714286 .048079 .167210 13.666667 .045908 .282981 

22 7.454545 .047901 .093075 10.727273 .046125 .318871 13.636364 .047399 .205792 

23 7.782609 .038623 .951941 10.652174 .049686 .037391 13.521739 .049324 .049585 

24 7.666667 .046440 .419270 11.000000 .043883 .628879 14 000000 .042218 .826297 

25 7.800000 .040700 .850255 10.760000 .049569 .062358 13.720000 .047581 .229415 

26 7.846154 .043324 .955879 10.923077 .044137 .640989 14.000000 .043383 .733981 

27 7.814815 .045704 .832790 11.000000 .044427 .768729 13.592592 .049740 .024260 

28 7.714286 .042224 .557166 11.000000 .043956 .685813 13.714286 .047896 .224410 

29 7.827586 .043801 .893513 10.931034 .046545 .553397 13.758620 .047252 .275095 

30 7.866667 .043373 .764272 10.800000 .048479 .201324 13.733334 .047841 .203995 

31 7.838710 .044059 .839473 11.000000 .045483 .791099 13.645162 .049426 .055669 

.32 7.750000 .045698 .404564 11.125000 .042300 .927666 14.000000 043735 .680280 

33 7.606061 .047574 .212773 10.818182 .048589 .249217 13.787879 .047860 .237338 

34 7.647059 .046833 .300731 10.823529 .047924 .272691 14.000000 .043997 .638764 

35 7.857143 .046292 .789319 10.771428 .049294 .084597 13.685715 .049785 .023796 

36 7.777778 .046170 .805722 11.000000 .046182 .748835 13.777778 .047956 .222905 

37 7.864865 .046941 .940596 10.837838 .047228 .315433 13.810811 .048097 .249641 

38 7.894737 .045984 .900966 10.947369 .046488 .535362 13.789474 .049127 .124379 

39 7.666667 .047339 .310966 11.000000 .045951 .756871 14.128205 .043100 .966376 

40 7.600000 .049007 .475304 11.000000 .046673 .615011 14.000000 .045844 .666702 

41 7.682927 .048318 .298748 10.951220 .046159 .517527 13.829268 .048323 .241678 

42 7.714286 .047691 .287899 10.857142 .048515 .233332 14.000000 .046072 .702845 

43 7.697674 .048747 .423898 11.000000 .046058 .611585 14.116279 .044133 .988541 

44 7.818182 .045114 .588394 10.818182 .049650 .061359 13.818182 .049413 .095956 

45 7.711111 .048036 .453403 10.866667 .048249 .224987 13.844444 .048509 .227613 

46 7.739130 .045524 .466421 10.869565 .049427 .103503 13.826087 .048577 .198444 

47 7.893617 .044238 .953176 11.085107 .044938 .827899 14.106383 .044566 .979756 

48 7.833333 .044888 .876154 11.000000 .046089 .714979 14.000000 .046042 .634219 

49 7.734694 .048767 .668371 11.122449 .044512 .998418 13.857142 .048931 .186157 

50 7.920000 .047329 .681044 10.960000 .047832 .450042 14.000000 .046267 .621153 
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