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K Y B E R N E T I K A — V O L U M E 4 0 ( 2 0 0 4 ) , N U M B E R 4, P A G E S 5 0 1 - 5 1 0 

THE OPTIMAL CONTROL CHART PROCEDUŘE 

JAROSLAV SKŘIVÁNEK 

The moving average (MA) chart, the exponentially weighted moving average (EWMA) 
chart and the cumulative sum (CUSUM) chart are the most popular schemes for detecting 
shifts in a relevant process parameter. Any control chart system of span k is specified by 
a partition of the space Rk into three disjoint parts. We call this partition as the control 
chart frame of span k. A shift in the process parameter is signalled at time t by having the 
vector of the last k sample characteristics fall out of the central part of this frame. The 
optimal frame of span k is selected in order to maximize the average run length (ARL) if 
shift in the relevant process parameter is on an acceptable level and to minimize it on a 
rejectable level. We have proved in this article that the set of all frames of span k with 
an appropriate metric is a compact space and that the ARL for continuously distributed 
sample characteristics is continuous as a function of the frame. Consequently, there exists 
the optimal frame among systems of span k. General attitude to control chart systems is 
the common platform for universal control charts with the particular point for each sample 
and variable control limits plotted one step ahead. 

Keywords: control chart, frame of span fc, average run length, probability distribution, 
compact metric space 

AMS Subject Classification: 49J30, 62F15, 62P30 

1. INTRODUCTION 

The moving average (MA) chart, the exponentially weighted moving average (EWMA) 
chart, the cumulative sum (CUSUM) chart and the chart for arithmetic average 
with warning limits (by the ISO 7873 standard) are the most popular schemes for 
detecting shift in the process mean. They are described in detail for example in 
[8]. Some authors (e.g. [9]) gave simulation results that indicate that MA, EWMA 
and CUSUM charts are competitive among themselves. This control charts combine 
information from two or more samples in order to improve performance. A presence 
of signal at time t depends on more sample characteristics Yi, Yi_i, . . . . There are 
also other charts for controlling parameters other than a normal process mean. 

The moving average of span k at time t is 

M — ^ ~ f c + - "*~ yt-k+2 + • • • + Yt /-.\ 
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for t = k, k -F 1,... . Control limits are on constant levels UCL and LCL. A single 
point Mt out of control limits at time t in the chart is signal of changes in the 
relevant process parameter. 

Warning and action limits are plotted on constant levels UWL, LWL, UAL and 
LAL in the control charts for arithmetic average with warning limits of span fc. A 
shift in the process parameter is signalled at time t by having at least fc succeeded 
points Yt-k+\, Y( A-4-2, • • •, Yt in the sequence of sample characteristics (e. g. sample 
moans) fall outside the warning limits or one point outside the action limits. 

There exists a lot of other control chart schemes with numerous modifications 
and combinations (see [1, 6, 7]). They play the crucial role in systems of Statistical 
Quality Control (see for example [3, 4, 5, 8]). General attitude to control systems in 
this text is a platform of universal control charts with one point Yt for each sample 
along with variable control limits 

UCLt = sup At and LCLt = inf At, (2) 

plotted at time t at most one step ahead, where borders of the acceptance region 
At C 1R for Y( depend on the characteristics Yt-\, Yt„2, • • • before time t. 

2. SYSTEMS OF SPAN fc 

Let lR̂  be the set of all ordered fc-tuples of real numbers with common topology. A 
partition S of the space 1RA' into three disjoint parts C, U and C with the properties 

(i) central part C is nonempty and closed, 

(ii) upper and lower parts U and C are open, at least one of them is nonempty, 

(iii) if (xi,x2,.. •,Xj-i,y,xj+i,...,xk) eU and y < z (3) 
then (xi,x2,...,Xj-\, z,xj+i,... ,xk) €U for each j , 

