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WEAK STRUCTURE AT INFINITY AND ROW-BY-ROW 
DECOUPLING FOR LINEAR DELAY SYSTEMS 

RABAH RABAH AND MlCHEL MALABRE 

We consider the row-by-row decoupling problem for linear delay systems and show 
some close connections between the design of a decoupling controller and some particular 
structures of delay systems, namely the so-called weak structure at infinity. The realization 
by static state feedback of decoupling precompensators is studied, in particular, generalized 
state feedback laws which may incorporate derivatives of the delayed new reference. 
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1. INTRODUCTION 

For linear finite dimensional systems, the structure at infinity or the Smith-McMillan 
form at infinity are well known tools for the characterization of the solvability of some 
control problems like model matching [7], disturbance rejection (see for example [8]), 
and row-by-row decoupling [2]. Connections with Silverman's structure algorithm 
have also been established [17]. For linear infinite dimensional systems and in the 
particular case of bounded operators, the structure at infinity was introduced by 
Hautus [4] and later described in several equivalent ways and used for the charac­
terization of solvability conditions for some control problems in [9]. A particular 
attention was then paid to the class of linear delay systems, with a first contribu­
tion by the present authors [10]. However, the structure at infinity defined there is 
too weak to prevent the potential compensators from being anticipative, as it was 
pointed out in [16]. Later, in [12] has been introduced the concept of strong structure 
at infinity (which can only be defined for some classes of infinite dimensional sys­
tems) for which non-anticipative solutions to control problems can be designed and 
realized by static state feedback. In the present paper, we use the weak structure at 
infinity in order to design a broader class of precompensators achieving row-by-row 
decoupling. This may be compared to [14] where disturbance rejection was con­
sidered. These precompensators are decomposed into two parts: a strong proper 
precompensator which may be realized by static state feedback and a weak proper 
precompensator which can be realized by generalized static state feedback, namely 
feedback which contains the derivative of the new control. The results given here are 
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in a general form at least for systems with commensurate delays. If the new control 
is not smooth enough, then the decoupling problem cannot be solved by generalized 
static state feedback. 

The paper is organized as follows. In Section 2 we describe the delay system 
considered in the paper and the problem of decoupling. In Section 3 we give basic 
notions and recall classical results concerning linear systems without delays, then we 
recall some notions and results for systems with delays in Section 4, In Section 5 we 
solve the row-by-row decoupling problem for delay systems in a general framework. 

2. SYSTEM DESCRIPTION AND PROBLEM FORMULATION 

2.1 . System descr ipt ion 

We consider linear time-invariant systems with delays described by: 

f x(t) = A0x(t) + Axx(t - 1) 4- B0u(t) 

\ y(t) = C0x(t) ( } 

where x(t) G X w IRn is the state, u(t) G U w lRm is the control input, y(t) G y « Rm 

is the output to be controlled. Without loss of generality, we can assume that B0 is of 
full column rank. In order to simplify the notation and some computations, we limit 
ourselves to systems with a single delay in the state. All results and considerations 
given here remain valid for systems with several commensurate delays in the state, 
in the control and in the output. 

The transfer function matrix of system (1) is 

T(s, e~s) = C0(sl - A0 - Aie-
s)-lB0 

and may be expanded in two different ways, namely as a power series expansion, 
either in the variable e~s (with coefficients function of s) or in the variable s (with 
coefficients function of e~s). The first expansion is 

oo 

T(s,e-S) - - ^ T j W e - * (2) 
i=o 

where Tj(s) - C0(sl - A0)~
x [Ax(sl - A0)~

l]J B0. Each matrix Tj(s) may be de­
composed using the following constant matrices introduced by Kirillova and Chu-
rakova and compared with other tools in [19]: 

Qi(j) = -40Qi-iO-) + - 4 i Q i - i O ' - l ) , 

Qo(0) = / , Qi(j) = 0, i < 0 or j< 0. 

We have 
oo 

Tj(s) = '~]CoQi(j)Bos-(i+1K 
i=0 
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The other expression, which will be used in this paper, is the following one 

T(sye~s) = f ; (J2CoQi(j)BQe-A s - ^ l (4) 

i=0 \j=0 J 

We can remark that 

i 

£ CoQi(3)B0e-js = Co(Ao + Axe-yBo. (5) 
i=o 

These expressions may be obtained by a simple calculation using relations (3), see 
[16, 19]. 

