István Berkes; Lajos Horváth
Approximations for the maximum of stochastic processes with drift

Persistent URL: http://dml.cz/dmlcz/135532

Terms of use:

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz
APPROMATIONS FOR THE MAXIMUM OF STOCHASTIC PROCESSES WITH DRIFT1

ISTVÁN BERKES2 AND LAJOS HORVÁTH3

If a stochastic process can be approximated with a Wiener process with positive drift, then its maximum also can be approximated with a Wiener process with positive drift.

Keywords: drift, Wiener process, partial sums
AMS Subject Classification: 60G17, 60F17

1. INTRODUCTION AND RESULTS

Let X_1, X_2, \ldots be a sequence of independent, identically distributed random variables with

$$EX_i = \mu > 0 \text{ and } 0 < \text{var}X_1 = \sigma^2 < \infty.$$ \hspace{1cm} (1.1)

The motivation of our note is the following central limit theorem due to Teicher [6]. Let

$$S(j) = \sum_{1 \leq i \leq j} X_i$$

and

$$0 \leq \alpha < 1.$$ \hspace{1cm} (1.2)

Theorem 1.1. If (1.1) and (1.2) hold, then

$$\frac{1}{\sigma n^{1/2-\alpha}} \left\{ \max_{1 \leq j \leq n} \frac{S(j)}{j^\alpha} - \mu n^{1-\alpha} \right\} \xrightarrow{D} N(0,1),$$

where $N(0,1)$ denotes a standard normal random variable.

1Presented at the Workshop “Perspectives in Modern Statistical Inference II” held in Brno on August 14–17, 2002.

2Supported by the Hungarian National Foundation for Scientific Research, Grants T 29621, T 37886 and by NSF grant INT-0223262.

3Supported by NATO grant PST.CLG.977607 and by NSF grant INT-0223262.
Since
\[
\frac{1}{\sigma n^{1/2-\alpha}} \left\{ \frac{S(n)}{n^\alpha} - \mu n^{1-\alpha} \right\} \overset{D}{\to} N(0,1),
\]
Theorem 1.1 strongly suggests that
\[
\max_{1 \leq j \leq n} \frac{S(j)}{j^\alpha} - \frac{S(n)}{n^\alpha} = o_P(n^{1/2-\alpha}),
\]
i.e. $S(j)/j^\alpha$ reaches its largest value on $[1,n]$ nearly at $j = n$. Indeed, Chow and Hsiung \cite{1} proved the following result:

Theorem 1.2. If (1.1) and (1.2) hold, then
\[
\max_{1 \leq j \leq n} \frac{S(j)}{j^\alpha} - \frac{S(n)}{n^\alpha} = o(n^{1/2-\alpha}) \quad \text{a.s.} \quad (1.3)
\]

For generalizations of (1.3) we refer to Chow, Hsiung and Yu \cite{2}.

We show that (1.3) holds not only for partial sums of independent identically distributed random variables, but for any process if they can be approximated with a Wiener process with drift. Let $\Gamma(t)$ be a stochastic process on $\mathbb{D}[1,\infty)$.

Theorem 1.3. We assume that there exist a Wiener process $\{W(t), 1 \leq t < \infty\}$ and constants $\tau > 0$, $\gamma > 0$ such that
\[
\Gamma(t) - (\tau W(t) + \gamma t) = o(t^{1/\nu}) \quad \text{a.s.} \quad (t \to \infty) \quad (1.4)
\]
with some $\nu > 2$. If (1.2) holds, then
\[
\sup_{1 \leq t \leq T} \frac{\Gamma(t)}{t^\alpha} - \frac{\Gamma(T)}{T^\alpha} = o(T^{1/\nu-\alpha}) \quad \text{a.s.} \quad (T \to \infty) \quad (1.5)
\]
and
\[
\sup_{1 \leq t \leq T} \frac{\Gamma(t)}{t^\alpha} - \frac{\tau W(T) + \gamma T}{T^\alpha} = o(T^{1/\nu-\alpha}) \quad \text{a.s.} \quad (T \to \infty). \quad (1.6)
\]

Theorem 1.3 implies immediately an improvement of the rate in (1.3) under stronger moment conditions on X_1.

