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THE PRINCIPLE OF THE LARGEST TERMS 
AND QUANTUM LARGE DEVIATIONS 

O L E G V. GULINSKY 

We give an approach to large deviation type asymptotic problems without evident prob
abilistic representation behind. An example provided by the mean field models of quantum 
statistical mechanics is considered. 

Keywords: idempotent measures, quantum large deviations 
AMS Subject Classification: 93B27, 06F05 

1. INTRODUCTION 

The idempotent measures appear naturally as asymptotic solution for some prob
lems in different areas such as differential equations and optimization theory. This 
approach provides the technic of semi-classical analysis for nonlinear problems. An
other motivation for the study of idempotent measures comes from the large devia
tion theory (LD). 

Let {Pn} be the sequence of probability measures on a Polish space X and let I 
be a function on X with compact level sets. {Pn} obeys the large deviation principle 
with a rate function I if and only if 

lim 
n—>oo 

/ (g(x)ГPn(dx) 
Jx 

1/n 

= sup g(x) e~ 
xex 

for all bounded continuous nonnegative functions g on X [3, 9]. 
We may say that in this sense {Pn} converges to an idempotent measure exp{—/}. 

The r.h.s. of the last display is called a sup-integral or idempotent integral with 
respect to the idempotent measure. 

Some asymptotic problems of quantum mechanics leads to more general setting 
for large deviations. Let consider a simple example of non-commutative analogue of 
large deviation problem [8]. In this case the random variables become self-adjoint 
operators in an operator algebra. 

Let M be the algebra of all complex m x m matrices and A = ® ; G N M \ where 
M* is a copy of M. Let x = x* £ M and xn = (x\ + X2 + • • • + xn)/n^ where X{ 
is a copy of x in M \ Let t j b e a faithful state of M, and uQ the associated infinite 
product-state of A. 
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The sequence xi,x2, • • • and the state u6 play the role of independent random 
variables. Let Dn be the density of u6 restricted to ®™=i M l and / be a continuous 
real-valued function on the interval [— |x|, \x\\. The problem is to compute the limit 

lim [Trexp(log_Dn + nf(xn))]l'n. (1.1) 
n—>oo 

The classical LD principle is formulated in fact in terms of convergence of a sequence 
of normalized positive linear functionals on a cone of positive bounded continuous 
functions to idempotent integral. We however have to study more general class of 
functionals. Our aim is to extract such properties of positive not necessary linear 
functionals on a cone which guarantee that properly normalized sequence of such 
functionals converges to an idempotent integral. 

One can easily see that fx g(x)Pn(dx) is the monotone homogeneous functional 
on a cone of positive bounded continuous functions which possesses the following 
strong sub-additive property 

/ gi(x)Vg2(x)Pn(dx) < I 9l(x)Pn(dx)+ J g2(x)Pn(dx). 
Jx Jx Jx 

lim 
n—ЮO 

= G(g), 

These properties lead to the remarkable consequence that the limit 

/ (g(x)rPn(dx)] 
'X 

if exists, is the sup-functional, i.e. 

G(giVg2) = G(gi)VG(g2). 

In Section 2, following Choquet's ideas [4], we introduce convex cone of nonlinear 
alternating of order 2 functionals that generalizes the above properties of the linear 
functionals. We show that the limits of convergent sequences of properly normalized 
functionals from the cone are the sup-functionals (the principle of the largest terms). 
The sup-functionals are the extremal elements of a cone of the totally alternatingl 
functionals. In Section 3 we prove a generalization of the Choquet theorem provides 
us by the sup-integral or the idempotent integral representation of the sup-functional 
(the analogue of the Riesz theorem) which is in some sense unique. In Section 4 we 
discuss some properties of the Fenchel-Moreau transform. Based on these results,! 
in Section 5 we prove under Gartner-type condition the Varadhan-type variational 
principle, i.e. that properly normalized sequence of such functionals converges to 
an idempotent integral. 

These tools make it possible to handle non-linear (non-commutative) asymptotic 
problems as one would handle classical LD. In Section 6 we apply this approach to 
an example of non-commutative LD, which is based on an analysis of mean-field 
quantum crystal model. 
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2. CONES O F ALTERNATING MAPS AND EXTREMAL ELEMENTS 

2 .1 . A l t e r n a t i n g funct ions o n a vector lat t ice 

Let E be a vector lattice tha t is a vector space with a cone E+ which defines the 
order s t ructure > on E such tha t for each pair x and y of elements of E there exists 
a supremum xTy in the space E. Consider a map g : ( E , T ) -> R+. The successive 
differences of g with respect to parameters o i , a 2 , . . . in E are defined as follows: 

V i # ( z ; a i ) := g(x) - g(xTax), 

V n + i £ ( z ; a i , . . . , a n , a n + i ) := V n #(x ; a i , . . . , an) - Vng(xTan+i\au..., a n ) . 

