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DESIGN OF REACHING PHASE FOR
VARIABLE STRUCTURE CONTROLLER
BASED ON SVD METHOD

GOSHAIDAS RAY AND SITANSU DEY

This paper considers a design of variable structure with sliding mode controller for a
class of uncertain dynamic system based on Singular Value Decomposition (SVD) method.
The proposed method reduces the number of switching gain vector components and per-
forms satisfactorily while the external disturbance does not satisfy the matching conditions.
Subsequently the stability of the global system is studied and furthermore, the design of
switched gain matrix elements based on fuzzy logic approach provides useful results for
smooth control actions and decreases the reaching phase time. The efficacy of the pro-
posed method is demonstrated by considering an interconnected power system problem.

Keywords: reaching-phase, sliding mode, matching condition, singular value decomposition,
fuzzy logic, Lyapunov function
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1. INTRODUCTION

Variable structure control (VSC) owing to its insensitiveness to parametric uncer-
tainties and disturbances has drawn wide attention in the literature over the past
two decades [10]. It is powerful in controlling the system with bounded unknown
disturbance and can provide very robust performance and transient performance [3].
The first step of VSC with sliding mode control is to select a sliding surface that
models the desired closed-loop performance in state-space form. Then the control
law is designed in such a way so that the system state trajectories are forced towards
the sliding surface and stay on it. The system state trajectory in the period before
reaching the sliding surface is known as the reaching phase in the control literature.
The system trajectory sliding along the sliding surface to the origin is the sliding
mode. The most salient feature of variable structure sliding mode control is that it
is completely robust to matched uncertainties [1, 12]. It is certainly true that the
many physical systems can be classified under these categories. However, there are
even more systems which unfortunately are affected by mismatched uncertainties
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and do not enjoy nice matching condition. Thus the system behavior in the slid-
ing mode is not invariant to the mismatched uncertainty; the system performance
cannot be assured. Other remarkable advantages of sliding mode control approach
are the simplicity of its implementation and the order-reduction of the closed loop
system [4, 6]. Pole assignment or Linear Quadratic (LQ) techniques are often used
as a component of sliding mode control. However, to be fair, one should also point
out two foremost difficulties in the application of VSC with sliding mode control.
One is the general necessity of full state vector measurements to implement the
switching surface and the other is the possible occurrence of real sliding mode (chat-
tering phenomena) instead of the ideal one. However, since a discontinuous control
action is involved, chattering will take place and the steady-state performance of the
system will be degraded. To overcome this problem, numerous schemes have been
reported in the literature and one of the most common techniques to alleviate this
drawback is to introduce a boundary layer about the sliding plane [8, 9]. The basic
idea consists of introducing a boundary layer of the switching surface in which the
control law is chosen to a continuous approximation of the discontinuous function
when the system is inside the boundary layer. However, this approach provides
no guarantee of convergence to the sliding mode and involves a trade off between
chattering and robustness. Reduced chattering may be achieved without sacrificing
robust performances by combining the attractive features of fuzzy control with slid-
ing mode control [2]. The fuzzy sliding-mode controller takes the advantages to the
both fuzzy and sliding mode controller characteristics and will result chattering in
the system dynamic response.

In this paper, we shall discuss how to design a reaching phase based on Singu-
lar Value Decomposition (SVD) technique with static a state-feedback control law.
The control law consists of linear feedback term plus a discontinuous term, which
guarantee that the sliding mode exits and is globally reachable under a very mild
restriction. This paper extends the work of White et al [11] in order to design a
simple sliding mode with variable structure controller based on SVD method. This
in turn reduces the number of switching gain vector components as compared to
White et al [11] method and moreover, for the non-switched gain components no
additional inequality constrains are required to drive the state trajectory into the
sliding surface. The significant advantage of the proposed method is addressed for
full /reduced switching control gains. A fuzzy logic approach is also adopted in order
to avoid hard switching control gains and subsequently the corresponding control
signals ensure the reaching conditions and decrease the reaching phase time.

This paper is organized as follows. In Section 2, a mathematical description
of the problem is given. Reaching phase design technique, based on SVD method
is developed in Section 3. Subsequently, the stability of the sliding mode state
trajectories is studied in the same section. In Section 4, design of an equivalent switch
gain matrix based fuzzy logic approach is considered. In Section 5, the effectiveness
of the proposed VSC control scheme based on SVD technique is demonstrated by
considering the load-frequency control problem of interconnected power systems.
Section 6 provides a brief conclusion.
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2. PROBLEM FORMULATION

X(t) = AX(t)+BU(t) (1)

Y@ = CX(t @

where X (t) = state vector € R**! U(t) = input vector € R™*! and Y (t) = output

vector € RP*!. Tt is assumed that the system is observable and controllable. All

the states are directly measurable and the linear system is assumed to be in regular

form and the state equation (1) explicitly is described by following pair of equations:

X1(t) = An X1 (t)+A12Xa(t) (3a)

X2 (t) = A21X1 (t)+A22X2 (t)'l"BzU(t) (3b)

where X;(t) € R X,(t) e R}, B=[0 B ]T and By € R™*™. If the

original system is ot in a form of equation (3), it is required to transform the system
(1) into a regular form by using a linear transformation matrix [4].