2.2. Problem formulation 

Our objective concerns decoupling of systems like (1). 
The "open-loop" definition of decoupling is the following: Find a precompensator 

K(s, e~s) and non identically zero scalar transfer functions /ij(s,e~s), i = 1 , . . . ,ra, 
such that 

T(s, e~s)K(s, e~s) = diag {hi (s, e~s), ...,hm(s, e~s)}. 

We are interested in feedback implementations of such decoupling precompensators, 
when they exist, and we want to connect the properties of K(s,e~s) which make it 
realizable in a feedback form and the type of, more or less restricted, feedback laws 
which may be used. 

We have previously shown [12] that any decoupling solution K(s,e~s) belonging 
to some particular class of precompensators, called strong biproper (see Section 4), 
is equivalent to a static state feedback control law of the type: u(s) = F(e~s)x(s) -f-
G(e~s)v(s), where F(e~s) and G(e~s) are rational transfer function matrices with 
respect to the variable e~5, F(e~s) being strong proper and G(e~s) strong biproper. 

The aim of the present paper is to consider a broader class of decoupling pre­
compensators, called weak biproper (see Section 4) and to show their equivalence 
with generalized static state feedback control laws of the type: u(s) = F(e~s)x(s) + 
G(s,e~s)v(s), where F(e~s) is strong proper and G(s,e~s) weak biproper. This 
amounts to accepting in the control law some delayed derivatives of the new refer­
ence input v(t) and looking for more general solutions, assuming that the reference 
input v(t) is smooth enough for all its involved derivatives to exist and to be bounded. 

Remark 1 . F(e~s) and G(s, e~s) are proper transfer function matrices (in the usual 
sense) with respect to the variable z = es and with constant coefficients for F(e~s) 
and rational (including polynomials in s) for G(s,e~ s) . The following illustrative 
example shows how this may occur. Let us consider the system 

T(s,e~s) = 
s~3 (s-*+s-2)e 
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It can be easily checked that there is no static state feedback law which decouples this 
' 1 -(s-x+s)e-

0 1 
system. However, K(s,e s) is a decoupling precompensator 

realizable by the generalized static feedback with F(e s) 0 0 0 1 
0 0 0 0 

and G(s,e s) = In the time domain the control law is given by: 1 —se 
0 1 

^1(0 = —xt(t — 1) -F vi(t) — v2(t — 1) and u 2 ( 0 = ^ ( O - More details will be given 
in Section 5. 

3. FINITE DIMENSIONAL SYSTEMS 

The basic notions used in this paper are notions of properness. Let us recall in this 
section the case of a classical finite dimensional linear system given by: 

x(t) = Ax(t) + Bu(t) 

y(t) = Cx(ť) (6) 

where x(t) G X « Rn is the state, u(t) eU &Rm is the control input, y(t) ey ^ Mm 

is the output to be controlled. The matrix B is of full column rank. The transfer 
function matrix of the system is 

T(s) = C(sI-A)~lB. 

The matrix T(s) is rational and strictly proper, the properness being defined by the 
following. 

Definition 2. A complex valued rational function f(s) is called proper if lim f(s) is 
finite when |s | —» oo. It is called strictly proper if this limit is 0. It is called biproper 
if this limit is invertible. 

As for linear systems in finite dimensional spaces one considers in fact only ra­
tional functions, properness means that the degree of the numerator is less than or 
equal to the degree of the denominator and strict properness means that the equality 
cannot hold. A fundamental result is the existence of a canonical form at infinity 
(Smith-McMillan form at infinity) for strictly proper matrices (but also for general 
rational matrices, see for instance [6]). 

Theorem 3. Given a strictly proper system, with transfer T(s), there exist (non 
unique) biproper matrices B\(s) and B2(s) such that 

B1(s)T(8)B2(8) Д t ø 
0 

where A(s) = d i ag{s~ n i , . . . , s ~ n r } . The strictly positive integers ni are called the 
orders of the zero at infinity and the list of integers { n i , . . . , n r } is the structure at 
infinity and A(s) is denoted by -^^(C, A,B) or T,ooT(s). The integer r is the rank 
of the system. 
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Because of the basic properties of the Laplace transform, the structure at infinity 
of T(s) allows to describe the behavior of the system (6) at time t = 0. 

