Kybernetika

Marco A. Marhuenda; Yolanda Marhuenda; Domingo Morales
On the computation of the exact distribution of power divergence test statistics

Kybernetika, Vol. 39 (2003), No. 1, [55]--74

Persistent URL: http://dml.cz/dmlcz/135508

Terms of use:

© Institute of Information Theory and Automation AS CR, 2003

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
O digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/135508
http://project.dml.cz

KYBERNETIKA — VOLUME 39 (2003), NUMBER 1, PAGES 55-74

ON THE COMPUTATION
OF THE EXACT DISTRIBUTION
OF POWER DIVERGENCE TEST STATISTICS

MARCO A. MARHUENDA, YOLANDA MARHUENDA AND DOMINGO MORALES

In this paper we introduce several algorithms to generate all the vectors in the support of
a multinomial distribution. Computational studies are carried out to analyze their efficiency
with respect to the CPU time and to calculate their efficiency frontiers. The proposed
algorithm is used to calculate exact distributions of power divergence test statistics under
the hypothesis of uniformity. Finally, several exact power comparisons are done for different
divergence statistics and families of alternatives to the uniformity hypothesis.
Keywords: multinomial distribution, algorithms, goodness-of-fit divergence tests, power
divergence statistics, chi-squared tests, power comparisons
AMS Subject Classification: 62G10, 62Q05

1. INTRODUCTION

The problems of goodness of fit to a distribution on the real line, Hy : F' = Fp,
are frequently treated by partitioning the range of data in disjoint intervals and by
testing the hypothesis Hp : p = p° about the vector of parameters of a multinomial
distribution.

Let {A;}i=1,..,m be a partition of the real line R into m intervals. Let p =
(p1,-..,pm) and p° = (p?,...,p%) be the true and the hypothetical probabilities of
the intervals A;, i = 1,...,m; in such a way that p; = F(A;) and.p) = Fy(4;). Let
Yi,...,Y, be arandom sample from F and let N; = Ni(Y1,...,Yy) = Z?=1 I4,(Y;)
and p; = N;/n,i = 1,...,m, be the absolute and relative frequencies of the intervals.

Cressie and Read [3] (see also Read and Cressie [8]) proposed to test Ho : p = p°
with the power divergence statistics

Tﬁ\,m(ﬁap):
=,\(,\+1)§”"[(;;> _1]’,\(,\+1);N’[<npi) 1, @1

where —0o < A < 00, and they recommended A = 2/3. In this paper we are mainly
interested in A\ = —2,—-1,-1/2,0,2/3,1,i.e.

o6 M.A. MARHUENDA, Y. MARHUENDA AND D. MORALES

1. A = —2 (Neyman’s modified test)

m 0 2 m 0 2
Y N
Tn,rzn(papo) = E () =n (=) .

i=1 i=1

2. A= -1 () = —1) (Loglikelihood ratio modified test)
Tt 3.0 =25 N (P2) —on' S p0mn (2
am(DyP) = ; i in TVT = Tl;pi n E .

3. A= —1 (Freeman-Tukey’s test)

T Y5, pO)—8n<1—Z\/T> “8"(1“i\/’%)

1

4. A =0 (A = 0) (Loglikelihood ratio test)

m m R
~ N; N ;

Tr?,m(p»po) =2 E N,‘ In () =2n E i In (P_()) .
i=1 i

i=1 Tlp? p;

5. A= % (Cressie—Read’s test)
R 9 m R I’)\ 2/3
T2/3(,p°) = =n [-1 (B .
%) = zn | =143 B (1
6. A =1 (Pearson’s x? test)

~ - (N; ‘npi)2 - (Pi“Pi
1% =3 Wil 5 Bl

i=1

The continuity criterion is used when A = —1,-2,0, 0 < p? < 1 and p; = 0, i.c.
the limits p; — 0 are taken to obtain the following rules:

L If A = -2, then 2220 s substituted by lim, o Z57° = 400,
2. If A= -1 (A —> —1), then poln 0 is substituted by lim _,¢+ In ’—;2 = +o00.

3. If A =0 (A — 0), then p;In ’:7; is substituted by lim,_,¢+ zlnz = 0.

A more general family of statistics, containing (1.1) as a particular case, is

TS n(P,p) = d>"(1 sz () : (1.2)

On the Computation of the Exact Distribution of Power Divergence Test Statistics 57

where ¢ is a real convex function defined on [0, 00), twice continuously differentiable
in a neighborhood of u = 1, satisfying ¢(1) = ¢'(1) = 0, ¢"(1) > 0, 04(0/0) = 0
and 0¢(u/0) = lim, ﬂuﬂ Divergences appearing in (1.2) have been introduced
by Csiszdr [4] and Ali and Silvey [2] and extensively studied by Liese and Vajda [6].

Cressie and Read (3] proved that T, (9,p°) — x2,_, (inlaw) under Hy : p =

n—oo

p° for any A € R. Zografos et al [10] proved that T;¢ . (P, p°) =2 Xt (in law)
under Hy : p = p° for any ¢ verifying the above cited properties. Therefore if sample
sizes are large enough one can use the asymptotic quantile X?n—l,l—on defined by the
equation P(x2,_; < X%,_1.1_o) = 1 — @, to establish the decision rule: “reject Hy
if T2, (B,p°) > X2—1.1_o”- However, this approximation is not justified for those
values of m and n for which there are algorithms to calculate efficiently the p-value
Ppo (T ,,(P,p°) > t) for any observed t of T¢, (P, p°).

In this paper we introduce several algorithms to generate all the vectors in the
support of a multinomial distribution. We compare the algorithms to the one pro-
posed by Kulmann [5], we make computational studies to analyze their efficiency
with respect to the CPU time and to the number of generated vectors and we de-
fine and calculate efficiency frontiers. To obtain exact distributions of tests, we
restrict ourselves to power divergence statistics T,i‘,m(ﬁ, p°) in the equiprobable case
p° = (1/m,...,1/m). In the Appendix, we give the critical values t}, .. ,_, for the
first kind error a = 0.05, m = 4,6,8, n = 1,...,50 and A = —1/2,0,2/3,1. We
make several exact power comparisons for different power divergence statistics and
families of alternatives to the uniformity hypothesis. Finally, some recommendations

about power divergence test statistics are given.

2. ALGORITHMS TO GENERATE THE VECTORS IN THE SUPPORT
OF A MULTINOMIAL DISTRIBUTION
In this section we propose an algorithm to generate the set of vectors
A" = {xpy = (T1,...,Zm) € [NU{O}]"/ 21 +... + Tm =n,n € N},
with cardinal (number of elements in the set)

(m+n-1)(m+n-2)---m
n! '

Card (A7) =CRy, =

The proposed algorithm is compared with two recursive algorithms that generate
supersets of A", and a recursive algorithm that generates the set A7.. The first
two algorithms follow the backtracking and branch-and-bound design techniques
respectively. The last algorithm is implemented by making a slight modification to
the second algorithm.