Theorem 1.4. If (1.1), (1.2) hold and
\[
E|X_1|^\nu < \infty \quad \text{with some } \nu > 2, \quad (1.7)
\]
then
\[
\max_{1 \leq j \leq n} \frac{S(j)}{j^\alpha} - \frac{S(n)}{n^\alpha} = o(n^{1/\nu-\alpha}) \quad \text{a.s.} \quad (n \to \infty). \quad (1.8)
\]
Theorems 1.3 and 1.4 will be proven in the next section. The following two corollaries are immediate consequences of (1.6) and the properties of the Wiener process. Let \([\cdot]\) denote the integer part function.

Corollary 1.1. We assume that the conditions of Theorem 1.3 are satisfied.

(i) If \(0 < \alpha < 1/2\), then
\[
\sup_{1 \leq t \leq \lceil nu \rceil + 1} \frac{\Gamma(t)}{t^\alpha} - \gamma([nu] + 1)^{1-\alpha} \xrightarrow{\mathcal{P}[0,1]} \frac{\tau W(u)}{u^\alpha}.
\]

(ii) If \(1/2 < \alpha < 1\), then
\[
\sup_{1 \leq t \leq \lceil nu \rceil + 1} \frac{\Gamma(t)}{t^\alpha} - \gamma([nu] + 1)^{1-\alpha} \xrightarrow{\mathcal{P}[1,\infty]} \frac{\tau W(u)}{u^\alpha}.
\]

(iii) For any \(0 < c_1 < c_2 < \infty\)
\[
\sup_{1 \leq t \leq \lceil nu \rceil + 1} \frac{\Gamma(t)}{t^\alpha} - \gamma([nu] + 1)^{1-\alpha} \xrightarrow{\mathcal{P}[c_1,c_2]} \frac{\tau W(u)}{u^\alpha}.
\]

Corollary 1.2. If the conditions of Theorem 1.3 are satisfied, then
\[
\limsup_{T \to \infty} \frac{T^\alpha}{(2T \log \log T)^{1/2}} \sup_{1 \leq t \leq T} \frac{\Gamma(t)}{t^\alpha} - \gamma T^{1-\alpha} = \tau \quad \text{a.s.}
\]

2. PROOFS

The first two lemmas show that \(\Gamma(t)/t^\alpha\) and \((\tau W(t) + \gamma t)/t^\alpha\) will reach their largest value on \([1,T]\) on the second half of this interval.

Lemma 2.1. If (1.2) holds and \(\gamma > 0\), then there is a random variable \(T_1\) such that
\[
\sup_{1 \leq t \leq T} \frac{\tau W(t) + \gamma t}{t^\alpha} = \sup_{T/2 \leq t \leq T} \frac{\tau W(t) + \gamma t}{t^\alpha}, \text{ if } T \geq T_1.
\]

Proof. By the law of iterated logarithm for \(W\) we have
\[
\frac{1}{T^{1-\alpha}} \sup_{1 \leq t \leq T} \frac{\tau W(t) + \gamma t}{t^\alpha} \to \gamma \quad \text{a.s. } (T \to \infty)
\]
and
\[
\frac{1}{T^{1-\alpha}} \sup_{1 \leq t \leq \frac{T}{2}} \frac{\tau W(t) + \gamma t}{t^\alpha} \to \left(\frac{1}{2}\right)^{1-\alpha} \gamma \quad \text{a.s. } (T \to \infty),
\]

implying the statement of Lemma 2.1. \(\square\)
Lemma 2.2. If the conditions of Theorem 1.3 are satisfied, then there is a random variable T_2 such that

$$
\sup_{1 \leq t \leq T} \frac{\Gamma(t)}{t^\alpha} = \sup_{T/2 \leq t \leq T} \frac{\Gamma(t)}{t^\alpha}, \text{ if } t \geq T_2.
$$