Before we propose the new VSC based on SVD method, a brief discussion on

sliding surface is given below.
o=S5X(t) (4)

which with no loss of generality, we can rewrite the equation (4) in more explicit
form

Umxl(t) = Sle(t)+SzX2(t)
= Si1Xi(t) + Xa(t) (5)

where S (t) € Rm*(n—m) Gy € RMX™ with Sy = Lnxm. If the system state trajec-
tory is on the sliding surface,

O'(t) = Sle(t) + Xg(t) =0

and, thus
Xo(t) = =S1.X1(2). (6)
Substituting equation (6) into equation (3), we get
X1(t) = (A1 — A12S1) X1 (2). (7)

It can be noted that the reduced order dynamics of equation (7) on the sliding
surface is independent of control input U(t) and exhibits a state feedback struc-
ture where S; and A,, represent a ‘state feedback’ matrix and an ‘input’ matrix,
respectively.

If the system (A1, A12) is stabilizable, it is possible to find the optimal control
law, a ‘feedback’ control gain S;, such that the control law minimizes performance

index
o0

J= / [XTQX; + XTRX,) dt (8)
0
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where the lower limit of the integration refers to the initiation of sliding, @ > 0
and R > 0. This optimal gain S; minimizes index J and asymptotically stabilizes
X1(t). It is needless to state that the system exhibits desirable dynamical behaviour
when its trajectories arc confined to the sliding surface (¢ = SX = 0). A necessary
condition for the system state trajectory to remain on the sliding surface o = 0 is
6 (X,t) = 0 and the equivalent control for the nominal system has the form

Ueq = —(SB)'SAX(t) = — Keq X (1) 9)

Then equivalent control gain ‘K4’ can then be obtained from the above equation
and the closed-loop system (A — B K¢q) having same (n — m) eigenvalues as that of
reduced order system (7) and remaining ‘m’ eigenvalues are at equilibrium point.

For the system (3), it is assumed that the control law

Ut) = Us(t) +Us(t)
= —K;X(t) - AK,X(t) (10)

is employed with the choice of fixed control gain Ky (with AK; = 05,,%x,) such that
the closed-loop system has (n —m) eigenvectors lying with in the null space of S and
the remaining eigenvectors will exhibit the range-space dynamics of S. On the other
hand, the role of switched dynamically gain vector AKj is to maintain a switching
function o as close to zero as possible and also to drive the state vector into the null
space of S.

Consider a linear uncertain dynamic system described by the following state space
form

X(t) = (A+AA)X(t)+(B+AB)U(t) +Td(t) (11)
Y(t) = CX(t)=[C1 Ca] X(t) (12)

where X (t) € R®**! is the measured current value of the state, U(t) € R™*! is
the control function, Y (t) € RP*! is the output of the system, d € R™*! is the
external unknown constant disturbance vector bounded by ||d|| < dmax, 4, B, T, C
are constant matrices with appropriate dimensions, with B of full rank, and the
matrices AA, AB represents uncertainty of the system matrix and input matrix,
respectively.

Assumption I. (i) Matching Conditions: There exists matrices of appropriate
dimensions F and FE such that [4, 13]

AA=BF, AB=BE, |E|<p<1 (13)

the above condition is satisfied, and then the sliding mode is invariant due to param-
eter perturbation. The physical meaning of (13) is that all parameter uncertainties
enter the system through the control input matrix or channel. It is assumed that
the external disturbance component does not satisfy the matching condition. The
constraint imposed on E is to ensure that the level of the uncertainty AB is not so
large.

(ii) The pair (A, B) is completely controllable.
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Assume that a sliding mode control is employed for controlling the system under
structural assumption, all uncertain elements can be lumped and the system (11)
can be written as

X(t) = AX () + BU() + Bnp(t) + fa(®) (14)

where f4(t) = T'd(t) and n, € R™*! represents the system total uncertainty or total
perturbation [8] and it is given by

np(t, X) = FX(t) + EU(t). (15)

Solely based on the knowledge of the bound on the uncertainty, we consider the
following assumption.

Assumption II. There are positive constants ¢ and ¢; such that [13]
Inp (¢, Xl < o+ 1 [|X]l, = p(t, X) for all (¢, X) (16)

where p(t, X) is the upper bound of the norm ||n,(t, X)||, and ¢o and c; are estimated
by solving a pair of differential equations and it is discussed later.

