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K Y B E R N E T I K A — V O L U M E 40 ( 2 0 0 4 ) , NUMBER 5, P A G E S 6 1 1 - 6 3 8 

SCHWARZ-LIKE METHODS FOR APPROXIMATE 
SOLVING COOPERATIVE SYSTEMS* 

Ivo MAREK 

This paper is dedicated to Prof. Dr. Dr.h.c Frantisek Nozicka on the occasion 
of his 85th birthday. 

The aim of this contribution is to propose and analyze some computational means to 
approximate solving mathematical problems appearing in some recent studies devoted to 
biological and chemical networks. 

Keywords: cooperative systems, steady states of evolution problems, Schwarz iterative so­
lution 

AMS Subject Classification: 65F10, 47B60 

Basic mathematical tools for investigating some biological and chemical networks 
as presented in [11, 12] are recalled in Section 1. In Section 2 some variants of iter­
ative Schwarz-like methods studied in [1, 16] are described and applied to problems 
discussed in Section 1. An analysis and comparison of two particular Schwarz-like 
methods is presented in Section 4. 

1. COOPERATIVE SYSTEMS 

In [11] a theory for linear problems of the type 

^-w(t)=Tw(t), w{0) given, (1) 
at 

where T is a given infinitesimal generator of a semigroup of operators is developed. 
Several examples mainly from biology and chemistry where the state vectors w(t) 
of the underlying chemical network follow an evolution (1) are presented there. In 
these cases the conservation of matter requires the existence of an element / such 

* Research has been supported by the Program Information Society under Project 
1ET4003004/5, Grant No. 201/02/0595 of the Grant Agency of the Czech Republic and Grant 
No. MSM 210000010 of the Ministry of Education, Youth and Sports of the Czech Republic. 
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that the duality pairing [w(t), f] is constant during all times of the evolution so that 
we have 

[w(t),f) = [w(0),f], t>0. (2) 
It should be noted that in case the space where the evolution is investigated is a 

Hilbert space the pairing just mentioned becomes a corresponding inner product. 
More complicated networks (and some examples are shown [12]) are described by 

a state vector u(t) which is formed by finitely many substates in the fashion 

u(t) = {u1(t),...,uN(t)) (3) 

following an evolution 

( ±ui(t) = T^(u(t))ui(t) := B^u>(t) + G«>(u(t))u>(t) 
< (4) 
[ [ui(t), fi) = py (0), P] , t> 0, / = 1 , . . . , N. 

Hence, the subsystems evolve like (1) and (2) for which we developed the theory in 
[11]. The dependence of the operators T^ on the data is typically on the complete 
state (3) rather than only on some substates. 

If u1 G X*, j = 1,...,/V, for the states of the subsystems, the product X = 
X1 x X2 x • • • x XN can be formed and the "block"-diagonal operator 

B = d\ag{B^,...,B^), G(u) = diag{G<1>(u)> . . . ,Gw>(u)} (5) 

can be defined on X. Now (3) evolves according to 

±u(t) = Bu(t) + G(u(t))u(t), [u(t), / ] = NO), / ] , t > 0, (6) 

where / = ( /* , . . . , fN) G X and B is the infinitesimal generator of a semigroup of 
operators of class Co [13, p. 321]. Note that structurally (6) is very similar to (1), 
(2). Only the infinitesimal generator G = G(u) itself depends on the total state (3) 
so that our problem becomes nonlinear. 

In [12] the evolution problem was assumed in the form (6) under very general 
conditions and an existence theorem (concerning mild solutions which in our appli­
cations become classical solutions) was proven for all times t > 0 and the question 
of its long run behaviour settled: In fact, any solution of (6) settles in the long 
run at a steady state. Defining equations to determine this steady state are given 
there. This theorem is important not only in its own right. It also provides the basis 
for singular perturbation techniques on such systems to obtain analytic expressions 
which characterize the speed of reaction systems, and we refer to [7, 22] for the 
pseudo-steady state process leading to the definition of the speed of the underlying 
chemical networks. Note that the theory does not need the diagonal form of (5). 
However, it relies heavily on (2). Relation (6) is only an easy way to fit (3), (4) 
under the general pattern (10). The original form of the examples is (4). 