(iv) if (xux2 ,Xj-i,y,xj+i,...,Xk) G C and z < y 
then (.T! ,x2,..., .rj_i, z, xJ+i,..., xk) G C for each j , 

is called the control chart frame of span fc. A shift up in the process parameter 
will be signalled at time t by having the random vector (Yt-k+i, Yt-k+2, • • • ,Yt) of 
sample characteristics fall into the upper part U of the frame, a shift down will be 
signalled by having this point fall into the lower part C. The point in the central 
part C signifies no signal. The MA chart and the chart for arithmetic average with 
warning limits are systems of some span fc. Examples of frames for this schemes are 
in Figure 1. On the other hand, the EWMA chart and the CUSUM are systems of 
unbounded span because the signal is conditioned by information from all samples 
preceding the actual time. 

Control limits at time t in the universal control chart for a system of span fc are 

UCLt =sup{yeR;(Yt-k+i,Yt-k+2,...,Yt-Uy)eC} 
(4) 

LCLt = mt{y G M; (Yt-k+i,Yt-k+2, ...,Yt-Uy)e C}. 
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F i g . 1. Frames of spari 2. 

You can see comparison of the classical and the universal control chart for the MA 
scheme of span 2 in Figure 2. Little triangles indicate the time moments with signal 
(the 7th sample). 

Let Ao be the standard Lebesgue measure on E^, x = (x\ ,.7*2,... ,£*•) be an 
element of Rk and X* be the set of all frames of span k. Let A be a normalized 
measure on 1RA' with the same zero sets like Ao- For example 

X(A) = Ao ({($(xi), d>(x2), • • • ,*(xfe)) e (0; 1)*; x G A}) 

,2 

for any Lebesgue measurable y l c K * and 4>(x) = -4= f*^ e-~2~ At. Let the symbol 
— represents the symmetric difference operation. 

Lemma 1. Let s(i) = (ZY(i),C(i),£(f)) 6 Xfc for i G {1, 2}. Then pk : X 2 -> K, 
p f c(s ( 1 ) ,s ( 2 )) = A(u(1) -ZV(2)) + A(£(1) - £ ( 2 ) ) , is a metric on Xfc. 

P roo f . We have to prove that 

(i) p fc(s (1)
!s

(2)) = 0ifandonly ifs (1) = s ( 2 ) , 
(ii) pk{SW,S^) = pk(S^,S^), 

(iii) p fc(s (1),s (2)) + pfc(s
(2),<S(3)) >p f c(s ( 1 ) ,s ( 3 )) 

for every s(1), s(2) and 5 ( 3 ) € Xfc. 

(i): Obviously p f c (s ( 1 ) ,s ( 2 ) ) = 0 if frames s(1) and s(2) are identical. If 5 ( 1 ) 7* 
s(2) then at least one of the sets u(1) - £/(2), lj(2) - u(,), £ ( 1 ) - £ ( 2 ) , £ ( 2 ) - c(1) 

is nonempty. Let it be ZV(1) - u(2). At the other cases we proceed alike. As u(1) is 
open, for arbitrary t = (ti,t2, . . . ,tk) G W(1) - u(2) there exists such real number 
£ > 0 that the e-neighbourhood Oe(t) of t is a subset of u(1). Put 

D = {xe Oe(t); (Vt G { 1 , . . . , k})(xi < U)}. 
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Universal 

Fig. 2. One-sided MA chart and its universal form. 

1 8 2 0 
S a m p l e 

By the item (iii) of (3) is D n u(2) = 0. As X(D) > 0 and D C U(l) - u(2), we have 

0<A(u ( 1 )-u ( 2 ))<p f c(s ( 1 ),s ( 2 )). 
(ii): The symmetric difference is commutative, 
(iii): For arbitrary three sets A\, A2 and A3 is 

(Ai - A2) U (A2 - A3) D Ai - A3. Hence 
X(A, - A2) + A(A2 - A3) > A((Ai - A2) U (A2 - A3)) > A(Ai - A 3). n 

L e m m a 2. The metric space (X*.,/9&) is complete. 