The backtracking algorithm generates the set

A::l,backtracking = {.’Em = (z’l’ R ,:Em) € [{O’ s ’n}]m: "EN}

o8 M.A. MARHUENDA, Y. MARHUENDA AND D. MORALES

with Card (A}, packeracking) = Vg1 = (n+1)™. The branch-and-bound algorithm
generates the set

n

“1m branch-and-bound = {:Bm = (‘rl’ tee !I"l) € [NU{O}]m / Ty +...+ZTm Sn’n EN}

5 . n _ n
with Ca’d(Am,branch-and-bound) - CR111+1'

These two algorithms work similarly. The backtracking algorithm generates re-
cursively the vectors x,,, with components z; € {0,1,...,n}. This algorithm starts
with the generation of n + 1 vectors by assigning to their first component (i = 1) the
values n,n —1,...,1,0, respectively. For each of the n + 1 vectors generated at step
1, the algorithm generates nn + 1 new vectors and assigns to the second component
(= 2) the values n,n —1,...,1,0. This process stops at step m, i.e. when the m
components of all the generated vectors are assigned.

The branch-and-bound algorithm assigns to each z; a value in {0,1,...,r}, where
7 is the difference between n and the sum of the values of the already assigned
components, i.e. r = n— Zj<i z;. The algorithm starts with the generation of n+1
vectors by assigning to their first component (i = 1) the values n,n — 1,...,0. At
the second step, the algorithm calculates r for each of the n + 1 generated vectors
and generates new vectors by assigning to their second component (i = 2) the values
r.r—1,...,0. The process of generating a vector stops when all its components are
assigned or when the sum of its assigned components is equal to n. In the last case,
the remaining components of the vector are assigned to 0. The algorithm ends when
the m components of all the generated vectors have been assigned.

Note that if we modified the branch-and-bound algorithm by only assigning one
value, that is r, to the last component of the vector (i = m), we obtain a recursive
algorithm which generates the set A% . This algorithm is called efficient branch-and-
bound algorithm.

-Example. Let m = 3 and n = 4. At the beginning r = 4 and the algorithm
generates the vectors (4, ,), (3, ,),(2,,),(1,,),(0,,). For each of the vectors with
assigned components not summing up to 4, the algorithm calculates r and assigns
values from r to 0 to the component 1 = 2. If r = 0, the algorithm assigns 0 to the
remaining components.

(4,,)or=4-4=0- (4,0,0)

(3,,)»r=4-3=1-(3,1,),(3,0,)
(2,,)2r=4-2=2-1(22,),(2,1,),(2,0,)
(1,,)-r=4-1=3-(1,3,),(1,2,),(1,1,),(1,0,)
0,,)>r=4-0=4 - (04,),(0,3,),(0,2,),(0,1,), (0,0,).

The process is repeated for i« = 3. In this case only one value, that is r, is
assigned to the actual component since the algorithm is in the last position of the
vector (1 = m).

On the Computation of the Exact Distribution of Power Divergence Test Statistics

(31,)>r=4—(3+1)=0- (3,1,0)
(2,2,) 5 r=4—(242) =0 > (2,2,0)
(20,) 2 r=4—(24+0) =2 — (2,0,2)
(1,2,) 2r=4-(14+2)=1 - (1,2,1)
(1,0,) > r=4-(140) =3 — (1,0,3)
03,)>r=4—-(0+3)=1—- (0,3,1)

(30,) 2r=4-(3+0)=1— (3,0,1)
(2,1,)5r=4—-(2+1)=1- (2,1,1)
(1,3,) > r=4-(1+3)=0— (1,3,0)
(1,1,) 2 r=4—(1+1)=2 - (1,1,2)
(04,) > r=4—-(0+4)=0— (0,4,0)
0,2,) 5 r=4-(0+2)=2 — (0,2,2)

59

01,)—>r=4-(0+1)=3->(0,1,3) (0,0,) »r=4-(0+0)=4 — (0,0,4).

Finally, we implement an iterative algorithm to generate the set AT. Before
describing this algorithm, we introduce several concepts in order to define a total
order relationship on the set A. This is done by means of functions next and
previous, which generate the elements of A7, in an ordered way. Proofs of results
presented below are straightforward and can be found in Marhuenda et al [7].

Definition 1. Let x,, and y,, be two elements in A}, then

(@) Tm =Ym < Ti =Y
(b)
(c)
(d)
(e)
(f)

Vi=1,2,...,m.

T # Yy < Ji € {1,2,...,m} such that z; # y;.

Tm > Yy <= F€{1,2,...,m} with z;>y; and z;>y; Vj€{1,2,...,i—1}.
T 2 Y < Tm > Yy OF Ty = Yoy

Tm < Y &= F€{1,2,...,m} with z;<y; and z;<y;, Vje{1,2,...,i-1}.

T SYp =~ T <Y,y OF Ty =Yoo

Note that ., < y,,, holds when x,, > y,, does not hold and vice versa.

Proposition 1. The relation > is a good order in A}, i.e. the reflexive, anti-
symmetric and transitive properties hold, and also

1. Ve, Ym € A, Tm 2> Ypy OT Yypy > T
2. VBn C A%, Bl #0, 3z, € By, such that y,, > zm Vy,, € By..

The relation < is also a good order in A7,.

Definition 2. The first element, p,,, of A% is p,, = (p1,...,Pm), Where p; =

oo =Pm-1 =0, pm = 1.

Definition 3. The last element, W, of A% is Um = (u1,...,uUm), where u; = n,
u2=...=um=0.

60 M.A. MARHUENDA, Y. MARHUENDA AND D. MORALES

Corollary 1. The following statements hold.

1. Let p,, be the first element of A. If x,, € A7, is such that z,, # p,,, then
P < Trn.

2. Let u,, be the last element of A}. If x,, € A}, is such that x,, # u;,, then
Uy > T

3. The minimum element of the relation < is p,,,.

4. The maximum element of the relation < is u,;,.
Definition 4. (nezt function) Let x,, = (z1,...,Zm) € AP, such that z; # 0 for
some i € {1,...,m} and z; =0Vj € {i +1,...,m}. Suppose that x,, # u., (last

element). We distinguish the following two cases in order to define y,,, = nezt(zx,,) =
(1, ym):

1. If 1 < m, then

Tk if 1<k<i-2
_ zi1+1 if k=i-1
Y%$¥=93 o if i<k<m-1

r; — 1 if k=m.

2. If i = m, then

Tk if 1 < k <m-— 2
Y = .'Em_l-’rl lf k=m-1
Ty — 1 if k=m.
Definition 5. (previous function) Let x,, = (z1,...,Zm) € A® such that z; # 0

for some i € {1,...,m} and z; = 0Vj € {i +1,...,m}. Suppose that z,, # p,,
(first element). We distinguish several cases in order to define the components of
the previous element of x,,, y,, = previous(zm,) = (y1,---,Ym):

1. If : <m — 1, then

Tk if 1<k<i-1
) zi—1 if k=i

=111 if k=i+1

0 if i+2<k<m.

2. If i=m — 1, then

Tk if 1<k<m-2
Yk = .’Em_l—'l if k=m-1

1 if k=m.

3. fi=m,x,m # p,,then3j € {1,...,m—1}such that z; #0and z, =0 VL €
{7 +1,...,m—1}. We consider two cases

On the Computation of the Exact Distribution of Power Divergence Test Statistics 61

(a) If j <m —1, then

Tk if 1<k<j-1
.’13]'—1 if k:j

Y=Y zm+1 if k=j+1
0 if j+2<k<m.
(b) If j =m — 1, then
Ty, if 1<k<m-2

Il

.’Em_l—l if k=m-1
T, +1 if k=m.