Another important tool which is useful to characterize several properties of linear 
systems is the maximal (_4, F?)-invariant subspace contained in KerC, see [20]. It 
will be denoted by V*(KerC, -4,-B). We shall also use the alternative expression of 
this subspace given by Hautus [5]: 

V*(KerC, A,B) = {x e KerC : x = (si - A)£(s) - Bu(s)} , 

£(s), u(s) strictly proper, f(s) £ KerC, |s| > so-
(7) 

This is called a (f — cj)-representation for V*(KerC,A,B). The following result is 
well known and has been established by several authors. 

Theorem 4 . The following propositions are equivalent: 

1. There exists a biproper precompensator K(s) such that 

T(s)K(s) = diag {/*!(*),..., hm(s)}. 

2. The global and the row by row structures at infinity are equal: 

HooicuAtB) 

EooíCЛ.B) = 

---oo(cm> -4? B) 

where EQO denotes the canonical form at infinity for the given system, Ci, i 
1,. . . , 7Ti being the rows of the matrix C. 

3. The so-called Falb-Wolovich matrix 

D = 

c i Á щ - l B 

lcmAn«*-lB 

is invertible. The integer ni, i = 1, . . . , m is the order of the zero at infinity of 
each row subsystem: aAni~1B / 0 and C{A^B = 0 for j < n. — 1. 

4. There exists a feedback law u(t) = Fx(t) + Gv(t), such that 

C(sl -A- BF)~lBG = diag {hi(s),.. .,hm(s)}. 

5. I m B = E Z i I m B n V*(Ci,A,B), ImB n V,{CitA,B) -S {0}, where d = 
nĵ Kerc,. 

The relation between the precompensator K(s) and the feedback law (F, G) is given 

by 
K(s) = (I- F(sl - A)-XB) X G. (8) 
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P r o o f . For the proofs of the equivalence of the statements 1-4 see for example 
[1, 2, 3, 20] and references given there. Statement 5 being less "classical", let us 
give a proof of the equivalence between 1 and 5, based on the (£ — (^-representation 
(7) of V*(KerC',i4,.B). 

If the system is decouplable by precompensator (statement 1), there exists a 
biproper piecompensator K(s) such that 

C(sl - A)~1BK(s) = diag {h, (s),..., hm(s)} . 

The matrix K(s) may be written as K(s) = V + W(s), where V is a non singular 
constant matrix (because K(s) is biproper) and W(s) is strictly proper. Let v% and 
cjj(s) be the ith columns of the matrices V and W(s) respectively. Then {vi,i = 
1 , . . . , m} forms a basis in E m . If we take 

Zi(s) = (sI-A)-lB(vi + Ui(s)), 

then &(s) G C;. On the other hand &(s) and Ui(s) are strictly proper. Hence, for 
all i = 1 , . . . , m one has 

Bvi eV*(d,A,B) 

As {vi, i = 1 , . . . , m} forms a basis of U and B is assumed to be of full column rank, 
then {Bvi, i = 1 , . . . , m} is a basis of Im B. Hence, statement 5 holds. 

Conversely assume that condition 5 is satisfied. Then for {vi,i = l , . . . , m } 
linearly independent, one has 

Bvi = (si - A)b(s) - Bui(s) 

with £i(s),Ui(s) strictly proper and &(s) G Ci, i.e. C£i(s) = Ci£i(s). For V = 
[v\ ... vm] and W(s) = [ui(s) ... um(s)], if we define K(s) = V + W(s), 
then K(s) is biproper and 

C(sl - A)~lBK(s) = diag {crfi (s),..., cmU(s)} -

This means that the system is row-by-row decoupled by the precompensator K (s) 
and we have hi(s) = Ci£i(s). ---

4. STRUCTURAL NOTIONS FOR DELAY SYSTEMS 

The transfer function matrix of a delay system is not rational in 5. Moreover, it is 
not analytical at infinity. Therefore the notions of properness must be precised. 

Definition 5. A complex valued function f(s) is called weak proper if l im/(s ) is 
finite when s € R tends to oo. It is called strictly weak proper if this limit is 0. A 
matrix B(s) is weak biproper if it is weak proper and if this limit is invertible. Weak 
proper is replaced by strong proper if the same occurs when 5 G C and 5fte(s) —•> oo. 
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This is a general definition, but in this paper we use this notion for functions 
f(s,e~s) rational with respect to variables s and es. 