P r o o f . Put 5 ( n ) = (£Y ( n ) ,C ( n ) ,£ ( n ) . Let (<S(n))£U be Cauchy sequence in X*. 
Hence 

(Ve > 0)(3Z G N)(Vt, j G N)(t, j > / =» pjfc(5(i),-5U)) < e), 

where N is the set of all natural numbers. We are going to show the limit of 

this sequence is the frame S = {JA,C,C), where U = int (f |i=i U j = i ^ M , £ = 
i n t (fli=i Uj=i £ ( j ) ) a n d C = E f c - ( W U / : ) . Here int is the interior operator in the 

standard metric on Rk. Let us now prove the sets f|i=i U j= i^ ( j ) --> Ui=i P l j l i ^ ^ 
differ only in boundary points. As both these sets have property (iii) of (3), they 
consequently differ on a set of measure zero. 

Suppose there exists t G | X i U,°=i^ 0 ) " U S i f l ^ i ^ , a n i n t e r n a l P o i n t o f 

fli=i \SjLiu(j)- T h e n t h e r e ex i s t s such 5 > ° t h a t 

00 00 0 0 00 

t-6 = {t1-8,...,tk-S)ef] Uu ( i ) - U V\uU)-
i=\ j=i i = l j—i 
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We would like to show that this leads to a contradiction. The set f]^ [j^U^ 
contains all the points of Rk that are elements of infinitely many upper parts U^ 
while elements of \J^1X Hj l i M^ a r e included in almost all parts U^\ It means that 

(VZ G N)(3ra, n G N) (m, n > I & t - 5 G U{n) & t g ZY(m)) . 

Hence for Af = {x G R*;(Vi G { 1 , . . . , k})(U - 6 <x{ < U)} is 

p , ( 5 ( m ) , 5 ( n ) ) > A ( M ) > 0 , 

contradictory to the fact that the sequence (<S(n))n
<^1 is Cauchy. So, the sets 

CO CO CO CO / CO CO 

n uuU) D u nuU) Dmt[n uuU) 
i=lj=i i=lj=i \i=lj=i 

differ only on zero sets. Because it is true for lower parts of frames too, we have 

(Ve > 0)(3l £ N)(Vn € N) (n > I => \(U(n)"-U(n)') + \(C(n)"- C(n)') < | ) , 

where u(n)' = f)°°=nU
(j) and u(n)" = \J*LnU

(j). Moreover, u(n)' C u(n) C U(n)" 
and u(n)' C u C u(n)" almost everywhere and consequently A ( u ( n ) " - u ( n ) ) < 
A(u ( n ) " -u ( n ) ' ) and \(U(n)"-U) < \(U(n)"- U(n)'). It holds similarly for £'s. Bence 

Pk(S(n),S) < \(U(n)"-U(n)) + \(U(n)"-U) 

+ \(C(n)"-C(n)) + \(C(n)"-C) < | + | = e. • 

Lemma 3. The metric space (Xfc,pfc) is totally bounded. 

P r o o f . We try to prove that for every e > 0 there exists s-net Ae in the metric 
space Xfc. It is such finite subset of X* that for every element S G X& there exists 
such apre(5) G Ae that pk(S,a,pr£(S)) < e. 

Let Cn be a partition of Rk on the nk same cubes in sense of the measure A. 
Let ln = {I c R; (31 G {1 ,2 , . . . ,n})(7 = * " 1 ( ( ~ I ^ » } - The measure A of each 
element of the set 

Cn = {/i x I2 x . . . x 7, c R*; (Ji, J2>. ..Jk)e In } 

is ^-. Put 

AE = {(W,C,£) G X,; (3fl C Cn(e))(C = \JB)} 

where ^ + 1 > n(e) > ̂ . Really, Ae is sought £-net. If<S(0) = (W (0 ) ,C (0 ) ,£ (0 )) G Xfc, 
let us select for apr e(5 ( 0 )) such element of Ae that its central part is 

apr£(C(0)) = f | {C C Efc; C D C(0)k(U,C,C) e A£}. 
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Then U^ and apr£(ZY(°)) (similarly C^ and apr_(£(°))) differ only in interiors at 
most k - n(e)k~l elements of Cn . Hence 

i ou 

pfc(s(°),apr£(s(°))) < 2k .„(£)'- ' . _ = _ < _ . • 

Theorem 1. The metric space (Xk,Pk) is compact. 