We now consider the system (14) with (15), (16) and the solution of X (¢) at time
‘t’ is obtained when the system equation (14) is forced by the input {U(t),n,(t), fa(t)}.
The basic stability condition question is to find a control strategy U(¢, X (¢t)) such
that the system has a sliding mode and the origin is uniformly asymptotically stable
in the large.

SMC design is broken down into two phases. The first phase entails constructing
a switching surface so that the system restricted to the switching surface produces a
desired behaviour. For convenience, it is assumed that the system (14) is in regular
form

Xl(t) = A Xy (t) + A12X2(t) + fa1
Xz(t) = A21X1 (t) + A22X2(t) + B2(U + T)p) + fdz (17)
vy = 6 al [ 3] (18)

where f4 = [ f£ fg; ]T. It is to be noted that the first part of the external
disturbance vector fg; directly affects the states X;(t) even after the system states
are on the sliding mode. This in turn drives the system states away from the sliding
surface and finally system response deviates from the desired behaviour.

Associated control law. In this subsection, we present the new sliding surface
as

omi(t) = SX(t)+W / (Y() - Yier (£)) dt = SX(£) + WZ(2)
0
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=[S S [Xl ]+WZ(t)—[S W S, ] }21((;))
- 1 2 X2 - 1 2 Xz(t)
= S,Xa(t) (19)

and the corresponding control law that drives the states on the sliding surface is
given by

Ut) = — (Kaf + AKao) Xa(t) + V, + V7 (20)

where the choice of K,¢is in such a way so that (n+p—m) eigenvectors of augmented
closed-loop system (using equation (20)) are in the null space of S,. The switched
gain matrix AK,; maintains switching vector o as close to zero as possible. The
terms V' and V' represent the nonlinear feedback control for suppression of the
effect the uncertainty and external disturbance. In addition to the switching gain
matrix AK,q, the terms V* and V are also help to drive the system trajectories

P
toward the switching surface until intersection occurs.

Consider the augmented system and it is described by using the equations (17) -

(19)
All 0 A12 0 0 fdl
[ol 0 ¢ ]Xa(m[ : ]U(t)+[ : ],,,,(m{ 0]
A21 0 A22 BZ BZ fd2

= AuXu(t) + BoU(t) + Banp(t) + faa (21)

Xa(t)

where X,(t) = [ xr@ z'tw) x7T ]T and Y;er = 0. Using the expression (20) in
equation (21) the dynamic model of the closed-loop system is

Xa(t) = AweXa(t) = BaDK oy Xa(t) + BaVy + BuV7 + Banp (t, Xa(t)) + fad (22)

where Ao = (Aa —BaKag), Ba=[0 0 BT |Tand faa=[f5 0 f5]7.
As we have mentioned earlier that the selection of K, is made in such a way so that
(n + p — m) eigenvectors of A, are placed in the null space of S, with Sy = Inixm
and the matrix K,y can be calculated using the following expression

SaiAac = )\risaia i1=12,...,m (23)
where S, = [ L, SL --- SI, ]ixm is assumed to be the left eigenvectors

of the matrix A,. corresponding to the eigenvalues Ar1, Ap2,...,Arm respectively.
Switching surface S, is designed by following the steps as discussed in this section
(from equations (4)—(8)). It can be noted that the matrix K,s can be determined
in such away so that the range space (n + p — m) eigenvalues of the system A,. are
placed at desired locations and the corresponding distinct left eigenvectors of A,c
are within the null space of S,. So, for any state X (t) lying in the null space of S,,
X (t) will also lie in the null space.
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3. REACHING PHASE DESIGN USING PROPOSED SVD METHOD

Singular Value Decomposition (SVD) technique is employed in equation (19) and
the corresponding switching surface is written as

omx1(t) = WDVTX,(t)
= WTo(t) = DVTX,(t)
= o(t) = DXa(t) (24)

where Winxm and V(nip)x(n+p) are the orthogonal matrices and Dy, (nyp) is the
rectangular matrix with diagonal elements are the singular values (a; > ag > --- >
am > 0) of S, [7]. White et al [11] treated the problem of reachability in variable
structure control for single input systems and developed inequality conditions on
the switch gain components to ensure reaching the null space of sliding surface from
anywhere in the state space domain. The main idea of using SVD technique is to
obtain the reaching phase conditions in a simpler form for multi inputs systems by
exploiting the structure and properties of D matrix that arises from the decomposi-
tion of the matrix S, and moreover, it decreases the number of switching gain vector
components.