Let us precise that a matrix B(s) is weak (respectively strong) biproper iff B(s) = 
Bo + W(s), where Bo is constant and invertible and W(s) is strictly weak (resp. 
strong) proper. 

It is obvious that strong properness implies weak properness. If the function is 
analytical at infinity both notions coincide, because the limits at infinity are the 
same. The strong properness was used in [4] and [9] in the description of the struc­
ture at infinity for infinite dimensional systems. In [10, 16, 14] the weak notion was 
used in order to define the structure at infinity of delay systems and to solve some 
control problems, even if in [10, 16] this notion was not yet clearly precised and 
separated from the strong one. 

Let us recall the following result using weak properness and introduced in [12]. 

Theorem 6. Given a system like (1), with transfer T(s,e~s), there exist (non 
unique) weak biproper rational matrices B\(s,e~s) and B2(s,e~s) such that 

B i ( в , e - ) T ( s . e - ) B 2 ( в , e - ' ) = 

0 Дi(s)e— 

0 
0 

Ak(s)e-ks 0 
0 0J 

where Ai(s) = d iagfs - 7 1 ^ 1 , . . . , s " n i ^ } and ntj < nij+i, i = 1, . . . , k. The list of 
integers 

{mj, i = l,...,k',j = j i , . . . , j i } 

is called the weak structure at infinity of the system (1) and is noted E™T(s,e~ s). 

Some additional assumptions may insure that the weak structure at infinity also 
gives a strong structure at infinity: in that case the matrices Bi(s,e~s) are strong 
biproper (see [12]). 

5. THE ROW-BY-ROW DECOUPLING PROBLEM FOR DELAY SYSTEMS 

Our purpose is to give, for a linear time delay system, a more general solution for 
the row-by-row decoupling problem. 

The given problem was studied by several authors [15, 18, 16] but only partial 
solutions were given. In [13] an abstract geometric approach was developed using 
Hautus' definition of (A, F?)-invariant subspaces. The result given there is limited to 
the strong definition of properness. At the end of the present paper, we shall extend 
this result to the weak proper case. Note however that it is difficult to compute the 
corresponding subspaces. Our approach developed first in [14] for the disturbance 
rejection problem is extended here to the row-by-row decoupling problem. The weak 
structure at infinity given in the previous section allows to give the following general 
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formulation and solution for this control problem by generalized static state feedback. 

Theo rem 7. The following propositions are equivalent: 

1. The row-by-row decoupling problem for the delay system (1) is solvable by a 
weak biproper precompensator: 

r ( S , e - s ) / iT ( S ) e - s ) = d iag{ / i 1 ( . S , e - s ) , . . . , / i m ( .s ,e - s )} . 

2. The global and the row by row weak structures at infinity are equal: 

~ES>(ci>.4o,.4i,Bo) 
^c^(Co,-4o,-4i,-B0) = 

S^)(cm,-4o,-4i,-Bo) 

where cVs are the rows of the matrix Co-

3. The generalized Falb-Wolovich matrix: 

ciQni-i(ki)B0 

Dñ = 

CmQnm-l(km)B0 

is invertible, where for each row i the integers rii and ki are such that: 
CiQm-i(ki)B0 ^ 0 and CiQi(j)B0 = 0 for / < Ui - 1 and j < ki. 

4. The decoupling problem is solvable by generalized static state feedback 

u = F(e-s)x + G(s,e~s)v, 

where F(e~s) is strong proper and G(s,e~s) weak biproper. 

P r o o f . 
1 -=> 2. Let -4(e~s) = -40 + -4ie~s. Assume that condition 1 is satisfied. This gives, 
for each i: 

ci(sI-A(e-s))-1BoK(s,e-s) = [0 .-• hi(s,e-s) ••• 0] 

and then each row i of the system has the structure at infinity of 

[0 . . . hi(s,e-s) . . . 0]. 

On the other hand the (weak) global structure at infinity of T(s,e~s) is invariant 
under the multiplication by (weak) biproper K(s,e~s), namely is that of the matrix 

diag{/ i i (s ,e * ) , . . . ,hm(s,e 8)} , 
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which means that 2 holds. 