Since V n g ( x ; a i , . . . , an) is a symmetric function over a* we denote it by V n g (x ; {a;}), 
i G / , for a given set I. 

Def in i t ion 2 . 1 . [4] The map g : E -> R+ is called alternating map of the order 
n, n > 1, if V p / ( x ; { a ; } ) < 0 for each p < n and for every finite family {a ;} , 
0 < a^. The map g is called totally alternating map, if it is alternating of all 
orders n > 1. Denote by A n ( E , T) and Aoo(E, T) the cones of positive positively 
homogeneous functions g ( g(Xx) = \g(x), for A > 0) alternating of order n and 
totally alternating respectively. 

T h e o r e m 2 .2 . (The principle of the largest terms) Let (D,>) be a directed set 
and {gd}deD be a net of the functions gd G A 2 ( E , T ) . Let {td}deD be normalizing 
net of real numbers tending to 0. If the limit g of the net {gt

d
d}deD exists for all 

x £ E: 

^9dd{x) =9(x), 

then g G A 2 and for x\, x2 G E 

g(xiTx2) = g(xi) \i g(x2). 

P r o o f . If gd G A 2 , then gl
d
d is the alternative map of the order 2 [4]. Hence 

V i < # ( x i ; x 2 ) < 0 

and so 
9t

d
d{x1Tx2)>gtS(x1)VgtS{x2). (2.1) 

On the other hand, S72g(0]Xi,x2) < 0. 

Taking into account tha t by homogeneity g(0) = 0, we have 

9dd(xiTx2) < [9d(xi) + 9d(x2)]
td < 2t*[gd(xl)

uVgd(x2)
td). (2.2) 

Passing to the limit in (2.1) and (2.2), we obtain 

g(xiTx2) = g(xi)V g(x2). 

• 
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Remark 2.3. Note that (2.2) holds if the first inequality in (2.2) holds to within 
normalized by {td} terms vanishing as normalizing net {td} tends to 0. This fact we 
shall use in non-commutative example below. 

Definition 2.4. An element g G A 2 (E, T) is called the sup-functional if and only 
if for x\,x2 G E 

g(x\Tx2) = g(x\)V g(x2). 

Lemma 2.5. [4] A homogeneous functional / on E is the sup-functional if and 
only if it belongs to A2(E, T) and satisfies the following property: 

f(x) = f(y) -* f(xTy) = f(x) = f(y). 

Definition 2.6. [4] Let C be a convex cone in a vector space X. An element a G C 
is called the extremal element of the cone C if and only if the equation a = a\ + a2 

with a\ and a2 G C, implies a\ = \\a and a2 = \2a. 

Theorem 2.7. The sup-functionals are the extremal elements of the cone A^ (E, T) 

P r o o f . It follows immediately from definition by induction that sup-functionals 
are elements of AQO- Let / be a sup-functional and f = g + gi where g, g\ G AQQ. I 
Fix x,y e E+ such that f(x) = f(y) ^ 0. Then by Lemma 2.5 

g(xTy) + gi(xTy) = f(xTy) = f(x) = f(y). 

Thus 

0 < g(xTy) - g(x) = gx(x) - gi(xTy) < 0, I 

and so g(xTy) = g(x). Analogously g(xTy) = g(y). Then 

9(x) g(y) 

/(*) m а. 

In the case f(x) = f(y) = 0 functions g and g\ also vanish at these points and 
f(x) = ag(x) and f(x) = ag(x) for all a. Fix arbitrary points x and y in E + such 
that f(x) > f(y) > 0. Then 3a such that f(x) = f(ay) and in view of the results 
proved above, g(x) = g(ay) = ag(y). Thus 

g(x) g(vl x 

/(*) /(y) ' 

i.e. g(x) = Xf(x) for all x. • 

Remark 2.8. In [4] the more strong result is claimed without proof for the case 
when E+ is a cone of non-negative continuous functions of compact support on 
locally compact space: the extremal elements of AQO(E, T) are the sup-functionals. 
Unfortunately I do not know how to prove that. 
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2.2. Alternating functionals on a cone of positive continuous functions 

In this section we consider the cone A2(C£) of alternating functionals J defined 
on the cone C^ = C^(X) of positive bounded continuous functions on a Hausdorff 
topological space X. Following the classical extension procedure of the measure 
theory [1] and the theory of capacities [4] we are able to define A2(C£) in such 
a way that for J G A2(C^~) an analog of the inner regular property of Choquet's 
capacities is preserved and the monotone convergence theorem is valid [2]. 