Proof. The approximation in (1.4) implies that

$$
\sup_{1 \leq t \leq T} \frac{|\Gamma(t) - (\tau W(t) + \gamma t)|}{t^\alpha} = O(\max(1, T^{1/\nu - \alpha})) \quad \text{a.s.}
$$

and therefore (2.2) and (2.3) yield

$$
\frac{1}{T^{1-\alpha}} \sup_{1 \leq t \leq T} \frac{\Gamma(t)}{t^\alpha} \to \gamma \quad \text{a.s. } (t \to \infty)
$$

and

$$
\frac{1}{T^{1-\alpha}} \sup_{1 \leq t \leq T/2} \frac{\Gamma(t)}{t^\alpha} \to \left(\frac{1}{2}\right)^{1-\alpha} \gamma \quad \text{a.s. } (T \to \infty).
$$

Lemma 2.2 follows from (2.4) and (2.5). □

Let $F_0(t)$ be the uniform distribution function on $[0,1]$. For any $0 < \alpha < 1$, $F_\alpha(t)$ denotes the uniform distribution function on $[1,1/\alpha]$.

Lemma 2.3. Let $0 \leq \alpha < 1$ and Y_1, Y_2, \ldots be independent, identically distributed random variables with distribution function $F_\alpha(t)$. Then

$$
\max_{1 \leq j \leq n} \frac{1}{j^\alpha} \sum_{1 \leq i \leq j} Y_i = \frac{1}{n^\alpha} \sum_{1 \leq i \leq n} Y_i.
$$

Proof. It is enough to show that

$$
\left(1 + \frac{1}{j}\right)^\alpha \sum_{1 \leq i \leq j} Y_i \leq \sum_{1 \leq i \leq j+1} Y_i \quad \text{for all } 1 \leq j < \infty.
$$

Since $Y_i \geq 0$, (2.6) holds if $\alpha = 0$. If $0 < \alpha < 1$, we observe that $1 \leq Y_i \leq 1/\alpha$ and

$$
\left(1 + \frac{1}{j}\right)^\alpha - 1 \leq \frac{\alpha}{j}.
$$

Hence

$$
\left\{ \left(1 + \frac{1}{j}\right)^\alpha - 1 \right\} \sum_{1 \leq i \leq j} Y_i \leq \frac{\alpha}{j} \sum_{1 \leq i \leq j} Y_i \leq 1 \leq Y_{j+1},
$$

completing the proof of (2.6). □
Lemma 2.4. If (1.2) holds and $\tau > 0$, $\gamma > 0$, then

$$\sup_{1 \leq t \leq T} \frac{\tau W(t) + \gamma t}{t^\alpha} - \frac{\tau W(T) + \gamma T}{T^\alpha} = O\left(\frac{\log T}{T^\alpha}\right) \quad \text{a.s.}$$

Proof. Let $\mu_* = \mu_*(\alpha)$ and $\sigma_* = \sigma_*(\alpha)$ be the mean and standard deviation of a random variable with distribution function $F_\alpha(t)$. Next we define

$$c = \left(\frac{\mu_* \tau}{\gamma \sigma_*}\right)^2. \quad (2.7)$$

Obviously,

$$\sup_{1 \leq t \leq T} \frac{\tau W(t) + \gamma t}{t^\alpha} = \tau \sup_{1/c \leq s \leq T/c} \frac{W(cs) + \gamma cs}{(cs)^\alpha} \quad (2.8)$$

$$= \tau c^{1/2-\alpha} \sup_{1/c \leq s \leq T/c} \frac{W_1(s) + \frac{\gamma}{\tau} c^{1/2}s}{s^\alpha},$$

where

$$W_1(s) = c^{-1/2}W(cs), \quad 0 \leq s < \infty \quad (2.9)$$

is a Wiener process. By (2.7) and (2.8) we have

$$\sup_{1 \leq t \leq T} \frac{\tau W(t) + \gamma t}{t^\alpha} = \tau \sup_{1/c \leq t \leq T/c} \frac{\sigma_* W_1(t) + \mu_* t}{t^\alpha}. \quad (2.10)$$

Using the K–M–T approximation (cf. Komlós, Major and Tusnády [3, 4] and Major [5]) we can define Y_1^*, Y_2^*, \ldots, a sequence of independent, identically distributed random variables with distribution function $F_\alpha(t)$ such that

$$\sum_{1 \leq i \leq t} Y_i^* - (\sigma_* W_1(t) + \mu_* t) = O(\log t) \quad \text{a.s.} \quad (t \to \infty). \quad (2.11)$$