2 --=> 3. Suppose that condition 2 is verified. The integers ni and ki for i = 1 , . . . ,ra 
describe the weak structure at infinity of each row i. Then 

T(s, e~s) = diag { s ~ n i e - * l S , . . . , s~
n™e~kmS} (D0 + W(s,e~s)) (9) 

and W(s,e~s) is strictly weak proper. If D0 is not invertible, then by elementary 
operations one can reduce some row or column of D0 and then the global structure 
at infinity would not coincide with diag{s~n ie~* l S , . . . ,s~nme~kmS}, which is not 
possible by hypothesis. Then, 3 holds. 

3 -=-> 4. Suppose that condition 3 is verified. Then, from factorization (9) (which is 
always true), D0 + W(sye~s) is weak biproper, because 

lim (D0 + W(s,e~s))=D0: 

and D0 is invertible. Let us then denote K(s1e~s) = (D0 + W(s,e~s))~ . This 
compensator K(sye~s) is also weak biproper and achieves decoupling: 

T(s, e~s)K(s, e~s) = diag {S-
nie~klS,..., s~n"e~ k m S} , 

which means that (1) holds. We shall now show that there exist strong proper 
F(e~s) and weak proper G(s,e~s) which realize this particular K(s,e~s), namely: 

K(s,e~s) =[I- F(e~s)(sl - ^ e " * ) ) - 1 ^ ] " 1 G(s ,e" s ) . (10) 

Let us now analyze the matrix W(s,e~8). Each entry of this matrix is rational 
in the first argument s, namely if we denote each entry by w(s, z), with z := e~s (in 
order to distinguish both arguments), one can decompose it as follows: 

w(s,z) = w0(z) +wi(s,z) + w2(s,z), 

where w0(z) is strictly proper (in the classical sense) with respect to z, u>i(s,z) is 
strictly proper with respect to s, and W2(s, z) is polynomial in s (not strictly proper). 
This gives a decomposition of the matrix W(s, z): 

W(s,z) = W0(z) + W1(s,z) + W2(s,z), 

with the same properties. This implies that Wi(s,e~8) is strictly strong proper and 
W2(s,e~8) is strictly weak proper. This allows to write Do + W(s,e~s) in the form 

Do + W(s, e~s) = D(e"8) + Wx (s, e~s) + W2(s, e" s) , 

where D(e~8) = D0 + W0(e"8). 
If cp denotes the pth row of the matrix Co, then, according to the decomposition 

of the transfer function matrix (4), one can see that each row p of the matrix D(e~8) 
can be written as 

oo 

~lcpQnP-i(kP +j)B0e-js, p=l,...,m. 
3=0 
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In the same way, each row of Wi(s,e~s) may be decomposed as 

oo /np+i—1 \ 

E [ E c p Q „ p + . - i ( f c p + j ) B o e - ; ' ' , ) s - <

> p = l , . . . , 

Let us denote 

I X •'УЧV ł l т i - Г l — 1 \ " U • .11 —-' U - ' I w î f . ч • . . j / ř t i 

І=I y j=0 

# 1 («, e " s ) = ( o ( e " s ) + ^ (S, e " 8 ) ) - 1 

and 
7Y~2(5, e " s ) H f K(s, e~s) - Kx(s, e~s). 

A simple calculation gives 

K2(s,e~s) = -(D(e-s) + W1(s,e-s))-lW2(s,e-s)K(s,e-s) 

= -Kl(s,e-s)W2(s,e-s)K(s,e-s). 

Hence, K\(s,e~s) is strong biproper and K2(s,e~s) is strictly weak proper because 
W2(s,e~s) is strictly weak proper and K(s,e~s) is weak biproper. 

We first give a feedback realization of Ki(s,e~s) and then show that K(s,e~s) 
is realizable by generalized static state feedback. 

Let us define 
Vx{8,e-')A* Wx{s,e-)B? 

where B~l is the left inverse of the (full column rank) matrix B0. This means that 

W1(3,e-) = Vi(8,e-)B0. 

More precisely, from (5), each row of Vi(s,e-S) is given by 

JTcp^'^+V')*-*, P=l,...,m. 
i=\ 

Let us denote 

Fr (s, e's) d=( -D-1 (e-
s)Vx(s, e~s)(sl - A(e~s)). 