Let us consider the transformed state X,(t) = VT X,(t) and the corresponding
augmented transformed system model is given by

Xo(t) = AgeXac(t) — BaAKosXac(t) + BoV, + BaV} + Banp(t, Xao) + foq (25)

where A, = VTA,.V, B, = VIB,, AK,, = AK,V and f,; = VT foa. To
guarantee the sliding condition @ = 0 implies 0 = 0, we differentiate the equation
(24) and use equation (22) to get the following expressions

a(t) = D?(t)

= DVTX,(t)
DVT [AaeXa(t) — BaDKasXa(t) + BaVy + BV} + Banp (t, Xa(t)) + fad]
= WTWDVT [AgeXo(t) — BalA Kas Xa(t)+ BV +BaV} + Banp (¢, Xa(t))+ fad]
= WT diag[Ari, Ar2y- -, Arm] - SaXa(t) = WTBoAK o Xa(t) + WT B2V

+ WTB,V} + WTBamp(t, Xa(t)) + W7 Sa faa

[note, SyAac = diagAr1, Ar2, - -y Arm] Sa

WTdiag[ A Az -+ Arm ] WDVTXa(t) - WP B2AK s X (t)

+V, +V; 47+ faa
= WDXa(t) - AR Xa(t) + Vy+ Vi +75 + fag (26)

where W = WT diag[ A1 Az 0 Arm ]W = Symmetric matrix, —A’K_;, =
WTB,AR,,, V' = WIBaVy, V; = WTBWV, W, = WTBymy (t, Xa(t) and
Faa =WTSafaa.
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Equation (26) is written in different form

n+p
Ul(t) - Z (Olk Wl’» _Al{as zk Zaq k(t Z AKvas z] (t)+thi+V£i+ﬁ;,i+f;d,i
k=1 j=m+1

(27)
1=1,2,...,m
A sufficient condition for the existence of sliding mode is o7 (t)a(t) < 0 for o #
null vector. This condition can be also be written in the following form

cTWTWo <0 = (Wo)TWo <0
= &Ta = Z&iéi <0 (28)

and to meet the above condition, we need to consider the equation (27) and require
to satisfy the following inequality conditions.

ay |W,‘k| for &ija,k(t) >0

as,ik = - |W,‘k| for 5'i1-5<1,k(t) <0’

i # k and AKas i = a1|Wiil, i%ai > 0 and i7,i < 0 does not exist i =
1,2,...m k=1,2,.

It can be observed that the quantity 7;%,,; is always + we since a; > 0 [11] and

=2
0iZa,i = QiTq ;-

>0 for &%, j(t) >0
as,ij —

<0 for G;Z,,j(t) <0
1=1,2,....om,3=m+1m+2,...,n+p.

—_— { ~|WTBa|| llnp (t, Xa)ll, for &:i>0
IWT Be|| llny (¢, Xa)ll, for &: <0

i) AK.

— fad for 6'1' >0
(IV) Vf i —x e
’ fﬂd fOI‘ 61 < O
i=1,2,...,m where |g| , = max; |gi|, [|n, (t, X,)l||, are the infinity and Euclidean

norm of a vector respectively. HW B2|| is the spectral norm of the matrix W7 B,.

Consider the equations (15) and (16) and rewrite the upper bound of the norm
[Inp (¢, Xa)|| and is synthesized by
“nP (t1 Xa)” S P(t, Xa) = Co(t, Xa) + &1 (t’ Xa) “Xa” (29)

where ¢o(t, X,) and ¢;(¢t, X,) are parameters. These parameters are computed
using the following dynamic equations (see [8])

éo(t, Xa) = qo | BT STo|| (30)
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alt, Xo) = a1 ||BFSTo|| 11Xl (31)

It may be noted that the matrix AK,s can be expressed in terms of transformed
switching gain matrix AK,, = (WB,) 'AK, VT.

It isimportant to note that the reachability condition for multi input system based
on SVD technique can be obtained by adopting only 2™(7=1) switching gain vector
components and moreover it does not require any stringent condition need to be
satisfied to ensure reachability. A detail comparative study on number of switching
components and additional stringent conditions between the proposed method and
White et al method [11] is given in the following table.

Table 1. Comparative study on number of
Switching components and stringent condition.

Description Proposed method White et al
(SVD) method

Number of state = n
Number of input = m

Number of switching gain vec-
tor components:

(a) Full switching gain vector gm(m=1) mn
components AK.,,

(b) Reduce switching gain 2mGi—-1) o™i

vector components H;s Inequality conditions Inequality conditions

(up to jth component, j >m) | need not to be satisfied. should be satisfied.