By Lemmas 2.1, 2.2 and (2.10) there is random variable T_0 such that

$$\sup_{1/c \leq t \leq T/c} \frac{\sigma_* W_1(t) + \mu_* t}{t^\alpha} = \sup_{T/(2c) \leq t \leq T/c} \frac{\sigma_* W_1(t) + \mu_* t}{t^\alpha} \quad (2.10)$$

and

$$\sup_{1/c \leq t \leq T/c} \frac{1}{t^\alpha} \sum_{1 \leq i \leq t} Y_i^* = \sup_{T/(2c) \leq t \leq T/c} \frac{1}{t^\alpha} \sum_{1 \leq i \leq t} Y_i^*,$$

if $T \geq T_0$. Hence (2.11) yields, as $T \to \infty$,

$$\sup_{1/c \leq t \leq T/c} \frac{\sigma_* W_1(t) + \mu_* t}{t^\alpha} - \sup_{1/c \leq t \leq T/c} \frac{1}{t^\alpha} \sum_{1 \leq i \leq t} Y_i^* = O(T^{-\alpha} \log T) \quad \text{a.s.} \quad (2.12)$$
Putting together Lemma 2.3 and (2.11) we conclude

$$\sup_{1/\varepsilon \leq t \leq T/c} \frac{1}{t^\alpha} \sum_{1 \leq i \leq t} Y_i^* = \left(\frac{T}{c} \right)^{-\alpha} \sum_{1 \leq i \leq T/c} Y_i^* = \left(\frac{T}{c} \right)^{-\alpha} \left\{ \sigma W_1 \left(\frac{T}{c} \right) + \mu \frac{T}{c} \right\} + O(T^{-\alpha} \log T) \text{ a.s.}$$

(2.13)

\((T \to \infty)\). Next we use (2.7), (2.9) and (2.10) to obtain

$$\left(\frac{T}{c} \right)^{-\alpha} \left\{ \sigma W_1 \left(\frac{T}{c} \right) + \mu \frac{T}{c} \right\}$$

$$= \left(\frac{T}{c} \right)^{-\alpha} \left\{ \sigma c^{-1/2} W(T) + \mu \frac{T}{c} \right\}$$

$$= \frac{1}{T^\alpha} c^{\alpha - 1/2} \frac{\sigma}{\sigma_*} \left\{ W(T) + \frac{\mu_*}{\sigma_*} c^{-1/2} T \right\}$$

$$= \frac{1}{T^\alpha} c^{\alpha - 1/2} \frac{\sigma}{\tau} \left\{ \tau W(T) + \gamma T \right\}.$$

(2.14)

Lemma 2.4 now follows from (2.8) and (2.12) – (2.14).

Proof of Theorem 1.3. Using (1.4) and Lemmas 2.1 and 2.2 we get that

$$\sup_{0 \leq t \leq T} \frac{\Gamma(t)}{t^\alpha} - \sup_{1 \leq t \leq T} \frac{\tau W(t) + \gamma t}{t^\alpha} = o(T^{1/\nu - \alpha}) \text{ a.s.}$$

Hence Theorem 1.3 follows from Lemma 2.4.

Proof of Theorem 1.4. By the K–M–T approximation there is a Wiener process \(\{W(t), 0 \leq t < \infty\}\) such that

$$S(t) - (\sigma W(t) + \mu t) = o(t^{1/\nu}) \text{ a.s. (} t \to \infty).$$

Hence (1.4) holds and the result follows from Theorem 1.3.