Yk

Corollary 2. The following statements hold.

1.

2.

If z,, € A}, T # U and y,, = next(xy,), then y,, € A,

fx,€ A, zn ‘¢ P, and y,, = previous(T,,), then y,, € A" .

. If y,,, = nezt(xp), then y,,, > .
. If y,,, = previous(xy,), then y,, < Tm.

. Let xp,y,, € A%, such that y,, = next(x,,), then y,, is the immediate

successor of T, that is, y,, > =, and Az, € A2, such that y,, > z,,, and
Zm > Ty :

Let zp,vy,, € AL, such that y,, = previous(x,,), then y,, is the immediate
predecessor of T, that is, y,, < £, and Az, € A7, such that y,, < 2z, and
Zm < T

Let T, y,, € A%, then y,, = next(Tm) <= Tm = previous(y,,).

We now describe the iterative algorithm. This algorithm starts with the first
element p,, of A7, and generates the remaining elements in Aj;, by applying the
next function to the last generated element. This process continues until the last
element u,, is generated.

Algorithm can also be applied in a descending order. In this case, the algorithm
begins with the last element wn,, it applies the previous function to the last generated
element and stops when the first element p,, is generated.

Example. Let m = 3 and n = 4. We use the nezt function to generate the set
Aj}. We begin with the first element p,, = (0,0,4) and apply the neazt function to
the last generated element. The process ends when this function generates the last
element u,, = (4,0,0).

62 M.A. MARHUENDA, Y. MARHUENDA AND D. MORALES

P = (0.0,4)

nert((0,0.4)) = (0,1.3) next((1,2,1)) = (1,3,0)
next((0,1,3)) = (0,2,2) nert((1,3,0)) = (2,0,2)
nezt((0.2.2)) = (0,3,1) next((2,0,2)) = (2,1,1)
next((0.3,1)) = (0,4,0) next((2,1,1)) = (2,2,0)
next((0,4,0)) = (1,0,3) next((2,2,0)) = (3,0,1)
nert((1,0,3)) = (1,1,2) nezt((3,0,1)) = (3,1,0)
nert((1,1,2)) = (1,2,1) nezxt((3,1,0)) = (4,0,0) = u,,.

In Figure 1 the flow diagrams co;rresponding to the iterative algorithm using the
ascending and descending order are presented. Algorithms have been written in
standard C and can be found in Marhuenda et al [7].

Ascending Descending

Fig. 1. Flow diagrams corresponding to the iterative
algorithm with ascending and descending order.

3. COMPARISONS BETWEEN ALGORITHMS

In this section, we analyze the efficiency of the algorithms described in the previous
section in relation to the CPU time that each algorithm uses to generate the set AZ,.

On the Computation of the Exact Distribution of Power Divergence Test Statistics 63

We calculate the efficiency frontier for the iterative algorithm.

The four algorithms have been implemented in C and run on a Pentium II 350MHz
biprocessor workstation with 512MB RAM, under the LINUX operating system.

The CPU time depends on many factors, such as, the programming language,
the compilation options and the hardware. Due to the fact that LINUX uses
multitasking and supports multiple users, the CPU time is the sum of the user
and system times which have been obtained by using the time command. In ad-
dition, the algorithms have been run 25 times for each m and n and the aver-
age of CPU time calculated. Figure 2 shows the results for m = 5,6 and n =
5,10, 15, 20, 25, 30, 35,40,45,50. The CPU time values obtained for the backtrack-
ing and branch-and-bound algorithms are not represented because they are greater
than the values obtained for the others algorithms. For instance, the CPU times
obtained for n = 30, m = 5 are 4.04 and 0.08 seconds, respectively.

—e— Efficient Branch-and-bound—#— Iterative_ 1
m=5 m=6
0.050 0.50
0.045 0.45
0.040 0.40
0.035} 0.35
~0.030 -~ 0.30
o (33
Q Q
0.0.025 £ 0.25
' Q
E 0.020 E 020
= =
0.015 0.15
0.010 0.10
0.005 0.05
0.000L——— . P 0,00 Lttt . TR—
5 10 15 20 25 30 35 40 45 50 5 10 1520 25 30 35 40 45 50
Sampie size (n) Sample size (n)

Fig. 2. CPU time for the efficient branch-and-bound
and iterative algorithms for m = 5,6 cells.

Let ty,» be the CPU time that a given algorithm uses to generate all the elements
in AZ,. At alevel of ¢y seconds, its efficiency frontier is defined by the set {(m,nm ¢,) :
m = 2,3,...}, where '

Nm,to =Max{n € N : t, n < to}.

In Figure 3 the efficiency frontier of the iterative algorithm for 1 second of CPU time

64 M.A. MARHUENDA, Y. MARHUENDA AND D. MORALES

(to = 1) and the hardware and operating system described above is presented.

500
450 |
400 ; B

350

250

200

Sample size (n)

150

100

II...-----
5 6 7 8 9 10 11 12 13 14 15

Number of cells (m)

Fig. 3. Efficiency frontier of the iterative algorithm for 1 second of CPU time.

It is interesting to observe that for m; < ms

0< tnu,n - tml,n—l < tmg,n - tmz,n—l-

For instance, the CPU time difference between (m = 14,n = 10) and (m = 14,n =
11) is 0.183, whereas between (m = 15,n = 10) and (m = 15,n = 11) is 0.350
seconds.

4. UNFORMITY TESTS WITH EXACT DISTRIBUTIONS

In this section, power divergence test statistics T, (P, p°) are used to test the
hypothesis Hy : p = p°. Exact quantiles t;\l,m,l_a are calculated for the probability
of first kind error a« = 0.05 and for A = -2,-1,-1/2,0,2/3,1. The continuity
criterion is used when A = —1,—2,0 and p; = 0, i.e. we take limits p; — 0 in order
to evaluate the test statistics.

The distribution function of T, = T}, (P, p°) under the null hypothesis Hy :

p=p°is

Ey

A
n,m

(o) O = P (T2 (5.0°) <) = 1= Bpo (T (B9°) > 1),

On the Computation of the Exact Distribution of Power Divergence Test Statistics 65

where

Pp° (Tri‘,m(ﬁvpo)>t): Z Pp° (le-rlr--';Nm:mm):
(z1,.0Zm)EAT, ,

An o ={(21,...,zm) € INU{OY™ /21 + ... + Tm =n, T (P, 0°) > t}

and

n!
Ppo (N1 =2z1,...,Npp=2zp) = m(l’(f)zl ---(P?n)z'"-

The set of upper tail probabilities of T}, is
Up = {a € (0,1) : 3t > 0 with Ppo (T2 ,,(D,P°) > t) = a}.
Quantiles tf‘l’m,l_a of T,;\,m are obtained for any a € Ll;},m through the equation
a = Ppo (T m®9°) > thmi-a) -
If a € (0,1) — U ,,, we consider
a; = a(n,m,\,a) = max{ag € (0,a] : 3t >0 with Ppo (T,i“m(ﬁ, p°) > t)y=ao},

so that tf‘l,m’l_m is defined as the approximate quantile of order a. We calculate
the approximate quantiles for @ = 0.05, m = 2,...,10, n =1,...,50 and the above
specified A. This process can be divided into four steps:

Step 1. Generate all the elements z,, = (z1,...,Zm) of A}, by using the iterative
algorithm and calculate the corresponding probabilities Ppo(z1,...,Zm)-

Step 2. For each xn, € AT, calculate the test statistics T} ,, with the special con-
siderations for A = —2,—1,0 and p; = 0.