Note that for alternating functionals the property of being in this sense continuous 
are determined by the order structure of the cone. 

Theorem 2.9. (monotone convergence) [2] If the increasing sequence of non-
negative functions {/n}n>i>/n £ C&" converges to a function / G C^", then J(fn) 
converges to J ( / ) . 

Theorem 2.10. Let (D,>) be a directed set. Assume that a net {Jd}deD, Jd £ 
A2(C^) converges to a functional J G A2(C^), for all g G C^(X). Let(not necessary 
bounded) continuous function / G C+(X) be uniformly J-integrable with respect to 
the net {Jd}deD, i-e. 

lim lim sup Jd ( ( / - 1V) V 0) = 0 

/V->oo deD 

and there exits limIv->oo J(f A TV) = J ( / ) . Then 

lim Jd(f) = J(f). 
atzD 

P r o o f . By the property of the cone A2(C^~) 

Jd(f)-Jd(f/\N)<Jd((f-N)yO). 

The statement follows from the Theorem 2.9 and the inequality 

l^d(/) - •/(/)! < |•/,,(/) - J^( / A JV)| + I J-d(/ A iNT) - ^ ( / A JV)| + | ^ ( / A iV) - -7(/)|. 

• 

3. SUP-FUNCTIONALS AND SUP-INTEGRALS 

In this section we show that a sup-functional J admits the representation J(g) = 
suVx9(x)V(x)> Note that the upper semi-continuous regularization V_ (see Defini
tion 3.5) of V induces for any set A the set function 1(A) := supa,G^4 V(x). The set 
function 1(A) is the inner regular Choquet capacity [4] with the property 

I(A1UA2)=I(A1)Vl(A2). 
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3.1. The sup-integral representation 

Let T be a locally compact topological space and /C+ = /C+(T) be a cone of non-
negative continuous functions of compact support on T. 

Theorem 3.1. Let J(-) be a sup-functional on the cone /C+(T). Then there exists 
a positive function V: T —> R + such that for all (j) G /C+ 

J((f>) = sup <P(x)V(x). (3.1) 
xeT 

Remark 3.2. This result was first formulated without proof in [4], section 53.1 
and than rediscovered and generalized by several authors [2, 3, 6, 9]. 

Let X be a Hausdorff totally regular (Tichonoff) space. It is well known that the 
Tichonoff space is homeomorphic to a sub-space of certain compact cube. Denote 
by e : X —> "cube" and by e[X] a homeomorphic map and an image of X under this 
map respectively. The set X := e[X] is called the Stone-Cech compactification of the 
space X. Let C+ (X) be a cone of non-negative continuous functions on the compact 
space X. For any g G C+(X) define a functional J induced by the sup-functional J 
on C^~(X) as follows: 

J(g) ••= J(g\e[xf), (3-2) 

where g\erx^ is the restriction of g on e[X], and o denotes the composition of func

tions. It is easy to see that J is the sup-functional. 

Definition 3.3. A sup-functional J on C^ is called tight if for any e > 0 there 
exists a compact set K£ CC X such that for all g G C^(X), 0 < g < 1, with g(x) = 0 
for all x G K£, the inequality J(g) < e takes place. 

Theorem 3.4. [2] Let J be the tight sup-functional on C^(X). Then there exists 
a function V: X -» R + such that for all g G C$(X) 

J(g) = suv g(x)V(x). (3.3) 
xex 

P r o o f . In view of Theorem 3.1, functional J(-) defined by (3.2) has the repre
sentation 

J(g) = suvg(x)V(x) 
xex 

with a certain V(-). Fix £ > 0 and xo $ e[X]. Then xo & e[K£] where K£ is compact 
set, chosen according to the tight property. Since e is the homeomorphic map, e[K£] 
is compact set in X and hence closed. Since X is the normal space there exists 
a continuous function g£y 0 < g£ < 1, such that g£(xo) = 1 and g£(x) = 0, for 
x G e[K£]. Then by the tightness condition 

0 < V(x0) < J(ge) = J(9e\e[x] oe)<e. 
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Thus, by arbitrariness of e for all x $_ e[X] we get V(x) = 0. By the Stone-Cech 
theorem for all g G C^(X) there exists a continuous extension g of g to X. Hence 

J (9) = J is) = sup </(£)y(:r) = sup g(x)V(x), 
xex xex 

with V(x) := V(e(x)). • 

Definition 3.5. The function V defined by 

V(x) := limsup V(y), 
y-+x 

is called the upper semi-continuous regularization of V (USC-regularization). 