P r o o f . Immediate consequence of Lemmas 2 and 3 by claims of General Topol­
ogy (see for example [2]). • 

3. AVERAGE RUN LENGTH 

Let L be the number of succeeded samples with no signal coming from a nonex-
tendible passing section of the process. Average run length (ARL) is the mean 
value of the random variable L. The criterion ARL depends on properties of the 
process (Yt)

<£L_OQ of sample characteristics and on used control chart system. Set­
tings of control chart procedure are determined economically (see [10, 11]). They are 
usually selected in order to maximize ARL if shift in a relevant process parameter is 
on an acceptable level Aft (usually zero) and to minimize it on a rejectable level A r . 
Two acceptable and rejectable levels are distinguished for two-sided asymmetrical 
control chart system. Let A r < A a < 0 < Aa < A r be lower rejectable and accept­
able along with upper acceptable and rejectable levels for the process parameter shift 
from a target value in two-sided control chart system. There is often A r = — A r and 
Aa = — Aa in symmetrical systems. The idea is now to show that a control chart 
design can be interpreted as a problem to find maximum or minimum of continuous 
function on X&. 

Theorem 2. Let ARL be the average run length of a zero-one signal process 

(St)r=-oo- Then 
P(St = l\St-i=0) = l/ARL. 

P r o o f . Let L be the length of a passing maximal process section with no signal 
(zeros). The mean value of L is ARL = ^j_Li 3 ' P(L = j)- Let An>t be the event 
"random time point Ms a member of a signalless process section of length n", 
Bt D AU}t be the event "no signal is present at time ," (St = 0) and Bt be the 
complement of this event. The conditional probability P(AUyt\Bt) is proportional 
only to the probability P(L = n) and to the integer n. Hence 

P(An,t\Bt)= " , P ( p = w ) . and P ( P t | A i l t _ i ) = \ . 
__,-=i J • p(L = J) l 

By the total probability formula we have 

oo 

P(Bt|Pt_i) = £P(B t |.4 i i t_i).P(.4 i>t_i|B t_i) 
1 = 1 

CO 

-"-T ARL ARĽ 
1 = 1 

1 i-P{L = i) 
D 
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Let ARL&(S) be the average run length in a control chart system of span k 
with a frame S = (U,C,C) G Xk over a process (Yt)

(£L_OQ of independent sample 
characteristics Yt, each of them with the same probability distribution at a relevant 
parameter shift of A. Evidently 

ARLA(S) = l ^ S ) (5) 

where conditional probabilities 

7 T , , A ( S ) = P((Yt-k, Yt-jt+i, • • •, Yt-i) e C|shift = A) (G) 

and 

7 T 2 , A ( S ) = P ( ( y f - f c , ^ ^ 

do not depend on £. 

4. OPTIMAL SYSTEM 

The next theorem is crucial for existence of the optimal system of span k in a good 
deal of design problems . 

T h e o r e m 3 . Let members of the process (Yt)
<j*L_OG of sample characteristics be 

independent and alike continuously distr ibuted . Then ni^(S) and 7 T 2 ) A ( £ ) of (6), 

considered as functions of variable <S, are uniformly continuous on the metric space 

(X/b,pjk). 