Step 3. Put Tﬁ\,m and Ppo(1,...,Tm) in increasing order with respect to the values
of T} ..

We have used internal and external classification in this step. In the internal
classification the ordination takes place in the main memory of the computer, where
it is possible to use random access to the data. In this case, the values of the test
statistic and the probability of each x,, are stored in the main memory. We have
implemented the quicksort algorithm specified in Aho, Hopcroft and Ullman [1] to
order the data. This algorithm is recursive and has a complexity in the average case
of O(klog, k), where k = Card(A},).

The external classification is used when there is not enough main memory avail-
able to store the data and secondary storage devices are needed. We have imple-
mented the files intercalation algorithm specified in Aho, Hopcroft and Ullman [1].
This algorithm needs [log,(k/£)] repetitions, where k = Card(AT,) is the number
of elements to be ordered and Z is the initial size of an ordered block of data which
depends on the computer main memory capacity. The complexity of the algorithms
in the better, worse and average cases has been investigated by Aho, Hopcroft and
Ullman [1] and Weiss [9]. :

66 M.A. MARHUENDA, Y. MARHUENDA AND D. MORALES

Step 4. Calculate the approximate quantile ¢} of order a = 0.05.

nm,l—a

We use randomized tests in order to decide with probability v, ,, , the rejection
of the hypothesis Hy when the test statistic takes the value tn mi—a - Let ¢(T)

be a function giving the probability of rejecting Hy when T is observed. This
function is defined by the formula

nm

1 if T, >t e,
¢(Tr/1\m) = ’7;},m,a lf T/\ “t;\tml - (41)
0 if T <thmi-a

a—Ep(’ (d’(m))_l PPO (T,\ ;\1ml a1)+7nma Pp° (Tnm tnml a;)

7,\ - a— Pp° (Tn m > t;\t,m,l—al)
nma = “p X |

= nml 01)

Using the previous process, approximate quantiles t" m,1—a, and probabilities

Ynm.o are calculated for the uniform distribution p° = (1/m,...,1/m), with a =
005, n=1,...,50,m=2,...,10 and A = -2,-1,-1/2,0,2/3, 1. In Tables 1-4 of
the Appendix, computed values for the Freeman-Tukey (A = —1/2), loglikelihood
(A = 0), Cressie-Read (A = 2/3) and Pearson’s x? (A = 1) test statistics and m =
4,6,8 are presented. The rest of the computed values can be found in Marhuenda,
et al [7].

In addition to the memory limitations in Step 3, there are limitations related to
the maximum size of a file. The operating systems that we have used, SUSE Linux
6.0 with kernel 2.2.7 and Linux Mandrake with kernel 2.2.13.7, allow a maximum
size of 2GB (2,147,483,648 bytes) for a file. This value is insufficient to store all the
values of the test statistics and probabilities calculated for each z,,, € A%, when m
and n are large. For example, for m = 10,n = 30, the number of elements of the
set A%, Card(Al), is 211,915,132. The implemented program stores the value of
the test statistic as a float data type with 4 bytes and the probability as a double
data type with 8 bytes, so we would need an ordered file of 211,915,132 x (4 + 8) =
2,542,981, 584 bytes > 2GB. For that reason, Steps 1-3 have been slightly modified.
If p° = (1/m,...,1/m), the function g(p) = T} (P, p°) is not one to one, i.e. there
are sets {p,,...,P,} of probability vectors such that g(p,) = ... = g(p,). In this
case, we only store the values of the test statistics which are different, and their
corresponding total probabilities.

Although we have calculated the quantiles ¢t} m,1—a and the probabilities ’Yé\,m,a
for the equiprobable distribution, the program is able to calculate quantiles and
probabilities for nonequiprobable distributions since the whole set A7 is generated.
This fact is relevant when calculating exact powers in Section 5. The algorithm
introduced by Kulmann (5] only calculates the different partitions of a number n
in a vector of m positive natural numbers so that their sum equals to n and con-
siders that two partitions are equal if they differ only in the order of the numbers.

On the Computation of the Exact Distribution of Power Divergence Test Statistics 67

This assumption reduces significantly the operations, but it can be only applied to
equiprobable distributions.

5. EXACT POWERS OF TESTS

Let p = (p1,...,pm) be a probability vector. The exact power function of test
¢(T), defined in (4.1), is

'Bf);,m(p) = Ep (¢(Tfi\,m)) = 1PP (Tr)l\,m > t;\l,m,l—a1)+’y;},m,a'Pp (Tri‘,m = ti\z,m,l—al) .

In this section, we calculate the exact powers of the tests (4.1) and the inef-
ficiencies for different families of alternatives to the uniformity hypothesis Hy :
p = p° with p® = (1/m,...,1/m). The power divergence statistics for A =
-2,-1,-1/2,0,2/3,1,2, are considered for m = 6, n = 30,42, a = 0.05 and five
families of alternatives.

The first family is
m-1-4 if j=1,...,m—1
pld = m(m~-1) LA (5.1)
' H2 if i=m,

where —1 < § < m — 1. Probability vectors p® of this family are calculated by
adding % to p%, = —11;, while the rest are adjusted so that they still sum to one. The
following values of § are considered: § = —1.00,—-0.98,-0.97, —0.95, —0.90, —0.80,
-0.60, —0.30, 0.00, 0.50, 1.00, 1.50, 2.00, 2.25, 2.50, 2.75, 3.00.

The second family is

—2-9256 .
25 2(m-2) if z—l,....,m—2 59
p; 146 o (5.2)
e if i=m-1,m,
where —1 < § < =2 Probability vectors p*° of this family are calculated by adding

r‘fl topd, =pd_1 = m, while the rest are adjusted so that they still sum to one. The
following values of ¢ are considered: § = —1.00,—-0.98,-0.97, -0.95, —0.90, —0.80,
-0.60, —0.30, 0.00, 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00.

The third family is

3,0 _
b; —{

where —1 < § < m/2. Probability vectors p of this family are calculated
by adding - S to Pl = }F and a;; L oto p, i = 1,...,m — 1, and calculating a
so that they still sum to one. The following values of & are considered: § =

—1.00, —0.98, —0.97, —0.95, —0.90, —0.80, —0.60, —0.30, 0.00, 0.50, 1.00, 1.50, 2.00,
2.25, 2.50, 2.75, 3.00.

—zﬁ if i=1,...,m-1

SlH

(5.3)

aF

] if i=m,

3,0

68 M.A. MARHUENDA, Y. MARHUENDA AND D. MORALES

The fourth family is

1 4id : P —

» m T mmonmoy f i1=1...,m-2

by = L+6 . (5.4)
% if i=m-1,m,

where —1 < § < =1 Probability vectors p*?® of this family are calculated by

adding £ to p% = p%_, = L and af to p?, i = 1,...,m — 2, where a is
selected so that Ei";lpf"s = 1. The following values of § are considered: § =

~1.00, —0.98, —0.97, —0.95, —0.90, —0.80, —0.60, —0.30, 0.00, 0.25, 0.50, 0.75, 0.90,
1.00, 1.10, 1.20, 1.25.