As in the earlier papers [11, 12] we need the theoretical basis for infinitesimal 
generators with monotonicity properties. The corresponding basic definitions are 
summarized in this section. 
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Let £ be a Banach space over the field of real numbers. Let £' denote the dual 
space of £. Let T, T' be the corresponding complex extensions of £, £' respectively 
and let B(£) and B(T) be the spaces of all bounded linear operators mapping £ 
into £ and T into T respectively. In fact, we are going to provide our investigations 
in a Hilbert space £ equipped with an inner product [•,•]. 

Let K C £ be a closed normal and generating cone, i. e. let 

(i) K + K C K, 

(ii) a/C C K for a G K+, 

(iii)/Cn(-/C) = {0}, 
(iv) K = K, 

where K denotes the norm-closure of K, 

(v) £ = K - K, 

and 

(vi) there exists a 8 > 0 such that ||x -F y\\ > S\\x\\, whenever x, y G K. 

Property (vi) is called normality of K. 

We let 
x •< y or equivalently y ^ £ "<=>- (y — x) € K 

(vii) For every pair x,y € K there exist x Ay = inf{x,y} and x V y = sup{x,y} 
as elements of K. 

A cone K satisfying condition (vii) is called a lattice cone and the partial order 
on £ a lattice order. In the terminology of H. H. Schaefer [19] £ is called a Banach 
lattice. Our theory is free of hypothesis (vii). 

Let 
K' = {x' G £' : x'(x) > 0 for all x G K} 

and 
Kd = {xeK: x'(x) > 0 for all 0 ^ x' G K'} . 

We call /C' the dual cone of /C and Kd the dim/ interior of AC, respectively. If £ 
happens to be a Hilbert space then K' is replaced by K* a representation of K' in 
the sense of natural isomorphism of the dual £' with £. 

In the following analysis we assume that the dual interior Kd is nonempty. 
A set W C K' is called /C-total if the following implication holds 

x ' ( x ) > 0 Vx' eH'=>xeK. 

A linear form x' G K' is called strictly positive, if x'(x) > 0 for all x G K,x ^ 0. 
We write [x,x'] in place of x'(x), where x € £ and x' G £' respectively. If £ 

happens to be a Hilbert space then [x, x'] denotes the appropriate inner product. 
A bounded linear operator T G B(£) is called /C-nonnegative if TK C K. We 

write in this case T y 0 and equivalently 0 ^ T. If T and S both in _B(£) satisfy 
(S - T)/C C K we write T ^ S or equivalently 5 ^ T. 
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If T G B(£) then V denotes its dual and hence, V G B(£'). In case £ is a Hilbert 
space, the dual operator T ; is to be replaced by the adjoint operator T* defined via 
relations [Tx,y] = [x,T*y] valid for all x in the domain of T and y in the domain of 
T*. 

Definition 1. Operator T G B(£) is called /C-stochastic if there exists a vector 
x1 G K! such that for the dual map T' the following relation 

X =- X , 

holds. We also say that T is a transition operator of a Markov chain or process and 
that operator T corresponds to vector x!. If £ is a Hilbert space the dual T' is to be 
replaced by its adjoint T*. 

Definition 2. A bounded linear operator T is K-irreducible if for every pair of 
elements 0 ^ x G £,0 7-= x' G £', there is a positive integer p = p(x,x') such that 
x'(Bpx) 7-= 0. This implies that in the Markov chain each state has access to every 
other state, i.e., the chain is ergodic [20]. The Perron-Frobenius theorem states 
that for T > O irreducible, r(T) is an isolated eigenvalue, and the corresponding 
eigenvector is positive; see, e.g., [3]. 

Let T G B(F) and let a(T) denote its spectrum. Further, let T G B(£). We 
introduce the operator T by setting Tz = Tx + iTy, where z = x + iy, x,y G £ and 
call it complex extension of T. By definition, we let a(T) := a(T). Similarly, we let 
r(T) := r(T), where r(T) = max{|/i| : /x G cr(T)} denotes the spectral radius of T. 

In order to simplify notation we will identify T and its complex extension and 
will thus omit the tilde sign denoting the complex extension. 