Next theorem gives a necessary and sufficient condition of tightness. 

Theorem 3.6. [2] The USC-regularization V of V has the compact level set 
{x e X : V(x) > e}, e > 0, if and only if the functional J is tight. 

3.2. Uniqueness of the representation 

Theorem 3.7. [2] Let X be a topological space. Let V be the USC-regularization 
of V : X —> R+. Then for all continuous functions g : X -> R+ 

sup g(x)V(x) = sup g(x)V(x). (3.4) 
xex xex 

Let X be a totally regular space. 

Theorem 3.8. [2] Let bounded sup-functional J admits the representation (3.3). 
Then the representation is unique in the USC-class. 

Definition 3.9. The functional J which admits the representation 

J(g) = sup g(x)V(x), (3-5) 
xeT 

with the USC function V is called the sup-integral with respect to the density V. 

4. CONVEX DUALITY 

It is well known that two measures on a locally convex space coincide provided 
characteristic functions are equal. It turns out that in some sense similar result 
takes place for sup-integrals with the Fenchel-Moreau transform playing the role of 
the Fourier transform. 

Let E, E be a dual pair of locally convex vector spaces. Let Ji and J2 be 
sup-integrals with respect to V\ and V2 correspondingly defined by (3.5) and let 
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a function h(-) coincides with the Fenchel-Moreau transforms /* and /<* of the 
functions f\ = — InVi and fi — — lnV^: 

h(x')^fl(x'):^^\(x,x')-f\(x)\ 
xex 

h(x') = ti(x'):=BUv[(x,x')-f2(x)]. 
xex 

We show that if h(-) meets the smoothness conditions of Theorem 4.7 then 

h* = h=f2, 

i. e. functions V\ and V2 and hence the sup-integrals J\ and J2 coincide. 

Remark 4 . 1 . At first sight this statement looks like the Young-Fenchel theorem 
which states that a convex lower semicontinuous function / coincides with the bipolar 
/**. However, in our case conditions are imposed on the polar /* instead of / and 
so the arguments of the proof are completely different. We shall use this result to 
prove the Gartner type Theorem 5.3 with h being the limit function in Gartner's 
hypothesis (see Definition 5.2). 

We start with the case E = Rm. 

Definition 4.2. A concave function / : Rm —> R is called essentially smooth if it 
satisfies the following conditions: 

1. C:=int(dom/) ^ 0 , 

2. / is differentiable for all x G C, 

3. for any convergent sequence {xn}n>\, xn G C such that the limit x $ C, 

lim |V/(xi) | = +00. 
i—>oo 

Theorem 4 .3 . Let / : Rm —r (—00 ; 00] be the lower semicontinuous (LSC) function 
and let there exists a convex essentially smooth function h: Rm -> (—00; 00] such 
that 

f*(x') = h(x'), Vx' G int(dom/i). (4.1) 

T h e n / = /** = /**. 

Remark 4.4. This theorem is a modification of lemma 3.2 of [10]. 

Assume now that E is a locally convex space. 
Denote by Jr(E) a class of closed vector subspaces of E with the finite codimension 

partially ordered by D. Subspace V of E belongs to T(E) (i. e. the quotient space 
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E/V of E is the finite dimensional space) if and only if there exists a finite number 
of elements x[,..., x'n in E' such that 

V = {xeE:(x,x'i)=0,i=l,...,n}. 

For all closed subspaces V G F(E) denote by pv the quotient map of E onto E/V, 
i.e. 

pv(x) = x +V, 

where x G E and V G F(E). pv is Linear continuous open map for the quotient 
topology. A topological dual (E/V)' of E/V is isomorphic to the annihilator of V, 
i.e. 

(.E/V)1 = V-1 := {V G £ ' : (x,x') = 0, x G V}. 

The dual map p'v: V^ -> E' of the quotient map pv is the canonical map: pv(x') = 
tv(x') := x' where x' G Vj1. Let / : E -> R and h:E' -> R be arbitrary real functions. 
Denote by I?v/- -E/V -> R the image of the function / under the map pv and by 
hp'y'.V1- -> R the inverse image of the function /i under the map pv: 

Pvf(pv(x)) := inf /(y); 
2/-z£V 

/ i p^x ' ) := MP 'V(* ' ) ) = h\v±(x') := /.(>'). 

Definition 4.5. A subset of elements x G A is called c-interior of A if for all y G JE 
there exists e > 0 such that x + ey G .4. Denote this subset by c — int A. 

Remark 4.6. If A is the absorbing set then by definition c — int A ^ 0 and 0 G 
c - int A. 