The fifth family is

5,0
p; = {

where —1/2 < § < 1/2. Probability vectors p>® of this family are calculated by
splitting the set of cells in two and by adding or subtracting 26/m to the p?‘d’s of
first or second subset respectively. Here, § = 0.00, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30,
0.35, 0.40, 0.45, 0.50 are the values under consideration.

if i=1,...,2 655

38 3R

3~ 3=

+ if. i=F+1,...,m,

The maximum power of the family f in the alternative ¢ is
ﬂmax(nvmv pj,é) = milx {ﬂr/:,m(pf’(s)} *
The inefficiency of the test T,;\‘m for the family f in the alternative 4 is

inm(P%,A) = Bmax(n,m, p’*) — B . (p"%).

The maximum inefficiency of the test T}} for the family f is

imax(n,m, f,) = max {inm(P"*,N)}.

In Table 1, we present, for the five considered families, the number of times that
each statistic can be recommended. These quantities are obtained by counting the
three smallest imax(n,m, f,A) for m = 6 and n = 30,42. The intermediate tables

with the computed values of the powers and inefficiencies can be found in Marhuenda
et al [7].

From Table 1, we can give the following recommendations on which power diver-
gence tests one should use for f =1,...,5, m =6 and n = 30,42:

e A =-1,-1/2,0 for the families (5.1),(5.3),
e A =0,2/3,1 for the families (5.2),(5.5),
e A= -1/2,0,2/3,1 for the family (5.4),

On the Computation of the Exact Distribution of Power Divergence Test Statistics 69

so that A = —=1/2,0,2/3,1 are the most frequently recommended values.

In Table 2, we present the sum of inefficiencies), _3q 45 Z?:l imax (1, M, f, A),
for m = 6 and each considered A. Best results are obtained for A = —-1,-1/2,0,2/3.
Finally, we observe that power divergence statistics with A = —1/2,0,2/3 are rec-
ommended with both criteria.

Table 1. Number of times that we recommend each A
for f=1,...,5, m =6 and n = 30,42.

Family

Al (51) (5.2) (5.3) (54) (5.5) Total
—9 0
-1 2 2 4
-1/2 2 2 1 5
0 2 2 2 2 2 10
2/3 2 2 2 6
1 2 1 2 5
0

Table 2. Sums) _.,, E;zl imax(n, m, f,A)

for m = 6 and each A.

A=-2 A=-1 A=-1/2 A=0 A=2/3 A=1 A=2

176186 1.25244 0.93686 0.61648 1.59248 2.12815 3.37238

(Received November 12, 2001.)

0 M.A. MARHUENDA, Y. MARHUENDA AND D. MORALES

APPENDIX

H — A — A — A
Tables with ¢t = tn,m,O 95 « § = An.m.tr Y= '711,171.0.05

Table 1. Freeman-Tukey’s test (A = —1/2) for a = 0.05 and p° = (1/m,...,1/m)

Tl (D, p) = 8n (1 -y, \/p,-if.-) \ Qs = Ppo(Tanl®(,9°) > t).

m 4 6 8

n t q Y t q Y t q ol

1 N

3 10.343145 .027778 .053333 | 12.172817 .015625 .104762
4110143594 .015625 .183333 | 14.154319 .004630 .490000 | 16.545187 .001953 .878571
5| 13.167184 .003906 .786667 | 17.022934 .020062 .776000 | 16.396439 .025879 .235238
6 | 14.547675 .018555 .715556 | 16.000000 .020062 .776000 | 19.273838 .025879 .313651
7 111.169670 .046387 .117460 | 17.856834 .015775 .760381 | 18.583426 .049911 .003156
8 | 11.388070 .033569 .267063 | 19.396900 .036280 .914476 | 20.686291 .025378 .585438
9 112382575 .038055 .258862 | 16.638773 .039781 .378413 | 22.544155 .033965 .677815
10 | 13.768396 .034348 .542751 | 18.032267 .041989 .854273 | 23.717913 .046451 .360089
11 | 13.763933 .040442 .361573 | 18.866249 .029978 .727918 | 21.729162 .045246 .292310
12 | 14 750144 .032385 .888446 | 19.835539 .046651 .292241 | 23.355839 .041045 .880924
13 | 14.848555 .043923 .282925 | 20.223293 .044391 .564673 | 24.165394 .046944 .367907
14 | 15.950030 .035229 .982410 | 18.567375 .049695 .276108 | 25.105490 .047232 .718274
15 | 16.427786 .036366 .967240 | 17.417574 .047839 .783221 | 22.654919 .049159 .387955
16 | 9.372583 .049207 .118098 | 17.293797 .048288 .310222 | 22.467934 .049831 .023331
17 | 9.138135 .045019 .582028 | 17.457148 .049193 .619598 | 23.459345 .045388 .800825
18 | R.776540 .044549 .636988 | 17.909870 .042137 .718459 | 23.880388 .042413 .878349
19 | 8.919504 .045445 .522889 | 18.338568 .047260 .885368 | 24.365887 .049974 .026494
20 | 8.850932 .043494 .768186 | 18.533375 .048647 .281070 | 24.652370 .047747 .527067

21 | 9.251921 049871 .286302 | 18.729479 .048421 .491944 | 24.587753 .049153 .532693
22 | 9.153990 047480 .641225 | 18.765167 .048293 .483542 | 23.009394 .049814 .526356
23 | 9.265980 .049365 .173985 | 19.034439 .047189 .830866 | 21.582781 .049109 .527600
24 | 9.590574 .046720 .979581 | 19.255266 .047752 .797261 | 21.621170 .048502 .788311
25| B 722542 .047371 .658219 | 19.055866 .049291 .582151 | 21.455919 .048973 .327600
26 | B.511540 .049017 .462688 | 18.633085 .049721 .117575 | 21.612207 .049767 .144514
27 | 8.676909 048903 .477882 | 15.056806 .049860 .528413 | 21.842281 .049012 .297856
28 | 8.523068 .047114 .592814 | 14.050842 .049538 .534529 | 21.999659 .049629 .878186
29 | 8.724597 .049079 574114 | 13.343666 .049696 .698018 | 22.028124 .049859 .087458
30 | 8.658084 .047548 .518684 | 12.916054 .049753 .301181 { 22.131367 .049104 .312091
31| 8.771932 .049280 .613369 | 12.868749 .049012 .769778 | 22.310320 .049691 .330227
32] 8513114 .049170 .368207 | 12.692142 .049930 .228703 | 22.285065 .049875 .240574
33 | 8.494273 048209 .606776 | 12.647284 049977 .093743 | 22.200830 .049423 .991222
34 | 8391171 049888 035789 | 12.550234 .049974 .059112 | 22.145418 .049934 .072150
35| 8.471379 .048041 951717] 12.572437 .049726 .665249 | 22.134418 .049137 .841801
36 | 8.298555 049701 .085663 | 12.575457 .049146 .670702 | 21.937300 .049996 .839647
37 | 8.492036 .048903 .339488 | 12.536434 .049497 .384135 | 21.668766 .048973 .728959
38 | 8531345 .048074 .878246 | 12.592931 .049684 .360248 | 21.015249 .049723 .425235
39 { 8186401 .048587 .576924 | 12.654531 .049865 .956881 | 19.140820 .049880 .797557
40 | 8.111301 .047801 987364 | 12.565123 .049758 .941215 | 17.918610 .049907 .839036
41 | 8384149 .048022 866767 | 12.544221 .049535 .655761 | 17.310171 .049990 .229544
42 | 8312694 .048512 .605419 | 12.536637 .049805 .249698 | 16.983387 .049564 .901004
43 | 8282926 049330 .458033 | 12.359401 .049960 .271974 | 16.595566 .049969 .123265
44 | 8466223 049047 .807623 | 12.266216 .049982 .110829 | 16.408812 .049821 .878964
45 | 8353590 048886 .641447 | 12.176671 .049799 .542256 | 16.239330 .049951 .219711
46 | 8185480 .049404 .440935 | 12.169446 .049700 .468714 | 16.175310 .049975 .153847
47 | 8251279 .049434 427856 | 12.093030 .049895 .695503 | 16.056660 .049690 .516541
48 | 8.323591 .049463 .946299 | 12.058262 .049937 .189933 | 16.021381 .049928 .292185
49 | 8230300 049105 .627887 | 12.063498 .049800 .450911 | 15.960017 .049742 .653673
50 | 8404796 .049593 .731914 | 12.096867 .049971 .176057 | 15.875415 .050000 .001003