The set 
aAT) = {»ea(T): \»\ = r(T)} 

is called peripheral spectrum ofT. Note that an(T) is never empty. 

If /i is an isolated singularity of R(X,T) = (XI - T ) " 1 we have the following 
Laurent expansion of R(X,T) around // [17, 21] 

00 00 

R(\,T) = Y,M»)(*- »)" + J2B*M(X- ri~k> W 
k=0 k=l 

where Ak-\ and Bk, k = 1,2,..., belong to B(T). Moreover, it holds [21] 

5I(M) = ^ / (AI-TYMA, {8) 

where 

Co = { A : | A - / i | = p0} 
and po is such that {A : |A — /x| < po} VI a(T) = {/i}. 
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Furthermore, 
.Bifc+iOx) = ( r^Lx/ )^(Lx) , k = 1,2,... (9) 

If there is a positive integer q = q{n) such that 

Bq ^ 0, and Bk = 0, for k > q, 

then /i is called a po/e 0/ the resolvent operator and r/ its multiplicity. 
We define the symbol 

ind(/i/ - T) = g(/i) 

and call it the index of T at \i. In particular, we call ind(T) the index of T instead 
of index of T at 0. 

The motivating examples are particular cases of Problem (P) defined as follows: 

Prob lem (P ) . To find AC-positive solutions 

^-u{t) = Bu{t) + G{u{t))u{t) = T(u{t))u{t), tx(0) = u0, (10) 
at 

where B is generally an unbounded linear densely defined operator and G{u) for 
every u G £ is a bounded linear map on £, where £ denotes the underlying space to 
be specified in each particular situation. We assume that we can identify situations 
in which Problem (P) as formulated above possesses solutions and we are aware 
of conditions guaranteeing the existence of them as well as some of their properties 
such as uniqueness, asymptotic behaviour e tc A rather typical representative of such 
problem is described in our study [12]. Since our aim in the present contribution is 
to propose some algorithms of computational nature and analyse their properties we 
do not go into much details referring the reader to [12] to consulting general aspects. 
All properties needed for a good understanding of the numerical processes studied 
will be presented here. 

2. CONE PRESERVING ITERATIVE METHODS 

In this section we present some notation, definitions, and preliminaries. Analogous 
concepts on nonnegative matrices (defined here for generally infinite dimensional 
spaces) can be found in the standard reference [3]. 

By cr(C) we denote the spectrum of C and by r{C) its spectral radius. By TZ{C) 
and JV(C) we denote the range and null space of C, respectively. 

Let A G (j{C) be a pole of the resolvent operator R{/J,,C) = {fil — C)~l. The 
multiplicity of A as a pole of R{fx, C) is called the index of C with respect to A 
and denoted indAC. Equivalently, q = ind^C if it is the smallest integer for which 
TZ{{XI-C)q+1) = TZ{{XI-C)q). This happens if and only if TZ{{XI-C)q)eAf{{XI-
C)q) = £. 

A very important concept in matrix theory is the notion of an M-matrix. For 
our purposes we need a slightly more general concept of /C — M-operator and its 
unbounded version of an approximate /C — M-operator. 
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Definition 3. A bounded linear operator A G B(£) is called /C - M-operator if 
A = bl - B, where B G B(£) and b > r(B). Note that in case £ = TlN and K = 7 ^ 
operator A is called M-operator (matrix). 

Let A be a densely defined bounded from above linear operator with its domain 
of definition A(A) and let a G TV be its (lower) bound. Assume that there exists a 
system of operators {Ah : 0 < h < ho}, Ah G B(£), such that relation 

lim HAfcX - ,4a;|| = 0 (11) 
/i—>o 

holds for every x G A (A). Operator A is called approximate K, — M-operator if 
each of the operators Ah in the collection mentioned has the form Ah = bl — Bh 
with b > r(Bh) and each Bh being /C-nonnegative. A pair of operators (M, W) is 
called a splitting of A if A = M — W and M _ 1 exists as a bounded linear operator 
on £. A splitting of an operator A is called of JC-nonnegative type if the operator 
T = M~XW is K-nonnegative [15]. If, in particular, both operators M _ 1 and W 
are /C-nonnegative, the splitting is called regular [23]. If M " 1 and T = M~lW are 
/C-nonnegative, the splitting is called weak regular [18]. 