P r o o f . Let / A be the probability density function of Yt at the relevant process 

parameter shift of A, Xj = (xi,..., Xj_i , Xj+i,..., xk) for each j G {1, 2 , . . . , k}, 

infj(kj) := inf{xj G l ; X G C}, 

supj(Stj) := sup jx j G 1R; x G C} 

and T&j(xj) = J fA(xj) dxj. Then 
infj(kj) 

7riA(S)= ff[fA(xi)dx= f r A J ( X j ) . f j / A ( x i ) d x j (7) 

c *=1 Rfc_i *=i,*^i 

for arbitrary j G { 1 , 2 , . . . , k} and 

« k+i 

7 T 2 , A ( 5 ) = / J J /A(-Ci)d(Xi ,X 2 , . . . ,Xi fe + i ) = 

(x2,...,a:fc+1)GC&xGC l = 1 (g) 

= I Г д , i ( x f c ) . Г д , j | î ( x t ) . П / д ( - r . ) d x t 

Rfc-1 І = 1 
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Suppose e > 0. Then there exists such bounded measurable set B C R* that 
/ n.i=:i/A(-E»)dx < e/3 and the function ]~Ii:--i/A(-EI) 1s bounded on 5 . Let 

R f c -B 
a > 0 be such constant that o • Ao(A) < A(A) for every measurable A C B. Put 
6 = s u p f l t i / A ( * » ) and <S = eo/(36). If p f c ( s ( 1 ) , s ( 2 ) ) < J for some 5 ( 1 ) , s ( 2 ' € Xfc 

x £ B 
then 

| 7 Г 1 , Д ( 5 < 1 ) ) - 7 Г 1 , Д ( 5 < 2 ) ) | = / Д / д ( X i ) d x - I Д / д ( x i ) d x 

C ( l ) І = 1

 C (2) І = 1 

< / f[/A(-:i)dx< / n/A(xi)dx+ / JJ/A^dx 
• i M . * i^íO. l = l i / M . * í/1'O'. l = í /Wl . * /WO. * = 1 c(-) ~C(2) l^1) - W ( 2 ) £(D - £(2) 

k 

< f + / Д/Д(*i)dx+ / Д/д(*.) 
(1/(4 -Ł/(2))nß t = 1 (£<D -£< 2 >)Пß І = 1 

< j + Ь • [Ao((lV(1) -^u(2)) Пß) + A0((£
(1) - £(2)) П B)] 

= f + g • [Ao((u(1) -£/(2)) Пß) + A0((c
(1) - £(2)) П B)] 

dx 

2є є 2є є 
< y + ^ - [ A ( ( ^ ( 1 ) - u ( 2 ) ) n / i ) + A ( ( £ ( 1 ) - c ( 2 ) ) n 7 i ) ] < | + ^ . < 5 = e. 

We have proved that the function 7TI,A is uniformly continuous. Hence by (7) for 
each £ > 0 there exists such 5 > 0 that 

and 

i R k - i 

i fp*(s ( 1 ) ,s ( 2 ) )<<5. But then 

/ (rSJ^xt) - ^ . ( x * ) ) T[ /A(x0 dxfc 

Rfc -1 * = 1 

/ (rff*(**) - ri2!*(xfc)) I I /--(*«)d** 
, •_ , i = l 

< 2 

< 

К д ( s ( 1 ) ) - 7 Г 2 , д ( s ( 2 ) ) | = 

k-1 

-Гдîi(**)Гд,*(*0) Д / Д ( ^ ) d x , 
І = l 

/ (Гдl^Гд-^Xfc) 

» f c - l 

/ [(гaíxO-Г^ÍXfc))-^^^) 
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A : - l 

+ (г£\(xŕ) - Гÿ.(xfc)) • г£>fc(xfc)] JJ ЫXІ) dxk 
І=l 

< I ( O * * ) - Гg^x*)) П U(Xi) dxk 
•1 - _ i 

+ í (r£\(xk) - r^íxfc)) n fA(xúdx 
t = i 

Є 

+ 2 e. П 

We have proved using Theorems 2 and 3 that ARLA(S), as a function of variable 
5, is continuous on X*.. Moreover, ARLA(S) is decreasing with respect to ni^A(S) 
and increasing with respect to 7T>2,A(S). Evidently, independence of Yi's in Theorem 
3 can be replaced by the weaker condition, e.g. the process (Yt)