On the Computation of the Exact Distribution of Power Divergence Test Statistics

Table 2. Loglikelihood ratio test (A = 0) for a = 0.05 and p° = (1/m,...,1/m)

= Ppo (TR (P, P°) > t).

Tom@p) =203 Piln (%), ¢ m,

m 4 6 8

n t q Y t q Y i q Y

1

3 6.931472 .027778 .053333 | 8.657564 .015625 .104762

4 |6.591674 .015625 .183333 | 9.835395 .004630 .490000 | 12.136851 .001953 .878571

5 | 8.858919 .003906 .786667 | 11.187478 .020062 .776000 | 11.291710 .025879 .235238

6 | 8.997362 .018555 .715556 | 11.090355 .020062 .776000 | 12.816447 .025879 .313651

7 | 8.259758 .046387 .117460 | 11.704834 .015775 .760381 | 12.959794 .049911 .003156

8 | 7.776613 .033569 .267063 | 12.032619 .036280 .914476 | 13.862944 .025378 .585438

9 | 8.089309 .038055 .258862 | 11.568596 .039781 .378413 | 14.515438 .033965 .677815
10 | 8.858919 .037094 .447513 | 11.964197 .041989 .854273 | 14.404097 .047765 .141723
11 | 8.610156 .041386 .325859 | 12.123654 .030633 .704108 | 14.633574 .045246 .292310
12 | 8.997362 .036948 .658288 | 12.136851 .049434 .049384 | 15.222136 .041278 .858067
13 | 9.217709 .045457 .986983 | 12.626974 .043871 .822739 | 15.469584 .047935 .937536
14 | 9.109803 .044268 .381219 | 12.824656 .038820 .964788 | 15.334577 .046927 .797243
15 | 9.091181 .049638 .089885 | 12.374017 .048706 .549137 | 15.459301 .046646 .742621
16 | 9.051566 .049207 .118098 | 12.295287 .047739 .702443 | 15.414783 .049895 .362658
17 | 8.349522 .047872 .248695 | 12.287928 .041578 .808005 | 15.419436 .048069 .335368
18 | 8.089309 .047758 .261988 | 11.966402 .048958 .166544 | 15.534832 .046317 .426350
19 | 7.895985 .048494 .172889 | 12.213305 .049541 .111306 | 15.677502 .045746 .565481
20 | 7.960445 .049140 .236878 | 12.158443 .049479 .116521 | 15.714861 .048914 .357362
21 | 8.237560 .045246 .748400 | 12.222190 .049573 .665637 | 15.790620 .048528 .655990
22 | 7.878248 .046792 .459174 | 12.146267 .049426 .623931 | 15.632663 .049125 .638428
23 | 8.223836 .047881 .421989 | 12.390699 .046786 .712544 | 15.558018 .048271 .805148
24 | 8.317766 .045291 .658410 [12.191055 .049103 .715715 | 15.557030 .048612 .730240
25 | 8.376768 .047225 .694686 | 12.188744 .048399 .817770 | 15.585126 .049496 .495564
26 | 8.413756 .046502 .942946 | 12.070373 .049868 .717257 | 15.488575 .048953 .697575
27 | 8.038909 .049144 .205143 [12.055545 .048791 .582495 | 15.283076 .049716 .550158
28 | 7.924864 .048117 .902464 | 12.014827 .049649 .181110 | 15.254371 .049843 .198520
29 | 8.026070 .049714 .075732 | 12.018681 .049577 .541749 | 15.324442 .049567 .488014
30 | 8.030598 .048446 .457810 | 11.895776 .049423 .552595 | 15.409772 .049929 .174156
31 | 8.120552 .048904 .352578 | 11.858018 .049782 .921822 | 15.344414 .049849 .974906
32 | 8.043770 .047571 .745938 | 11.796326 .048740 .657929 | 15.378973 .049308 .730041
33 | 8.003992 .049294 .239276 | 11.734163 .049311 .558682 | 15.248160 .049816 .680258
34 | 7.986678 .049329 .240171 | 11.527147 .049952 .081610 | 15.272035 .049832 .542859
35 | 7.974287 .048392 .586010 | 11.573995 .049596 .712986 | 15.250461 .049480 .255770
36 | 7.983791 .049131 .690909 | 11.505684 .049692 .604079 | 15.216360 .049971 .097273
37 | 8.012158 .048076 .808538 | 11.439818 .049416 .391334 | 15.184706 .049914 .194920
38 | 7.973851 .049901 .043146 | 11.452411 .049840 .332598 | 15.128876 .049764 .580898
39 | 8.091228 .047968 .979074 | 11.465799 .049947 .743498 | 15.086462 .049928 .183207
40 | 8.084802 .048452 .753071 | 11.418536 .049968 .084939 | 15.033144 .049736 .746625
41 | 7.911872 .048590 .669389 | 11.461734 .049848 .382713 | 15.063690 .049426 .922672
42 | 8.035414 .048800 .638322 | 11.467292 .049902 .262389 | 14.971709 .049751 .799506
43 | 8.009272 .049770 .247840 | 11.448422 .049630 .519989 | 14.944547 .049941 .175378
44 | 7.964378 .049258 .392860 | 11.480868 .049859 .528743 | 14.884252 .049768 .817939
45 | 8.030094 .048745 .709273 | 11.455256 .049862 .498734 | 14.875436 .049809 .781321
46 | 7.977850 .048940 .641756 | 11.430017 .049722 .530468 | 14.815397 .049976 .154592
47 | 7.989554 .049566 .527617 | 11.435036 .049904 .835209 | 14.793161 .049984 .277725
48 | 7.867796 .049089 .539786 | 11.404029 .049997 .006885 | 14.738991 .049765 .803814
49 | 7.903203 .049127 .565515 | 11.403136 .049811 .828221 | 14.724584 .049951 .491432
50 | 7.942816 .049965 .023293 | 11.394898 .049600 .928820 | 14.668654 .049994 .074359