3.1. Sliding motion and equivalent control

Equivalent control determines the behavior of the system restricted to the switching
surface and a necessary condition for the state trajectory to remain on the sliding
surface o is 7 (¢, X4(t)) = 0. The motion in the sliding mode may be determined
by differentiating (19) with respect to time and inserting the value of X, given in
(21) gives
o= Sa [AaXa(t) + BaUEQ(t) + Banp(ta Xa) + fad] =0 (32)
and equivalent control law in the sliding mode i$ obtained from (32) as
Ueq(t) = —(SaBa)™" [SadaXa(t) + SaBatp(t, Xa) + Safad)

= —(SuB,) 7! [SaAaXa + SaBa (FoXa(t) + EUeq(t)) + Safad]

= (Ip + E) Ueq(t) = — [(SaBa) " (SaAaXa + Safaa) + FaXa(t)]

= Ueq(t) = —(Im + E) 7 [(SaBa) ™' (SaAaXa + Safaa) + FaXa(t)] (33)

where F, = [ FT Omxp FY . Using the following relation [7]

] mx(n+p)

1 -1 1
e+ B < ——
1+IIE||S”(er < =
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in equation (33), we obtained

sign(fad, 1)|fad, 1] nax

sign(fad, 2)|faa, 20y
Ueq(t) = =125 | (SaBa)™' | SaAaXa+Sa ’ 2_ - +FaXa(t) (34)

sign(fad, n+p)|fad, n+p|m,x

where ||E|| is the spectral norm of E, |faq,il,,,, is the upper bound of |faq,:| and

0 < v < 1. Here, we need to adjust  in such away so that the control law Ueq(t)
will drive the states on the sliding surface and the corresponding control law (34)
can then be expressed in terms of states X (t) and rewritten in the following form

Ueq(t) = —a{ [ L, Ly ] [ ?Eg }
2

n—m
+ Z S1,isign fad i) Ifad 1|max+ Z €; sign(faa, J)Ifad Jlmax}

i=1 j=n—m+1

= —qa {LX t)+ Z S1,i8ign(fad, i) | fad, il 1oy + Z e; sign(fad, ;) |fad)j|max}

j=n—-m+1

t) - { Z Sl i Slgn(fad z) {fad z|max+ Z €j Sign(fad,j) |fad,j|max} (35)

=1 j=n—-m+1
where L; = (B3) ™1 (S141,: + WCi + Az,i) + Fi, i =1, 2. e; is the unit vector whose
jth element is 1 and a = 1—'_77
3.2. Composite system stability study

Consider a Lyapunov function candidate V (X (t)) = XT(t)PX (t) of the system (14).
Taking derivative of V (X (t)) along the sliding trajectories, using Assumptions I, II
and combining with (35), we obtain

V(X)) =XT(t)(ATP+PA)X(t)+2UTBTPX (t)+2n, BTPX (t)+2f] PX(t)
= XT(t)(ATP+PA)X (t)—2a (LX (t)+M)" BTPX (t)+29T BTPX (t)+2fT PX(t)

where ‘M’ is assumed as equal to the second part of the right hand side of equation
(35).

V(X)) = XT@)(ATP+PA)X(t)-—2aXT(t)LTBTPX(t)
+ 2 (nT —aMT) BTPX(t) +2f] VP VPX(t)
= XT@)(ATP + PA)X(t) - 2aXT(t) LTBTPX(t)
+ 277 BTPX (t) + 2fT VP VPX (t) (36)

where ﬁg‘ = (n, — aM)T.



Design of Reaching Phase for Variable Structure Controller Based on SVD Method 243

We need to use the following useful lemma to obtain a simplified expression.

Lemma. (See [14].) For any matrices or vectors ‘V’and ‘W’ with appropriate
dimensions, we have

VIW + wTv < pvTv + %—WTW (37)
for any positive constant 8. Using equation (37) in equation (36), we obtain
. i 1 o
V(X(t) < XT(ATP+ PA- B PBBTP + 3,P + aQ)X + E"Z"p

+ 26 XTPBBTPX — 2oXTLTBTPX + ﬂi frfs— xTaQXx,
2

where @ > 0
< XT(t) A+m2 PRl T
< - + =~ ) ~APBBTP+aQ| X(t)
XT()aQX (t) +2X7T(t) (B, PBBTP — aL" BT P) X (t)
1 T — 1 .7
+ 3,7 o + —fd Pfa
<

X ()[<A+I§2) <A+ ﬁ2>—31PBBTP+aQ] X(t)

+2[ e (BLPBBETP) mm((LTBTP+wa—-nQ»]wxM

1 ,_
—Mm@”ﬂﬁ+g%mwmﬁﬁ+EWME (38)

where 8, and fsare the positive constants and a is the tuning parameter of the

control law (35). Examination of equation (38) revels that sufficient conditions for
V <0 are

[(A+I§2> P+P(A+ ﬁ2)—ﬂ1PBBTP+aQ (39)
%,\min (LTBTP + PBL + (a — 1)Q) > Amax(81PBBTP) (40)
1 IWM) 175
/\min 5~ /\max e
@2 gwman() (57E) + @mu @

It can be noted that the solution of Riccati equation (39) along with the above two
additional conditions ensure V < 0. Thus, we conclude that the sliding mode state
trajectories of the uncertain system (14) and (15) under the equivalent control action
(35) are robustly asymptotically stable in the large. Thus, we have successfully
developed a new constructive reaching phase design based on SVD method and
subsequently the stability condition for completely uncertain system is established.
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*

4. DESIGN OF SWITCH GAIN COMPONENTS (AK,
FUZZY LOGIC APPROACH

) BASED ON

as,tj

It is well known that each control method always has its advantages and drawbacks,
or we can say that all control techniques have their individual characteristic features.
Combining several control theories to design a new controller may have possibly
better system performance than one based on single control theory only. In this
section, the design of switch gain control components based on fuzzy logic approach
is proposed with a view to achieve good dynamic system response, smooth control
actions and to decrease the reaching phase time. Here we recall the reaching phase
control law (20) for our convenience and ready reference.