Note a weak regular splitting does require explicitly no conditions upon part W 
of the splitting of A. 

Let T be a bounded linear operator. T is called convergent if l im^oo Tk exists 
and zero-convergent, if moreover lim^-xx) Tk = O. Standard stationary iterations of 
the form 

x*+1 =Txk + c, it = 0 , 1 , . . . , (12) 

converge if and only if either T is zero-convergent or, if r(T) = 1, T is convergent. 
A bounded linear operator T with unit spectral radius being an isolated pole of the 
resolvent operator is convergent if the following two conditions hold: 

(i) if A G a(T) and A # 1, then |A| < 1. 

(ii) indiT = 1. 

Equivalent conditions for (ii) can be found in [3]. 
It is useful to write T = Q + 5, where Q is the first term of the Laurent expansion 

of T, i.e., the eigenprojection onto the invariant subspace corresponding to A = 1; 
see, e.g., [21]. Then Q2 = Q, QS = SQ = O, and 1 £ o(S). This is called the 
spectral decomposition of T. The condition (i) above is equivalent to having r(S) < 1. 

We state a very useful lemma; its proof can be found, e.g., in [9]. We note that 
when r(T) = 1, this lemma can be used to show condition (ii) above. To prove 
convergence one needs to show in addition that condition (i) also holds. 

Lemma 1. Let T be a /C-nonnegative bounded linear operator such that Tv < av 
with v > 0. Then r(T) < a. If furthermore r(T) = a is a pole of the resolvent 
operator (XI - T ) " 1 , then ind aT = 1. 
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3. ALGEBRAIC FORMULATION OF SCHWARZ METHODS 

In this section we want to generalize convergence of some procedures well known as 
algebraic Schwarz iteration techniques [1, 16]; our aim is however to analyze solving 
equations in infinite dimensional spaces as well. Given an initial approximation x° 
to the solution of 

Ax = b, be£, (13) 

the (one-level) multiplicative Schwarz method can be written as the stationary iter­
ation 

xk+i = Txk + Cj ( 1 4 ) 

where 
I 

r = rf, = (/-pp)(/-pp_1)...(/-p1) = JI(/-p i) (15) 
i=p 

and c is a certain vector in £. Here 

Pi = Rj(RiARj)-lRiA, (16) 

where Rj is a suitable linear operator and R*j its adjoint with respect to the inner 
product in the Hilbert space £. Note that each Pi, and hence each I — Pi, is a 
projection operator; i.e., (I — P*)2 = I — Pi. Each I — Pi naturally has spectral 
radius equal to 1. 

The additive Schwarz method for the solution of (13) is of the form (14), where 

v P 

T = Te = I-eY,Pi = I-OYl RfA^RiA, (17) 
i=l i=l 

where 0 < 9 < 1 is a damping parameter. 
The operator Ri corresponds to the restriction operator from the whole space to a 

subset of the state space (usually of finite dimension nj,j = 1 , . . . ,p; the dimension 
of the range R(Ro) is infinite in general) in the domain decomposition setting, and 
the operator Ai = RiARj is the restriction of A to that subset. A solution using 
Ai is called a local solver as in the domain decomposition method as well as in the 
algebraic case. 

We assume that our standard choice of operators Rj follows the same idea as 
does the choice of the rows of Ri as rows of the n x n identity matrix J in case of 
£ = Kn,e.g., 

" 0 0 0 0 0 0 1 0 
Ri = 0 1 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 

Let us assume that the Hilbert space £ with which we provide our analysis is 
partially ordered by a closed normal cone generating €, i.e. £ = K — K. Moreover, 
let subsets TijCK' j = 1 , . . . ,p, exist such that 

(J n'j = w 
j=\ 
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is /C-total and x G £j holds if and only if there exists an element x'x G Ti'j such 
that x'x(x) ^ 0. In order to allow overlaps of individual reduction maps Rj we do 
not assume that £j n£kyj i=- k, £j =range(I?j) and £k =range(I?^)- Obviously, 
0 ^ x G £j D£k if and only if there are x' G H'j and y' G 7 ^ such that x'(x)y'(x) ^ 0 
and £j D £k = {0} if and only if x'(x)y'(x) = 0 whenever x' G H^y1 G 7 ^ and 