71

M.A. MARHUENDA, Y. MARHUENDA AND D. MORALES

Table 3. Cressie-Read’s test (A = 2/3) for a = 0.05 and p° = (1/m,...,1/m)

.\ 2/3
,f/.g.(p p’) = (1+Z:n—11) ())) qyzl/glt —Ppﬂ(Tn m(P:pO)>t)-

m 4 6 8

n t q 7 t q b t q ¥

1

3 S S 6.528753 .027778 .053333 | 9.050655 .015625 .104762

415832453 .015625 .183333 | 9.877344 004630 .490000 | 13.487729 .001953 .878571

5| 8.186238 .003906 .786667 | 10.13%394 .020062 .776000 | 11.290510 .025879 .235238

6 | 7.406685 .018555 .715556 | 10.942863 .020062 .776000 | 11.910490 .025879 .313651

7 | 8000628 .020752 .950794 | 10.551720 .015775 .760381 | 13.134787 .033089 .603156

8 16.912071 .033569 .267063 | 10.011272 .048282 .114476 | 13.057507 .025378 .585438

9 16.716119 .045746 .092196 | 10.578651 .048449 .103365 | 12.802979 .040273 .411148
10 | 7.564440 .037094 .895026 | 10.373855 .044490 .587606 | 13.790803 .034512 .785600
11 1 7.931182 044785 .657624 | 10.283494 .039801 .370775 | 13.636891 .036541 .827495
12 | 7.013424 .048278 .086859 | 10.332763 .046640 .244328 | 13.199595 .045509 .441770
13 | 7.523954 .044076 .643491 | 10.181168 .048518 .716146 | 13.337181 .046960 .230065
14 | 7.778836 .049638 .056178 | 10.678773 .043648 .548121 | 13.565905 .043765 .808825
15 | 7.493391 045611 .290636 | 10.653409 .049530 .438282 | 13.723774 .039507 .968004
16 | 7.484338 .048715 .106351 | 10.766731 .046698 .448725 | 13.684767 .045520 .619943
17 | 7.808631 .044258 .670917 | 10.850686 .046429 .342589 | 13.540236 .048670 .779485
18 | 7.752148 .045904 .478655 | 10.823076 .048405 .408138 | 13.495740 .048295 .493338
19 | 7.785254 .044719 .519619 | 10.687827 .049376 .252176 | 13.587867 .049690 .543163
20 | 7.648801 .049140 .236878 | 10.799223 .049810 .069042 | 13.529696 .049395 .177055
21 | 7.878604 .049652 .130390 | 10.826941 .049241 .315334 | 13.775753 .048778 .762274
22 | 7.682781 .048570 .292326 | 10.728228 .049041 .760598 | 13.635578 .049392 .394127
23 | 7.656865 048200 .281563 | 10.908513 .049858 .363168 | 13.715158 .047438 .808774
24 | 7.618271 .049795 .037369 | 10.888792 .049747 .269601 | 13.695527 .048946 .443755
25 | 7534925 048119 .282562 | 10.942719 .048991 .751788 | 13.822061 .048455 .936420
26 | 7.892993 .048350 .800463 | 10.801972 .049391 .538145 | 13.693143 .049320 .905970
27 | 7592125 019678 077167 | 10.829724 .049581 .824008 | 13.771963 .049309 .668310
28 | 7.721592 .048605 .343734 | 10.899413 .048316 .709148 | 13.850690 .049184 .600990
29 | 7.781187 .048130 .635831 | 10.849152 .049961 .035938 | 13.779480 .049884 .875878
30 | 7.841252 .046916 .706769 | 10.918189 .049882 .325992 | 13.821280 .049144 .596520
31 | 7.704287 046909 .994414 | 10.938743 .049187 .644592 [13.793759 .049738 .880784
32 | 7.730276 .049353 .200826 | 10.932748 .049936 .214083 | 13.829432 .049969 .136098
33 | 7.804358 .047167 .914029 [10.925865 .049586 .894991 | 13.827413 .049789 .322664
34 | 7.719558 .049049 .340171 | 10.983096 .049130 .587357 | 13.865377 .049846 .957221
35| 7.747585 048803 .791066 | 10.884257 .049963 .066188 | 13.873819 .049643 .527057
36 | 7.633397 .048405 .608779 | 10.896913 .049518 .557844 | 13.852202 .049898 .943450
37 | 7.924823 .048617 .518706 | 10.929515 .049677 .338922 | 13.854171 .049934 .726282
38 | 7773402 049638 .113486 | 10.966085 .049690 .686060 | 13.865868 .049851 .209291
39 | 7.873756 .047541 .947969 | 10.938794 .049745 .278796 | 13.904302 .049869 .481266
40 | 7.665894 .048432 .604644 | 10.921140 .049869 .542582 | 13.892484 .049846 .678665
41 | 7.720559 049119 .418084 | 10.935411 .049933 .158188 | 13.896460 .049717 .731081
42 | 7.703407 .049215 .371144 | 10.966731 .049607 .623283 | 13.903949 .049691 .780230
43 | 7.581584 049638 .218957 | 10.911161 .049919 .143260 | 13.930799 .049687 .935567
44 | 7.830615 048318 .917993 | 11.005397 .049880 .238871 | 13.895043 .049964 .184122
45 | 7.665408 .049341 .328786 | 10.970819 .049995 .182353 | 13.922244 .049944 .153918
46 | 7.708618 .049825 .186054 | 10.986230 .049683 .825477 | 13.910903 .049928 .436694
47 | 7.767457 .049327 812295 | 10.997293 .049834 .793914 | 13.910409 .049999 .003250
48 | 7.772820 .048273 .989889 | 10.977602 .049913 .691843 | 13.901153 .049894 .600499
49 | 7.843343 049928 .103639 | 10.963706 .049888 .422450 | 13.921712 .049957 .489680
50 | 7.807927 .049970 .015698 | 10.987567 .049968 .466902 | 13.943146 .049899 .717789

On the Computation of the Exact Distribution of Power Divergence Test Statistics

Table 4. Pearson’s x* test (A = 1) for a = 0.05 and p® = (1/m,...,1/m)

~ m e —p:)2 ~
Tom(@,p) =nY i, GBL gl = Ppo(Ta m(P,P°) > 1).

i

m 4 6 8

n t q Y t q bl t q Y

1

3 . .. 7.000000 .027778 .053333 | 10.333333 .015625 .104762

41 6.000000 .015625 .183333 | 11.000000 .004630 .490000 | 16.000000 .001953 .878571

5 | 8.600000 .003906 .786667 | 10.600000 .020062 .776000 { 12.600000 .025879 .235238

6 | 7.333333 .018555 .715556 | 12.000000 .013632 .808000 | 12.666667 .025879 .313651

7 | 8.428572 .020752 .950794 | 11.000000 .015775 .760381 | 14.714286 .021873 .716540

8 | 7.000000 .033569 .267063 | 10.000000 .048282 .114476 | 14.000000 .019771 .634210