U(t) = = (ag + AKap) Xa(t) + V7 + V7 (42)

where the feedback gain K, is kept constant, but the proper choice of fuzzy switch-
ing gain AI,, can accelerate the state trajectories to reach the sliding hyper plane,
and thus the dynamic performances will may be improved. The function of each part
of the control (20) is already discussed in detail in Section 2. Now, we consider the
design procedure of the fuzzy switching gain matrix AK ,, as a part of the control
signal that will drive the state trajectories from any initial state condition to the
sliding surface.

4.1. Design of switch gain matrix elements AK
logic approach

as,ij Pased on fuzzy

We have considered 7;Z,, ; (see equation (26)) as the linguistic input fuzzy variable
and the corresponding transformed switch gain elements AK ;s,ij as the output
variable. Non-fuzzy variable 7;Z,,; is quantized into five/six linguistic variables

o s . . . o L . 7 . . . .
and similarly the qualitative linguistic variable AK,, ;. is quantized into five/six
linguistic output variables. The universe of discourse for each membership function
is selected based on some trials and these are shown in Figure 1.

Table 2.
Input variables — Linguistic variables
Positive Positive Positive Positive Zero
GiTei,1=1,2,...,m Large Big Medium Small (ZE)
(PL) (PB) (PM) (PS)
Tifaj = 1.’ 2,...,m Positive | Positive | Positive | Negative | Negative | Negative
j#i Large |Medium | Zero Zero Medium | Large
(PL) | (PM) | (PZ) | (NZ) | (NM) | (NL)
Output variables — Linguistic variables
Positive Positive Positive Positive Zero
AK,, i i=1,2,...,m Large Big Medium Small (ZE)
(PL) (PB) (PM) (PS)
AK.g ;i i=1,2,..., .
as ; =12 ,Tn Positive | Positive | Positive | Negative | Negative | Negative
7#1 Large |Medium | Zero Zero | Medium | Large
(PL) (PM) (PZ) (NZ) (NM) (NL)
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ZE PS PM PB PL

IA2

J
~ Pl —
— — 0 . — —
~— == -3 OWOWy e — 23 AK':s,ij

Fig. 1. Membership functions for each input and output.

Based on the expressions (27) —(28) (derived in the previous section), we can com-

pute the switch gain matrix elements AK . using the following decision rules.

as,ij
Fuzzy rules for i = j and i = 1,2,...,m are given below:
Ri: If 5,Z,,; is PL then AK,, ,;is PLfori=jandi=1,2,...,m.

This rule indicates that when the transformed state is leaving the sliding surface
quickly, then a positive large AK  ;; is required to decrease & quickly to make &;
near the sliding hyper plane.

Ra: If 5,Z,,; is PB then AK,, ; is PB.
Rj: If 3%, ; is PM then Z—I—{'_;mi is PM.
Ry: If 5,24, is PS then AK,, ,; is PS.

Rs: If ;% is ZE then AK,, ;; is ZE.
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Fori # jand i = 1,2,...,m and j = 1,2,...,m, the following fuzzy rules are
described as
Re: If 6i%,,; is PL then AK,, ,; is PL.
Ry: If 5:%a,; is PM then AK,, ,; is PM.
Rg: If i%q,; is PZ then AK,, ,; is PS.
Ro: If 5i%q,; is NZ then AK,, ,; is NS.
Rio: If 5i%a,; is NM then AK,, ,; is NM.
Ry If 5;Zq,; is NL then AK,, ,; is NL.

*

Defuzzification. The crisp output AK ; ;; is obtained by choosing the center-of-
area (centroid) defuzzification method and it is given by

%

. fﬂ(ﬁ‘ )AKas,ij d (m;s,ij)

f ”(;_K;... ij)d (m:s’ ij)

It has been observed that a large switching gain with proper sign of Has‘ i will
drive the state trajectories to approach the sliding surface rapidly and vice versa.
Transformed switch gain matrix A_K:s) ;; is then changed to switch gain matrix AK;
by using the inverse of the matrix WT B. Furthermore, when the state trajectories
hitting the sliding surface an equivalent control law (35) is then applied to maintain
the motion of the states along sliding hyper plane and ensures the trajectory remains
on the surface once it gets there.