Theorem 4.7. [2] Let f:E -» (-co , oo] be the LSC function for the weak topology 
a(E ,E') and let pvf be the LSC function for all V. Assume that there exists a 
function h: E' —> (—oo ; oo] such that 

1. dom/i is the absorbing set; 

2. hp'v is the essentially smooth function for all V G F(E); 

3. f*(x') = h(x') for all x' ec- int (dom/i). 

T h e n / = /** = h*. 

5. THE VARADHAN-TYPE VARIATIONAL PRINCIPLE 

In this chapter we tie together the results of previous sections to prove the Varadhan-
type variational principle using an analog of the characteristic functions method of 
the week convergence theory. 
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Definition 5.1. A net of functionals {Ja}aeD, Ja € ^ ( C ^ ) ? is called exponen
tially tight with a net {na}aeo, na —r oo, if for any e > 0 there exists a compact 
set KE CC X such that 

l i m s u p ( J a ( ^ ) ) 1 / n a <e (5.1) 
aeD 

for all g G C6
+(X), 0 < g < 1, with p(z) = 0 for all x G K£. 

Definition 5.2. We say that the Gartner condition for the net {Ja}aeD, Ja G 
A2(C^) is valid if there exists a function h: Ef -> R such that 

lirn (J в (e 0 -<-' x '>)) 1 / П " = e ^ , (5.2) 

and the following hypothesizes are fulfilled: 

1. domh := {x G E: h(x) < 00} is the absorbing set; 

2. VV G -^(i?) the restriction h to the finite subspace V1- C E' is essentially 
smooth. 

T h e o r e m 5.3. [2] Let a net {Ja}a^D of bounded normalized functionals Ja G 
A2(Cf) be exponentially tight and the Gartner condition is fulfilled. Then for all 
gec+ 

\im(Ja(gn«))1/n° = sup[g(x)e-h*(% (5.3) 
*£D xex 

where 
h*(x) = sup [(x,xf) — h(x')] 

x'ex' 

has compact level sets. 

P r o o f . Since Ja belongs to ^ ( C ^ ) then [4] the functionals (Ja((•)*)) belong 
to A2(C^~) for all t > 1. Consider a topology of pointwise convergence on the cone 
A2(C£). The set 

K = {JeA2: J}(1) = 1 

is the compact (by Tichonoff's theorem) base of the cone. Note that 

(Ja((-)na))1/naeK. 

Then for each subnet D' there exists a subsubnet D" which converges to a functional 
J" e A2: 

lim (Ja{gn°))l/n" = J"(g), g e C+ (5.4) 
ftGD 

In view of Theorem 2.2 the functional J" possesses the sup-property: 

J"(5iV52) = J " ( p i ) V J " ( 5 2 ) . 
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Since the net {Ja}aeD is exponentially tight the functional J " is tight. Since 
the vector space is totally regular the sup-functional J " has by Theorem 3.4 the 
sup-integral representation with the unique (see Theorem 3.8) USC function V" on 
E which by Theorem 3.6 has compact level sets. Thus from (5.4) we get for all 

JG Ct ' 

Urn (Ja(g
n«))1/n* = supg(x)V"(x). (5.5) 

<*€D" xeE 

We next show that for x' £ c — int (dom h) 

l /n Q 

xeE 
lim ( jQ(en°<'x '>))1 / n Q = sup[e<*'xV'(x)]. (5.6) 

aeD" \ / .cR 

Indeed, for any x ' G c - int (domh) there exists e > 0 such that h ((1 + e)x') < oo. 
(Note that by the hypotheses (1) of Definition 5.2, c — int (dom h) / 0.) By the 
monotone property of the functionals Ja an analogue of the Chebyshev inequality 
is valid and so 

(Ja((e<--- > - N) V 0)"")) < -- — i 

l/Пo 

Hence, passing to the limit, in view of (5.2) with h ((1 + e)x') < oo, we get: 

limsup ( JnW''* l - N) V 0 ) U a ) f 

/V-+oo a e D 

lim lim sup (Ja((e<'x"> -N)V 0)n°)) "° = 0. 

(A function with this property is called uniformly exponentially J-integrable w.r.t 
the net Ja.) Then the conditions of Theorem 2.10 are fulfilled, (5.6) is valid and 
hence 

ehW = sup[e<*'xV'(aO], 
xeE 

for all x ' G c - int (dom h). By Theorem 4.7 it follows that V" = e~h* and hence all 
functions V" coincide for all subsubnets D". • 

Let E = Rn. The main goal of the next theorem is to show that in this case the 
exponential tightness follows from the Gartner condition. 