9 | 6.555555 .045746 .092196 | 10.333333 .048449 .064603 | 13.222222 .040273 .411148
10 | 7.600000 .037094 .895026 | 10.400000 .040322 .268453 | 14.000000 .034512 .633549
11 | 7.545455 .044785 .657624 | 10.272727 .040718 .337442 | 14.454545 .027506 .889104
12 | 7.333333 .048278 .101336 | 11.000000 .032887 .622164 | 13.333333 .042121 .264240
13 | 7.615385 .037940 .786095 | 10.538462 .038585 .383066 | 13.461538 .043485 .334827
14 | 7.714286 .045879 .289590 | 10.857142 .038461 .574466 | 13.428572 .045307 .187331
15 | 7.666667 .037556 .823969 | 11.000000 .041804 .663786 | 13.266666 .049275 .032838
16 | 7.500000 .043345 .381320 | 11.000000 .035861 .794477 | 14.000000 .037668 .673599
17 | 7.705883 .039979 .501822 | 10.882353 .040657 .553865 | 13.588235 .045595 .295591
18 | 7.777778 .038935 .940321 | 10.666667 .046096 .230468 | 14.000000 .039982 .642410
19 | 7.736842 .045058 .547072 | 11.000000 .038573 .734003 | 13.421053 .047959 .111137
20 | 7.600000 .041518 .453763 | 10.600000 .047928 .150266 | 13.600000 .045306 .278618
21 | 7.761905 .047384 .980730 | 10.714286 .048079 .167210 | 13.666667 .045908 .282981
22 | 7.454545 .047901 .093075 | 10.727273 .046125 .318871 | 13.636364 .047399 .205792
23 | 7.782609 .038623 .951941 | 10.652174 .049686 .037391 | 13.521739 .049324 .049585
24 | 7.666667 .046440 .419270 | 11.000000 .043883 .628879 | 14 000000 .042218 .826297
25 | 7.800000 .040700 .850255 | 10.760000 .049569 .062358 | 13.720000 .047581 .229415
26 | 7.846154 .043324 .955879 | 10.923077 .044137 .640989 | 14.000000 .043383 .733981
27 | 7.814815 .045704 .832790 | 11.000000 .044427 .768729 | 13.592592 .049740 .024260
28 | 7.714286 .042224 .557166 { 11.000000 .043956 .685813 | 13.714286 .047896 .224410
29 | 7.827586 .043801 .893513 | 10.931034 .046545 .553397 | 13.758620 .047252 .275095
30 | 7.866667 .043373 .764272 | 10.800000 .048479 .201324 | 13.733334 .047841 .203995
31 | 7.838710 .044059 .839473 | 11.000000 .045483 .791099 | 13.645162 .049426 .055669
32 | 7.750000 .045698 .404564 | 11.125000 .042300 .927666 | 14.000000 043735 .680280
33 | 7.606061 .047574 .212773 | 10.818182 .048569 .249217 | 13.787879 .047860 .237338
34 | 7.647059 .046833 .300731 | 10.823529 .047924 .272691 | 14.000000 .0439%97 .638764
35| 7.857143 .046292 .789319 | 10.771428 .049294 .084597 | 13.685715 .049785 .023796
36 | 7.777778 .046170 .805722 | 11.000000 .046182 .748835 | 13.777778 .047956 .222905
37 | 7.864865 .046941 .940596 | 10.837838 .047228 .315433 | 13.810811 .048097 .249641
38 | 7.894737 .045984 .900966 | 10.947369 .046488 .535362 | 13.789474 .049127 .124379
39 | 7.666667 .047339 .310966 | 11.000000 .045951 .756871 | 14.128205 .043100 .966376
40 | 7.600000 .049007 .475304 | 11.000000 .046673 .615011 | 14.000000 .045844 .666702
41 | 7.682927 .048318 .298748 | 10.951220 .046159 .517527 | 13.829268 .048323 .241678
42 | 7.714286 .047691 .287899 | 10.857142 .048515 .233332 | 14.000000 .046072 .702845
43 | 7.697674 .048747 .423898 | 11.000000 .046058 .611585 | 14.116279 .044133 .988541
44 | 7.818182 .045114 .588394 | 10.818182 .049650 .061359 | 13.818182 .049413 .095956
45 | 7.711111 .048036 .453403 | 10.866667 .048249 .224987 | 13.844444 .048509 .227613
46 | 7.739130 .045524 .466421 | 10.869565 .049427 .103503 | 13.826087 .048577 .198444
47 | 7.893617 .044238 .953176 | 11.085107 .044938 .827899 | 14.106383 .044566 .979756
48 | 7.833333 .044888 .876154 | 11.000000 .046089 .714979 | 14.000000 .046042 .634219
49 | 7.734694 .048767 .668371 | 11.122449 .044512 .998418 | 13.857142 .048931 .186157
50 .047329 .681044 | 10.960000 .047832 .450042 | 14.000000 .046267 .621153

7.920000

73

74 M.A. MARHUENDA, Y. MARHUENDA AND D. MORALES

REFERENCES

[1] A.V. Aho, J.E. Hopcroft, and J.D. Ullman: Data Structures and Algorithms.
Addison-Wesley, Massachusetts 1983.

[2] S.M. Aliand S.D. Silvey: A general class of coefficient of divergence of one distribution
from another. J. Roy. Statist. Soc. Ser. B 286 (1966), 131-142.

[3] N.A.C. Cressie and T.R.C. Read: Multinomial goodness of fit tests. J. Roy. Statist.
Soc. Ser. B 46 (1984), 440-464.

[4] I. Csiszar: Eine Informationstheoretische Ungleichung und ihre Anwendung auf
den Beweis der Ergodizitit von Markoffschen Ketten. Publ. Math. Inst. Hungarian
Academy of Sciences, Series A, § (1963), 85-108.

(5] H. Kulmann: Notes on the computation of the exact distribution function of the x?
and related tests statistics in the equiprobable case. Comput. Stat. Data Anal., The
Statistical Software Newsletter 4 (1996), 707-710.

[6] F. Liese and I. Vajda: Convex Statistical Distances. Teubner, Leipzig 1987.

[7] M.A. Marhuenda, Y. Marhuenda, and D. Morales: Algorithms to calculate the exact
distribution function of power divergence statistics. Technical Report of the Opera-
tional Research Center, Miguel Herndndez University of Elche 2001.

[8] T.R.C. Read and N. A. C. Cressie: Goodness-of-fit Statistics for Discrete Multivariate
Data. Springer-Verlag, New York 1988.

[9] M. A. Weiss: Data Structures and Algorithm Analysis. Benjamin/Cummings Publish-
ing Company, Redwood City, CA 1992.

[10] K. Zografos, K. Ferentinos, and T. Papaioannou: ¢-divergence statistics: sampling
properties, multinomial goodness of fit and divergence tests. Comm. Statist. A — The-
ory Methods 19 (1990), 1785-1802.

Dr. Marco Antonio Marhuenda, Dr. Yolanda Marhuenda and Prof. Dr. Domingo
Morales, Operation Research Center, Miguel Herndndez University of Elche, Avenida
del Ferrocaril s/n, 03202 Elche. Spain.

e-matls: marco@umh.es, y.marhuenda@umh.es, d.morales@umbh.es

		webmaster@dml.cz
	2015-03-23T15:26:28+0100
	CZ
	DML-CZ attests to the accuracy and integrity of this document