Let us show, by a simple calculation, that F\(s,e~s) does not depend on the first 
argument. In order to do that, let us consider each row vp(s,e~s),p = 1,. . . ,m, of 
the matrix Vi(s,e~s)(sl — A(e~s)). It may be written as 

oo oo 

vp(s,e-s) = E c p A " - > - 1 + i ( e - s ) S - i + i - E c p A n ' + i ( e - ) S - ' 
t = l i=\ 

after a change of indices in the first sum, we get 

oo oo 

vp(s,e~s) = Y,cPA
n^i(e~s)s-i - E c p ^ + V ) * - ' 

i=0 i=\ 
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and then 
vp(s,e~s) = cpA

Up(e-s), 

for all p = 1 , . . . ,ra which means that Vi(s,e~s)(sl — A(e~s)) does not depend on 
the first argument. This implies that Fi(s ,e~ s) also does not depend on the first 
argument. 

Let us then denote: 

F ( e - ) d = f E i ( S , e - ) , G^e-)** D~\e-). 

Then 

- G f 1 ( e - s ) F ( e - ) ( s / - A{e-))~xBo = Vx(s,e-)Bo = Wi(s,e"s) 

and 

GX\e-) - G^(e-)F(e-)(sI - A(e-))-
1B0 = D(e~s) + Wi(s,e-). 

This obviously gives 

Kx{s,e-) =f (D(e-) + W1(s,e-))-1 , 

= [l-F(e-)(sI-A(e-))-1B0]-1G1(e-) 

which means that E(e_s) and Oi(e—) realize Ki(s,e~s), in the sense that: 

Co [si - A(e~s) - B0F(e-)]~1 5oO i(e~ s) = C0[sl - A(e-)]-1BoKl(s,e-). 

Let us then denote 

G2(S)e-) d=f [/ - F(e-)(sl - A(e-))-1B0] K2(s,e's), 

which gives 

K2(s,e-) = [I - F(e-()sl - A(e-))~1Bo]~1 G2(s,e~s). (12) 

It is essential to note that G2(s,e~s) is strictly weak proper because K2(s,e~s) has 
the same property and the other factor is strong biproper. Then, by construction, 
terms in sk, with positive integer k, are multiplied by strictly positive powers of the 
delay operators e~s. 

From (11) and (12) we get 

K(s,e~s) = Kx(s,e~s) + K2(s,e~s) = [I - F(e-)(sl - A(e-))-1B0]~l G(s,e"s), 

where G(s,e~s) = Gx(e~s) + G2(s,e~s). This means that F(e~s) and G(s,e~s) 
realize K(s,e~s): 

C0(sl - A(e~s) - B0F(e-))-lB0G(s,e-) = C0(sl - A{e-))-lB0K(s,e-), 

and then 

C0(sl - A(e~s) - B0F(e-*))-lB0G(s,e-) = diag { 5 " n i e - * l S , . . . , S - n ~ e - k ~ s } . 
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Note that, as G2(s,e~s) may contain weak proper terms (namely terms like ske~ps), 
in the decomposition of G(s,e~s), such generalized terms appear also. 
4 -=> 1. Suppose now that condition 4 holds, i.e. the decoupling problem is solvable 
by generalized static state feedback. Then 

TF,G(s,e-s) d-? Co(sI-A(e-)-B0F(e-s))-lB0G(s,e-s) 
= diag {hi(s,e~s),... ,hm(s,e~s)} . 

where hi(s,e~s) ^ 0 for each i. Then 7>,G(8,e~s) = T(s,e~s)K(s,e~s) where 
K(s,e~s) given by 

K(s,e~s) =[I- F(e~s)(sl - A(e~s))-lB0]-1 G(s,e~s) 

is obviously weak biproper (due to the form of F(e~s) and G(s,e~s)). Then 

T(s,e~s)K(s,e~s) = dmg {^(s^-8),...^^^-8)} , 

i.e. condition 1 is satisfied, which ends the proof of Theorem 4. • 

Let us illustrate these generalized static state feedback solutions on the example 
given in Remark 1. The corresponding state space representation is given by the 
matrices: 

Afì = 

The structural condition may be easily verified (ni = 3, fci = 0,n2 = 1, A>2 = 0). The 
generalized Falb-Wolovich matrix is DQ = I. We have: 

0 1 0 0" - o o o i - -o 0" 
0 0 1 0 
0 0 0 0 

, Ay = 
0 0 0 0 
0 0 0 1 

, B0 = 
0 0 
1 0 , O0 = 

1 0 0 0 
0 0 0 1 

0 0 0 0. .0 0 0 0. .0 1. 