Theorem 5.4. [2] Let a net {Ja}aeD meets Gartner's condition. Then the state
ment of Theorem 5.3 is valid. 

6. NON-COMMUTATIVE LARGE DEVIATIONS 

The problem is to describe the thermodynamic limit of the free energy density for 
a class of model of quantum anharmonic crystal [7]. The crystal is made of a large 
number of anharmonic oscillators with mean-field type coupling. 
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Each anharmonic oscillators individually is described by a quantum mechanical 
Hamiltonian which is a Schrodinger operator of the form 

н0 = Ąð*x + v(x) (6.1) 

acting in L2(R, dx), where V(x) « |x|2s for large \x\. The quantum crystal itself con
sists of some large number IV of oscillators. For each k the corresponding oscillator 
coordinate Xk ranges over R. The configuration of all the oscillators is a point x in R^ 
and the corresponding Hilbert space describing the quantum states is L2(RN,dNx). 

The Hamiltonian is the sum of two parts. The first is 

IV 

Я0

лr = E Я o , (6-2) 
fe=i 

г(0 where the operator HQ ' is the oscillator Hamiltonian depending on the fcth coordi
nate. The other part of the Hamiltonian is a multiplication operator. It is specified 
by a continuous bounded function / on R. It is 

WN = J(N-'Y,X\ 

The total Hamiltonian of interest is 

HN = HN + WN. 

(6.3) 

(6.4) 

This is a Schrodinger operator in a high dimensional space. Since V(x) w |x | 2 5, 
by known properties of such operator [5], the Hamiltonian HN generates a Tr-class 
semigroup exp{—tHN}. 

The problem is to compute the limit 

lim 
n—юo 

IV 

Tr exp \ -t HN + Nf N-1 ^ xk 

k=i 

l/IV 

(6.5) 

-.IV 
We first note that in the linear case Nf(N 1 ^2k=i Xk) ~ Yli=i xi-> w e simply have 

Tr expj-íí^ + f^^U = Tr[exp{-í(Я 0 + xi)}], 

and so the first part (5.2) of the Gartner condition is fulfilled. Let I be the Legendre 
transform of the function G(t) ~ logTrexp{—t(Ho + xi)}. As it follows from the 
preceding sections, we may expect that a limit in (6.5) (if exists) has the form 

s u p e / ( u ) e - / ( u ) . 



The Principle of the Largest Terms and Quantum Large Deviations 241 

Thus, in order to prove large deviations with the help of Theorem 5.3, we have to 
show that the functional 

ЃjN(Nf) = Tr 
П 

-,,1/N 

expł-tlHľ + NfÌN-^Xk 
fc=i 

possesses some properties of the class A2(C^). 

We first note that j]j (Nf) is of course monotone and positively homogeneous 
functional. So we have to check that it is alternative functional of the order 2. This 
property is equivalent [4] to the strong sub-additivity of the functional in the sense 

jllN(Nfi V f2) < JliN(Nh) + jJN(Nf2). 

The main difference between classical large deviations and quantum large devia
tions is that this inequality is not correct in the case of consideration. Nevertheless, 
we will prove that this is valid asymptotically. 

To this end we use the Feynmann-Kac formula to reduce the quantum mechanics 
problem to a probability problem. This is just the standard reduction of quantum 
statistical mechanics to classical statistical mechanics in higher dimension. 

We start with the quantum oscillator Hamiltonian H0. It is a self-adjoint operator 
and has eigenvector ipo > 0 with eigenvalue Ao- Consider the operator Ho given by 

^l(HQ - A0)Vo = - Q a 2 + u(x)dx) , (6.6) 

where u(x) = dxipo/ipo- The operatorHo is a self-adjoint operator acting in a new 
Hilbert space L2(R,dl/°), where dv°(x) = ^(x) dx. It has eigenvector 1 with eigen
value 0. By the definition Ho is unitary equivalent to the operator H0 - A0 acting 
in the original space. 

The one-parameter semigroup of operators associated with the generator 

exp{-£H0} 

is positivity preserving with exp{-£H0}l = 1. Thus the semigroup determines a 
Markov process according to a standard construction. Since it is self-adjoint, the 
process may be taken to be a stationary time-reversible process with i/° as the 
invariant measure. We assume that 0 < t < T. The relation between the process 
and semigroup is 

exp{-tH0}g(x) = J 9(y)po(x,y,t)dv°(y): (6.7) 

where Po(x,y,t) = Po(y,x,t) is the density of transition probability function with 
respect to the measure v°. A Markov process with a generator of this type is a 
diffusion process with continuous sample path defined by a probability measure fix 
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on a space of continuous function fir = C([0,T], R) as follows: if tp is a function of 
the form <p(u>) = F (w( i i ) , . . . ,<J(*TO)), 0 < h < ... < tm < T, then 

A**M = / ••• / -Z71(^i5---^m)Po(^,^i^i)Po(^i,-r2,t2 - t i ) 
JR JR 

. . .Po(^m-l ,^m^m ~ *m-l) dl/°(xi) . . . dl/°(xm). (6.8) 

If S is a Borel subset, /J,X(B) is the probability that a particle starting at x at time 
zero shall follow one of the trajectories in B. 