(43)

*

5. SIMULATION RESULTS

We consider load-frequency control problem of two area interconnected power system
to demonstrate the effectiveness of the proposed controllers in presence of parameter
perturbation and external disturbances. The nominal system is represented in the
state space form by the equation

X(t) = AX(t)+BU(t)+Td(t) (44a)
Y(t) =CX(¢t) (44b)
where, X(t) = [ Afi APy AX, APy Afy, APy AXg |7, Afy and
A f, are the deviation in frequencies, AP;;, is the change in tie-line power, APy, and

AP,y are the change in turbine-generator outputs, AXy; and AXy, are the change
in outputs of the governors. Furthermore,

U=[AP, AP, 1", d=[d & ],
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Area-control errorin Area-1 ACE; = Af,+AP;;. and in Area-2 ACE; = Afy— APy,
are the outputs of the composite system. The following are the nominal system
matrices:

[ o om0 - o 0 0]
0 o o 0 0 0 0
1 T1 T} 0 0
R1 TG 0 T Ter 0 0
A=| T 0 0 0o -T5, O 0
K K
o0 0 g b gm o
0 o o 0 0 S
T T
L 0 0 0 0 R2Tg2 Te2 J
1 K
pro[00 s 000 0 o [-Ha 000 0 00
00 0 000 | 000 —Ku oo
P1

The following nominal parameters are used [5]: Tp = Tpy = Tpy = 20.0s; Tr =
TT] = TT2 =0.3 S; TG = TG] = TG2 =0.08 S5 I{P = KP1 = KP2 =120 Hz/p.u.MW;
R=R; = R; =24 Hz /p.uMW.

There are always errors present in such models due to linearization, unmodelled
dynamics, etc. Moreover, the power system operating conditions change with time
leading to changes in system linearized parameters and the following range of system
parameter variations are considered:

Kp 1
7 €1 0025 0075 ], ZEe[30 90], 7-e[2333 4333 ]

1 1
7T € [ 2.6041 7.8124 ], s € [875 16.25 ].

The nominal system matrices are as follows:

[ —0.05 6.0 00 —6.0 0.0 0.0 0.0 ]
0.0 -3.33 333 00 0.0 0.0 0.0
-52083 00 -12.5 0.0 0.0 0.0 0.0
A = 0.545 0.0 00 00 -0545 0.0 0.0
0.0 0.0 00 6.0 -0.05 6.0 0.0
0.0 0.0 0.0 0.0 0.0 -3.33 3.33
0.0 0.0 00 00 -5208 00 -12.5 |
BT - [ 0.0 0.0 12,5 0.0 0.0 0.0 0.0]
~ (00 00 00 00 00 00 125

T = -6.0 00 00 00 00 0.0 0.0
. 0.0 00 00 00 -6.0 00 0.0

and ¢ = 1.0 00 00 1.0 0.0 0.0 0.0
~ 100 00 00 -10 1.0 0.0 00 |-
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Note that our nominal system is not in a regular form of equation (17) and (18).
One can use a suitable sate transformation to get the desired form. In the present
example, the states are rcarranged to obtain the system description in regular form
and it is given by

X(t) = [AfH AP,y APp APy Afy AX, AXy |7
—005 60 00 -60 00 00 00
00 -333 00 00 00 333 00
0.0 00 =333 00 00 00 3.33
A = 0545 00 00 00 —0545 00 0.0
0.0 00 60 60 —005 00 00
-52083 00 00 00 00 —125 00
00 00 00 00 -5208 00 —125
57 _ [00 00 00 00 00 125 00 ]
= (00 00 00 00 00 00 125"

Note that the physical interpretation of the states is remaining same after transfor-
mation and in general, it is not true. Corresponding transformed nominal system
matrices are

7 = -6.0 00 00 00 0.0 0.0 0.0
| 00 0.0 00 00 -60 0.0 0.0

and 5:[1.0 00 0.0 1.0 00 00 0.0]_

00 00 00 -1.0 10 0.0 0.0

Define X, = [ Afi APy AP, APy Afy |and Xy = [ AX, AX, |

Case A. It should be pointed out that if the original system parameters are frce
from perturbation and not excited by external disturbance then we need to design
a P-type sliding surface. When the system state trajectory comes on the sliding
surface the closed loop dynamics are described by reduced order model (7). The
state feedback control gain S; of the reduced order model (7) (switching function)
can be found out by minimizing the performance index

t
J = / (X1 QX + X, RX,) dt (45)
0

where @ = 15Isxs and R = 10 Isx5. The resulting value of switching surface gain
matrix

Sz[ 1.2053  1.6153 —0.0016 -0.8141 -0.0023 1 O (46)

—0.0023 -0.0016 1.6153  0.8141 12063 0 1 |°
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The equivalent control law (9) is given by