Proof of Corollary 1.1. Assume that \(0 \leq \alpha < 1/2\). By Theorem 1.3 there is a Wiener process \(\{W(t), 0 \leq t < \infty\}\) such that

$$n^{\alpha - 1/2} \sup_{0 \leq u \leq 1} \left| \frac{\Gamma(t)}{t^\alpha} - \frac{\tau W([nu] + 1) + \gamma([nu] + 1)}{([nu] + 1)^\alpha} \right| = o(n^{1/\nu - 1/2}) \text{ a.s.}$$

Hence (1.9) is proven if

$$n^{\alpha - 1/2} \frac{W([nu] + 1)}{([nu] + 1)^\alpha} \overset{D[0,1]}{\to} \frac{W(u)}{u^\alpha}.$$

(2.15)
Obviously,

\[
\sup_{0 \leq u \leq \epsilon \leq u \leq [n\epsilon] + 1} \frac{|W([nu] + 1)|}{([nu] + 1)^\alpha} \leq \sup_{0 \leq u \leq [n\epsilon] + 1} \frac{|W(u)|}{u^\alpha}
\]

and by the scale transformation of \(W \) we have

\[
n^{\alpha-1/2} \sup_{0 \leq u \leq [n\epsilon] + 1} \frac{|W(u)|}{u^\alpha} \overset{\mathcal{D}}{=} \sup_{0 \leq u \leq [n\epsilon] + 1} \frac{|W(u/n)|}{(u/n)^\alpha} = \sup_{0 \leq u \leq ((n\epsilon) + 1)/n} \frac{|W(u)|}{u^\alpha}.
\]

By the law of the iterated logarithm for \(W \) at 0 we have

\[
\lim_{\epsilon \to 0} \lim_{n \to \infty} \sup \left\{ \sup_{0 \leq u \leq [n\epsilon] + 1} \frac{|W(u)|}{u^\alpha} > \delta \right\} = 0 \text{ for all } \delta > 0.
\] (2.16)

The scale transformation of \(W \) and the almost sure continuity of \(W(u)/u^\alpha \) on \([c_1, c_2], 0 < c_1 \leq c_2 \) yield

\[
n^{\alpha-1/2} \frac{|W([nu] + 1)|}{([nu] + 1)^\alpha} \overset{\mathcal{D}[c_1, c_2]}{=} \frac{W(u)}{u^\alpha}.
\] (2.17)

Clearly, (2.15) follows from (2.16) and (2.17).

Assume that \(1/2 < \alpha < 1 \). Using again Theorem 1.3 there is a Wiener process \(\{W(t), 0 < t < \infty\} \) such that

\[
n^{\alpha-1/2} \sup_{1 \leq u < \infty} \left| \sup_{1 \leq t \leq [nu] + 1} \frac{\Gamma(t)}{t^\alpha} - \frac{\tau W([nu] + 1) + \gamma([nu] + 1)}{([nu] + 1)^\alpha} \right| = o(1) \text{ a.s.}
\]

Hence (1.10) is proven if we show that

\[
n^{\alpha-1/2} \frac{|W([nu] + 1)|}{([nu] + 1)^\alpha} \overset{\mathcal{D}[1, \infty]}{=} \frac{W(u)}{u^\alpha}.
\] (2.18)

For any \(T > 0 \) we have that

\[
\sup_{T \leq u < \infty} \frac{|W([nu] + 1)|}{([nu] + 1)^\alpha} \leq \sup_{[nT] \leq u < \infty} \frac{|W(u)|}{u^\alpha}
\]

and by the scale transformation of \(W \) we have

\[
n^{\alpha-1/2} \sup_{[nT] \leq u < \infty} \frac{|W(u)|}{u^\alpha} \overset{\mathcal{D}}{=} \sup_{[nT]/n \leq u < \infty} \frac{|W(u)|}{u^\alpha}.
\]

The law of the iterated logarithm for \(W \) at \(\infty \) yields that

\[
\sup_{T \leq u < \infty} \frac{|W(u)|}{u^\alpha} \to 0 \text{ a.s. } (T \to \infty).
\] (2.19)

Now (2.18) follows from (2.17) and (2.19).

Theorem 1.3 and (2.17) imply immediately (1.11). \(\square \)

(Received October 31, 2002.)
REFERENCES

Dr. István Berkes, A. Rényi Institute of Mathematics, Hungarian Academy of Sciences, P. O. Box 127, H-1364 Budapest. Hungary.
e-mail: berkes@renyi.hu

Dr. Lajos Horváth, Department of Mathematics, University of Utah, 155 South 1440 East, Salt Lake City, UT 84112-0090. U. S. A.
e-mail: horvath@math.utah.edu