Since we assumed that V(x) ~ \x\2s for some 8 > 1 then log^o(-p) ~ \x\s+1 [5]. 
This says that when the potential V grows faster than quadratic, the probability 
density \ip0(x)\2 1s more concentrated than Gaussian. 

The corresponding semigroup is intrinsically ultracontractive [5] and so there exist 
Ci and c2 such that 

ci <Po(a?,y,t) < c2. (6.9) 

The intuition is that the motion is a combination of symmetric diffusion and 
systematic drift given by the u(x). Since the drift is growing faster than linear the 
evolution of the process from a starting point x to the stationary distribution is 
extraordinarily rapid and uniform. 

Since each quantum oscillator corresponds to a diffusion process, the entire quan
tum crystal may be represented as a collection of independent diffusion processes 
u; = (cOr,..., cO/v) with initial conditions x = (x\,..., xIv) 

duk = -u(uk) dt + dWk\ k = 1 , . . . , TV, (6.10) 

where Wk are independent Wiener processes. 
The Hilbert space for the quantum crystal is L2(R iv, dNv°). The independent 

quantum harmonic oscillators in the crystal have Hamiltonian 

H0
N = X X } = E - (\dl +«(-0<^) • (6-H) 

The ground state for the system of independent oscillators is given by the wave 
function TJJN with 

« = W - (6-12) 

Here ipN(x) is the product of the ipo(%k) over fc, and A^ = iVAn. 
The corresponding diffusion generator is defined by 

H0
N = - i « - A0"X = E E - i - ^ . (6-13) 

ro 

This acts in L2(RN\dNu°), where dNu° = HN
=ldv® is the invariant measure of the 

diffusion process. The stationary process with this generator consists of independent 
diffusion processes wk for k = 1 , . . . , N. We now use u to denote the system of all 
these processes taken together. 
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The process is defined by a probability measure iiN = RN
=iV>xi on a space of 

continuous function Q.% = C([0,T],R7V) as follows: if <p is a function of the form 
ip{u>) = F(a ; ( t i ) , . . . ,w(tm)), 0 < h < . . . < tm < T, then 

fJ<x((P)= / ••• / F(xu...,xrn)p(x,xi1t1)p(x1,x2,t2 - t i ) 
JK" Jfl" 

. . . p ( x m - i , x m j t m - tm_i) d ' V ( x i ) . . .dNv°(xm), (6.14) 

where p(x,xi , t ) is a density of transition probability function with respect to the 
measure dNu°. 

Our next purpose is to represent the quantum crystal with interaction. Let 
HN = H^ + WN be the total Hamiltonian for the crystal. If we transform it 
to the independent diffusion process setting we get an operator 

HN = ±(HN - \NWN = HN + WN. (6.15) 

The Feynman-Kac formula for the associated semigroup is 

exp{-tHN} = fN d/xfexp IN £ f(SN(u))dT\ , (6.16) 

where SN(UJ) = N'^fL^T). 
Thus the problem is to study the asymptotics of the sequence of functionals 

f dNv\x)í d /zfexpí iV í f(SN(u))dT] 
JRN jn" jo 

1/ЛГ 

(6.17) 

So we consider 

JN(Nh V h) = [ dNu°(x) f d»N exp [N C h V h(SN(u)) dr ) (6.18) 
JRN JnN \ Jo J 

and our aim is to show that functional is asymptotically strongly sub-additive. 
Let XA(W) be the indicator of the set 

A = {u € nN : h(SN(u)) > f2(S
N(u)), 0 < r < T} 

and XB(W) be the indicator of 

B = {uj€nN:f2(S
N(uj))>h(SN(uj)), 0 < r < T } , 

then 

JN(NhVh) = f NdNv°(x) f d / ^ e x p j i V j T / i V / 2 ( 5 ^ H ) d r | 
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= / dNv°(x) [ d^N

XA(u)exp{N Th(SN(u))dr} 
JRN JnN Jo 

+ / dNv°(x) [ d^N

XB(u)exp\N T f2(SN(u))dT) 
JRN JQN [ J o j 

- / dNv\x)[ d»N[l-(XA(u)+XB(u))] 
JRN JQN 

+ , 
JRN 

rT н xexplNj hVh(S?(u))dT\. (6.19) 