D(e~s) = DQ, W!(s,e-) = 
0 s" 
0 0 

A decoupling precompensator is K(s,e~s) = 

K2(s,e~8), with 

r~ ~Le 

W2(S,Є~S): 

1 -(s~l+s)e-
0 1 

0 se~ 
0 0 

= Ä ' 1 ( в l e - ) + 

K,(s,e~s] 

Our calculation gives 

F(e~s) = -

and 

1 -S~l"~S 

0 
K2(s,e~s) 

0 -se~s 

0 0 

( 1 0 0 0)A3(e~s)B0 

(0 0 0 l ^ e - ^ Д ) 

G(s,e~s) = 
1 —se 
0 1 

1 0 
0 1 + 

"0 0 0 l" 
0 0 0 0 

0 -se~s' 
0 0 ' 

The decoupled system has the transfer function matrix 

T(s,e~a)K(s,e~s) = diag { s ^ s - 1 } 



Structure at Infinity and Disturbance Decoupling for Delay Systems 193 

Corollary 8. If, in Theorem 7, weak (structure or properness) is replaced by strong, 
then the feedback contains only static terms, and no derivative of the reference is 
needed. 

P r o o f . The assumptions of the corollary imply that the weak structure at infinity 
is also the strong structure at infinity [12], this gives K(s,e~s) = K\(s,e~s), and 
then G(s, e~s) = G\ (e~s). The precompensator is realizable by static state feedback. 
No derivative of the delayed reference is needed. • 

In Theorem 7, the geometric formulation was omitted (statement 5 in Theorem 4). 
The following theorem gives an analogous result. In order to formulate this result, 
let us introduce the Hautus like definition of (A, B)-invariant subspace for delay 
systems (see [10] for the introduction of this tool and application to disturbance 
decoupling for delay systems and [13] for the same statements in terms of strong 
properness and for the design of strong decoupling precompensator). 

For d = H j^KerCj , let Vx(Ci, A(e~s), B0), i = 1 , . . . ,ra be the subspaces 

Vx(Ci,A(e~s),B0) = {xeCi:x = (sI- A(e~s))t(s,e~s) - B0u(s,e~s)} , 

with strictly weak proper £(s,e~s) and u(s,e~s) such that £(s ,e _ s) G Ci for s G E 
and s > s0. 

Theorem 9. The system (1) is decouplable by weak biproper precompensation iff 
Imi?o = ET=i^B0n Vv(Ci,A(e~s),B0), with Im B0 n VE(C;, A(e~s),B0) ± {0}. 

P r o o f . The proof is the same as the proof of the equivalence of statements 1 
and 5 for Theorem 4. We only need to replace V* by Vs, A by A(e~s), B by B0 and 
proper by weak proper. • 

We have here limited our presentation to systems with a single delay in the 
state. Note that the statements and some details of the proofs may rather easily be 
reformulated for systems having also delays in the controls and the outputs. 

6. CONCLUSION 

In order to solve in a general form and without prediction the row-by-row decou­
pling problem for delay systems, we use the weak structure at infinity which is well 
defined for linear time delay systems. The general solution is of feedback type. How­
ever, we need some smoothness of the new reference v. This is the counterpart of 
the generality. For practical use, this means that we can use only some classes of 
references or, if the reference is not smooth enough, we need in fact very high gain 
in approximation. The results given here may be also considered, with some slight 
modification, for more general delay systems: with several delays in the state or of 
neutral type. 

The problem of stability is not investigated here. It is obvious that, without 
stability, the realization of such generalized decoupling techniques would be of no 
practical interest. For systems without delays, the existence of stable solutions is 
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independent on the fact t ha t derivatives of the reference are or are not used: it jus t 
depends on conditions relating unstable invariant zeros. For systems with delays, 
this problem of stability needs further investigations, taking also into account t ha t 
stabilizing control laws may often require distributed delays!... This problem is now 
under consideration, as well as, for effective implementation, the numerical aspects 
linked with the realization of such generalized feedback laws. 

(Received April 11, 2003.) 
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