Formally, space £ can be considered as a direct sum 

£ = = Cj VJ7 £— j , 

where £_j is the "complementary" subspace to £j. We also have a corresponding 
decomposition of operator A given by formula 

A = ( Aj Kj 

\ Lj A-j 

where Aj maps £j fl A(A) into £j and ^4_j maps £-j fl A(^4) into £_j. 
We assume that the maps 

Ej = R*Rj 

are diagonal operators, i.e. 

/-,•-" :< E, =. VJІ (18) 

for some real /ij,i/j,j = l , . . . , p . In fact, we expect that similarly as in the finite 
dimensional case operators £j will signal whether the method chosen does possess 
some overlaps and how extensive they are. 

It is easy to see that as in case of finite dimensional situation both Ai and A-,i 
are /C — M-operators [3]. For each i = l , . . . , p , we construct diagonal operators 
Ei G R n x n associated with Ri chosen 

Ei = RjRi. (19) 

If A is an /C — M-operator for each i = 1 , . . . ,p, we construct a second collection 
of operators Mi associated with Ri as follows 

Mi = 

where 

AІ O 
(20) 

D^ > O (21) 

is invertible diagonal operator representing a "diagonal" of A. 
The following result comes from [1]. 

Proposit ion 1. Let A be a nonsingular /C — M-operator. Let Mi be defined as in 
(20). Then the splittings A = Mi - Wi are regular (and thus weak regular and of 
nonnegative type). 
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In the cases considered in this paper, we always have that Mi defined in (20) are 
nonsingular. With the definitions (19) and (20) we obtain the following equality 

EiMr1 = RjArlRu t = 1 , . . . ,p. (22) 

We can thus rewrite (15) as 

T = TfM = (I- EpM~lA)(I - Ep^M-^A) • • • ( / - ExM-lA). (23) 

Similarly, (17) can be rewritten as 

p 

T = Te = I-eJ2 EiM~lA. (24) 
i=l 

This is how we interpret the multiplicative and additive Schwarz iterations. 
In [1] it was shown that when A is nonsingular, r(T^) < 1, and thus, the method 

(12) is convergent. Furthermore, there exists a unique splitting A = M - W such 
that T = T^ = M"lW. This splitting is a weak regular splitting. 

In this paper we want explore the convergence of (12), using the iterations defined 
by (23), (24), when A is singular. 

4. TWO APPROACHES TO APPROXIMATE SOLVING STATIONARY 
EQUATION 

We are going to describe two ways for constructing solutions to stationary equations. 
The first one is based on an application of one of the Schwarz algorithms directly to 
the stationary equation, the second one utilizes the asymptotic behaviour of solutions 
of the appropriate evolution. The second alternative is suitable in particular for 
problems when no additional information is available such as irreducibility e tc 

As classical properties of M-matrices suggest strict positive diagonals may strongly 
influence convergence and the speed of convergence of the investigated iterative pro­
cesses. We recall a useful 

Lemma 2. Let T € B(£) satisfy TK C K and T y al with some real a > 0. 
Then (l/r(T))T = S is convergent. 

P r o o f . Obviously, r(T) > a and hence, r(S) = 1. For completing the proof we 
need to show that 1 is a unique spectral point with modulus r(S). Let T = al + V. 
By hypothesis, VK C K and A G cr(T) can be written as A = a + /x,^ G cr(V). 
Hence, r(T) = a + r(V). Let /x = c + di with reals c, d and i2 = -l,c2 + d? = r(V)2. 
It follows that 

[A|2 = a2+2ac + r(V)2 

~ (a + r(V))2 a2 + 2ar(V) + r(V)2 

only if c = r(V) or, equivalently, if ji is real and hence A positive. This completes 
the proof of the lemma. • 
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In [12] it has been shown that a solution u = u(t) to Problem (P) gets stationary 
and u(+oo) is a solution to 