(j*i_OQ is strictly 
stationary. You can interpret control chart design task as a problem of the extreme 
point of a continuous function on a closed subset of the compact space Xk. The most 
prevailing problem is to find 

or 
m&x{ARLAa(S)]ARLAr(S) = lr,S G X*} (9) 

mm{ARLAr(S)-ARLAa(S) =la,SeXk}. (10) 

For example, the sample characteristic Yt is the sample mean of quality indicator 
with normal distribution. We need to find such control chart frame of span 2 that 
ARL is 370 (corresponding to the Shewhart diagram with 3O~ limits) if no shift in 
the process mean is present and such that ARL is minimal if the shift is the 1.5 
multiple of the standard deviation of sample characteristic. There is the optimal 
solution here. We have not identified exactly the optimal frame for the task of 

min{ARLX.b(S); ARL0(S) = 370&5 G X 2 is symmetrical} 

but we have found approximate boundary of the optimal solution in various func­
tional classes. They are shaped like that in Figure 3. In this case is ARLi^(Sopt) 
approximately 7.238, less than any classical system of span 2. The greater span k 
of control chart system the better performance we can expect because of natural 
embedding of X r into Xs for r < s. 

5. CONCLUSION 

An existence of the optimal frame of a common control chart problem of span k over 
a process of continuously distributed sample characteristics has been proved here. 
Its delimitation will be chiefly a case of numerical analysis. Moreover, this note offers 
an aid for measurement of distance of control chart systems interpreted as points of 
a metric space. There are troubles in an exact specification of the criterion ARL 
in charts which depend on all previous values. One eventuality is an application of 
the optimal solution in the space X^ for every time t. On the other hand, the longer 
span we consider the better performance is guaranteed. 

(Received April 7, 2003.) 
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Fig. 3. Optimal system frame of span 2. 

REFERENCES 
[1] O. O. Atienza, B. W. Ang, and L. C. Tang: Statistical process control and forecasting. 

Internat. J. Quality Sci. 1 (1997), 37-51. 
[2] R. Engclking: General Topology. PWN, Warszawa 1977. 
[3] A. V. Feigenbaum: Total Quality Control. McGraw-Hill, New York 1991. 
[4] H. Gitlow, S. Gitlow, A. Oppenheim, and R. Oppenheim: Tools and Methods for the 

Improvement of Quality. Irwin, Boston 1989. 
[5] P. T. J. James: Total Quality Management: An Introductory Text. Prentice Hall, 

London 1996. 
[6] D. W. Arquardt: Twin metric control - CUSUM simplified in a Shewhart framework. 

Internat. J. Quality & Reliability Management 3 (1997), 220-233. 
[7] M. M. Ncube: Cumulative score quality control procedures for process variability. 

Internat. J. Quality & Reliability Management 5 (1994), 38-45. 
[8] C. P. Quesenberry: SPC Methods for Quality Improvement. Wiley, New York 1997. 
[9] S. W. Roberts: A comparison of some control chart procedures. Technometrics 1 

(1966), 239-250. 
[10] M. S. Srivastava and Y. Wu: Economical quality control procedures based on symmet­

ric random walk model. Statist. Sinica 6 (1996), 389-402. 
[11] G. Taguchi: Quality engineering in Japan. Commentaries in Statistics, Series A 14 

(1985), 2785-2801. 

Jaroslav Skřivánek, Department of Mathematics, Technical University of Košice, B. 
Nemcovej 32, 042 00 Košice. Slovák Republic. 
e-mail: Jaroslav.Skrivanekutuke.sk 


		webmaster@dml.cz
	2015-03-23T13:59:16+0100
	CZ
	DML-CZ attests to the accuracy and integrity of this document