Passing to the inequality we get 

JN(Nh V h) < JN(Nh) + JN(Nf2) 

+ [ dNv°(x) [ dfiN[l-(xA(uj) + XB(uj))} 
JRN JQN 

rp 

x exp{iV / A V f2(SN(u)) dr} , (6.20) 
Jo 

and so we will be done if show that normalized integral in the last display is vanishing 
as N tends to infinity. To this end consider the last integral with T = vrth and note 
that by Jensen's inequality | 

/ dNv\x)[ d ^ [ i - ( x A M + x B M ) ] 
JI^ JnN 

{ pmh ^ 

Nj hVf2(S?(u))dT\ 
= / dNv°(x) [ dtf[l-(xA(u>) + XB(o>))] 

JRN JQN 

{ m-1 A \ 

^Nh-1 ^ hhvf2(S?+kh(u))dT\ 
< h-'Tdrf dNv°(x) [ d»N[l-(xA(u)+XB(u>))] 

jo JRN JQN 

x exp | ^ - W i V h(S?+kh(u>)) \ 
I k=0 J 

< sup / dNv°(x) [ d ^ l l - ^ H + XflM)] 
re[o,n] JRN JQN 

x exp I ̂  Hft/i V h(SN

+kh(uj)) \ . (6.2lj 
I k=0 J I 

Consider a set of sequences S = { x i , . . . , x m } with 

-E/c — ( ^ ^ > • • • > x k /» Â  = l , . . . , 7 7 l . 
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Let 

a^Js:/^^-1^^)^/.^-1^^),^!'---.^}-

/ 3 = J s : / 2 ( i V - 1 f ; x « ) > / i ( i V - 1 f ; x « ) , ^ l , . . . , m } 

and let Xa and xp be the indicators of this sets. 
By definition of the measure fiN (see (6.14)) for each r 6 [0, h] 

[ dNv°(x) [ dtf[l-(xA(u)+XB(u))] 
JRN JQN 

x exp J 5 Nhfx V f2(S?+kh(u>)) \ 
lfc=0 J 

= fRN--fRJ1 - ^«(E) +^(£))]exp JE-Vft/i V/2 U - 1 ^ ^ ? ) } 

p(x, xi, h)p(xi ,x2,h)... p(xm-!, xm, h)dNv°(x)dNv0(x!)... dNv°(xm). (6.22) 

Next note that by ultracontractivity the following inequality for the right hand side 
of (6.22) is fulfilled 

r.h.8. < Km[ ...[ [l-(x«(--)+ */»(--))] 
JRN JRN 

exp J f > f t / i V/2 (iV-1^xii)j}d^°(xi)...d^°(a;m).(6.23) 

All sequences in the integrals contains at least a pair ki and k2 such that 

and 

/ i ^ E ^ ) - - / - ^ - 1 ^ ! ? ) 

/ - ( - v - 1 ^ ) - - / ! ^ - 1 ^ ) -

Without lost of generality we may assume that the last inequality are fulfilled for 
k2 = 1. Introduce a set U = {xi G R̂  : f2{N~1^=1x

i) > /^IV"1 J ^ *(i))}. 
Thus the integral in (6.23) we can rewrite as follows 

Km [ ...[ [l-(Xa(E)+X/?(E))] 
jflw JRN 

x exp Jf>f t / i V h U-1 f > « J J d^°(xi).. .d^Vf^) 
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< Km í dNv°(Xl) exp I Nhf2 (N'1 f^ x? ) 1 

x ( ^ . . . ^ e x p / f ^ A V / J i V - 1 ^ 

= Km í dNu°(xi)exp | Nhf2 (N'1 ^ z [ ť ) ) 1 

x ( f exp i Hft/i V /2 í iV-1 JT x® U d V (x) j . (6.24) 

Finally note that 

l/ŻV 

1//V 

( ! d"V(*i)exp {jVft/b (iV"' £><<>) | ) 

< (^expJ^^-gxS")})"^^^", 
/ r \1/N 

< K( / d ' V t x ) ) . (6.25) 

Let m = JRydu°(y) and let for the definiteness /i(m) > f2(m). It means that 

points of the set U are such that iV-1 S i = 1 x̂  is separated from the expectation. 
Thus taking into account the strong ergodic property of i/° we get the desire result. 

In this paper we restrict ourselves by proving strong sub-additive property of the 
functional and sup-integral representation of the limit. Full analysis will be given 
elsewhere. 

(Received May 2, 2002.) 
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