B (QU(+OO) + pPu0) + G(u(+oo))u(+oo) = 0, (25) 

where a and (3 are suitable nonnegative reals and u$ the initial condition in (10). 
Since, by hypothesis, 

-Bh = Ch- cl, G(tt),A = F(tt),A - f(u)I, 

CK.CK, F(tt) |A/Cc/C, c>r(Ch), f(u)>r(H(u)]h), 

where CA and E(w)|A denote appropriate discretizations of C and F(u) respectively, 
it is an easy matter to show that 

(CA + H(tt))|A)=T(tt)|A (26) 
r(Ch) + r(H(u)]h) 

satisfies 
T{u)\hxh = xh, **G/C*. 

Thus, in view of Definition 3, T(u) is /C-stochastic corresponding to vector x* G K,d. 

Theorem 1. Let £ be a Hilbert space with an inner product [-,-]. Let A = I — B, 
where B G B(E) is a /C-stochastic operator such that Bv = v with v G ICd. Let 
p > 1 be a positive integer and A = Mi — Wi be splittings of nonnegative type such 
that the diagonals of Ti = M~lNi, i = 0 , 1 , . . . ,p, are positive. Then 

T = TI1 = (I- EpM;lA)(I - EP.XM;1XA) • • • ( / - ErM^A) 

and T = Tv... Ti are convergent operators. Furthermore, there is a splitting of 
nonnegative type 

A = M - W (27) 

such that T = M_1VV, and the iteration operator T possesses the following proper­
ties: 

T = Q + S, Q2 = Q, QS = SQ = 0, r(S) < 1, (28) 

and 
AQ = O. (29) 

The existence of a splitting of nonnegative type, and properties (28) and (29) also 
hold for f. 

P r o o f . We begin with the operator T. Let v > 0 be such that Bv = v, i.e., 
Av = 0. For each splittings of A = Mi — Wi, we then have that MiV = NiV. This 
implies that Tv = v, and by Lemma 1 we have that r(T) = 1 and that the index is 
1. To show that T is convergent, we show that T y al for some real a > 0. This 
follows from the fact that each of the operators Ti satisfies relation Tj y ajl with 
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positive reals a o , . . . , a p . We follow a similar logic for the multiplicative Schwarz 
iteration operator (23). Since Av = 0, Tv = v, and thus r(T) = 1 and indiT = 1. 
Each factor in (23) can be written as 

I-Ei + Ei(I - Mr1 A) = I-Ei + EiM~lWi, 

and since O < Ei < I and M~lWi > O, each factor is nonnegative. For a row in 
which Ei is zero, the diagonal entry in this factor has value one. For a row in which 
Ei has value one, the diagonal entry in this factor is the positive diagonal entry of 
M^lWi. Thus, again, we have a finite product of /C-nonnegative operators, each 
dominanting a positive multiple of the identity operator, implying that the product 
T does dominate a positive multiple of the identity operator too, and therefore it is 
convergent. 

The rest of the proof applies equally to T and T, we only detail it for T. The 
matrix T being convergent implies the spectral decomposition (28), where Q is the 
spectral projection onto the eigenspace of T corresponding to r(T) = 1. Furthermore 
since T>0,Q = l im^oo Tk > O. 

We show now that J\f(I - T) = N(A). According to construction of T, the null 
spaces satisfy M(A) C M(I - T). Any element of y G M(I - T) which does not 
belong to N(A) has to have a form y = Ax for some x and y ^ 0. Since Q > O, 
we have that y > 0. On the other hand yTe = xTA*e = 0, a contradiction. Since 
we then have that J\f(I — T) = N(A), the existence of a splitting of the form (27) 
follows similarly as does the finite dimensional analog of Theorem 1 from Theorem 
2.1 of [2]. The fact that T > O indicates that this splitting is of nonnegative type. 

With this splitting, using (28) the following identity holds AQ = M(I-T)Q = O, 
so we also have (29). • 

An example of splittings that lead to iteration matrices satisfying the hypotheses 
of Theorem 1 is described in the following proposition requiring no proof. It provides 
a possible modification to the local solvers, when the iteration operator defined by 
(20) does not dominate a positive multiple of the identity operator. 