Ueq(t):'
_ —0.4568 0.1479 —0.0007 —-0.5797 0.0355 —0.5693 —0.0004 Y(t)
0.0355 —0.0007 0.1479 0.5797 —0.4568 —0.0004 - —0.5693 ’
(47)

The range space eigenvalues are located at 0.4 and 0.3 that are unstable and the
corresponding fixed gain matrix is given by

K, = —0.4954 0.0962 —0.0006 -0.5536 0.0356 —0.6013 —0.0004
£~ 0.0356 —0.0006 0.1091 0.5601 —0.4857 —0.0004 —-0.5933 |-

To satisfy the reaching conditions (28) based on SVD method the value of switch
gain matrix is chosen as

* 5 2 0 0 0 0 O
2 5 0 0 0 0 0"

Computation of AK :s,ij based on fuzzy logic approach (see Figure 1) yields:

a Wiy =1.1275, ayWay = 1.1275, oy W12 = oy Wo; = 0.1611.

Fori=j,i=1,2,...,mand j =1,2,...,m.

Width of input (7%, ;) membership function, 2L = 1.0.
Width of output (W;S,ﬁ) membership function 2L; = 2.
Fori#j,i=1,2,...,mandj=12,...,m. '
Width of input (5;Z, ) membership function, 2L, = 2.
Width of output (A_K_Zs,ij) membership function 2L3 = 2.

The computer simulation of the composite system has been performed taking a
initial state disturbance of X(0)=[05 0 0 0 0 0 0 ]T. Design of switch
gain matrix based on fuzzy logic approach (soft computing) is compared with that of
hard switching gain matrix and comparison of system responses using the proposed
control strategies are shown in Figures 2-7. It is observed that the switched gain
components designed based on fuzzy logic approach are much smooth than the hard
switched gain components (see Figures 5-6). As a result, the system responses
based on soft switching seem to be better than the hard switching control actions.
Furthermore, Figure 3 shows that the reaching time to a final sliding surface based on
soft switching is decreased in comparison with the hard switching. Figures 7 shows
the robustness of the proposed controller in presence of parameter perturbation and
external disturbances.
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Fig. 2. Comparison of nominal system responses with state disturbance only.
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Case B. A Pl-type sliding is chosen as in equation (19) when the system is per-
turbed with parameter perturbations and external disturbances. Switching function
is then designed by adopting the procedure as discussed in Section 2.

Selecting the value of Q, = 15I7x7 and R, = 10 I3x2, the corresponding sliding
surface gain matrices are

S = 1.5874 1.8662 0.0167 -1.0052 0.0266 1 O
~ | 0.0266 0.0167 1.8662 1.0052 1.5874 0 1

and

1.2247 0
W= 0 1.2247 |-

The range space eigenvalues are placed at 0.4 and 0.3 and the corresponding fixed
gain matrix K,s of the augmented system is obtained using the expression (23)

Ko =

—0.4195 0.2046 0.0078 —0.6190 0.0429 -0.0392 0 —0.5344 0.0045
0.0431 0.0079 0.2196 0.6271 —-0.4068 0 —0.0294 0.0045 -0.5264|"

To satisfy the reaching conditions (28) based on SVD method the value of switch
gain matrix is chosen as

* 5 2 0 0 0 0 0 0 O
AK‘”—[ 0000000]

2 5

and simultaneously the reaching conditions must be satisfied.

Simulation results are shown with an initial state disturbance of
Y(O):[ 05 000 0 0O ]T and 10 % step change in load demand in area-1.

Performance of the system based on the proposed variable structure control
schemes has been studied qualitatively and system responses are shown in Figure 6,
which proves the robustness of the designed techniques. When the system trajectory
reaches the sliding surface an equivalent control law (35) where

Ueq(t) =

-0.3687 0.2644 0.0083 —0.6512 0.0437 —0.5824 0.0845 ()
0.0437 0.0083 0.2644 0.6512 —0.5770 0.0045 —0.8024

is employed to maintain the state trajectory on the sliding surface.
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Fig. 7. System responses for state disturbance and 10 % step
change in the load demand in area-1 (SVD method).
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6. CONCLUSIONS

A state feedback VSS with sliding mode controller is designed based on singular value
decomposition technique. A proportional plus integral type-sliding surface has been
developed while disturbance-matching condition is not satisfied. It has been shown
in table that the proposed technique requires less number of switching gain vector
components as compared to that of White et al method [11] and moreover, the
proposed method does not need to satisfy any additional inequality constraints to
reach the sliding surface. This method allows the system to drive from any initial
state to the sliding surface in finite interval of time. Design of transformed switch
gain matrix elements via fuzzy logic approach provides a smooth control action and
also requires less time to hit the sliding surface. Simulation results have confirmed
the robustness of the proposed controller in presence of parameter uncertainties and
external disturbances.
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