Proposition 2. Let B > O, B*x' = x1. Let Q 1 , . . . . ,a p , be any positive real 
numbers. Let A = I — B = Mi - Ni, i = 0, . . . ,p, be defined by 

MІ = 
щl + AІ 0 

0 аj + D-,І 
(30) 

and Wi = Mi- A, where F)-,i are defined in (20)-(21). Then, the splittings are reg­
ular, and iteration operator Ti = M~lWi i = 0, . . . ,p dominate a positive multiple 
of the identity operator. 

Let us recall that we want to compute the stationary state, i. e. a solution of the 
system (25). This problem can be reformulated in terms of a new iterative process 
with the generating nonnegative operators C and F(u(t)): 

u ((k + \)T)) = \ (Ch + F(u(kT))\hu ((k + \)T)) , u(0) = u0. (31) 
c + j{y>) 
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An alternative to the method of approximate solving stationary equation of Prob­
lem (P) as described in Theorem 1 is to compute the limit l im^oo u(kT) using 
process (31). 

From a variety of possible choices of rational approximations of the exponential 
we choose one from the class of limited Pade approximations, say 

with appropriate real 7 and polynomial Pj of degree j . Denoting 

(Lk^ = 7TW){Ch + H{u{kT))[h) 

we want to compute according to (31) 

(/ - jT(Lk)lh)
q u((k + l ) r ) = Pj(kT)u((k + l ) r ) , k = 0 , 1 , . . . (32) 

The above process can be implemented as follows. Let us omit the discretization 
parameter index and set vk = u(kT) and 

Vh+1/Q _ ( / _ 7 r L f c ) u(kT^ ? Vk+(Q-1)/<1 - ( / _ ^rL^-1 u(kT), k = 0, 1, . . . 

Then 
(I-1TLk)v

k^<J=Pj(TLk)v
k(kT), 

(I - 77-Lfc) Vk+2'q(kT) = Pj(TLk)v
k+1'q(kT), 

(I-1TLk)v
k+1 = P^TL^v^-V'^kT). 

Convergence of the method just described is an easy consequence of the fact that 
the operators {(Lk)\h},k = 1,2,... are nonsingular /C — M-operators in the spirit of 
Definition 3 and the convergence results of [1]. Actually, we have 

Theorem 2. Let £ be a Hilbert space over the reals generated by a closed normal 
cone /C. Assume B is a generally unbounded linear operator defined on a dense 
domain V C £ and its adjoint satisfies relation B*x* = 0. We assume further that 
B generates a semigroup of operators of class C such that T(t\ —B)K, C /C,£ > 0. 
Finally assume that for any u G Pfl/C operator G(u) G B(£) is an /C - M-operator 
satisfying [G(u)]*x* = 0. 

Then the iteration process (32) returns a sequence {u(kT)} of approximations to 
a unique solution to Problem (P) such that 

lim u(kT) = iz(+oo). 
k->oo 
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5. CONCLUSIONS 

Nowadays it is accepted by the community of numerical analysts tha t two- and gen­
erally multi-level iterative methods offer an essentially broader variety of tools to 
solve large scale computat ional problems. In this context the Schwarz and Schwarz-
like methods play a quite important role. Many contributions of many authors 
document this s ta tement as a rule by investigating problems characterized by non-
singular operators . An emphasis of our approach is just the opposite tha t is to 
problems with singular operators . Another goal of our analysis is t ha t we consider 
the computat ional problems in their original form, i .e . we work with generally 
infinite dimensional objects and let discretizations to be made at an appropriate 
moment, e. g. at each iteration step . 

We apply our Schwarz-like methods to a problem coming from stochastic modeling 
in biology and chemistry. We can thus profit from having nicely s tructured operators 
but suffer of approaching problems with hardly accessible data . We thus propose 
two methods each suitable in the corresponding situation . The first method assumes 
all da ta accessible and the second just the opposite . In particular, the method using 
auxiliary t ime evolution does require no a priori knowledge of location as well as 
access to each single da ta . As example let us mention irreducibility of the operators 
of the model and access to matr ix elements of appropriate discretizations . The latter 
is compensated by ability of our method of an easy computat ion of the corresponding 
matrix actions . 

(Received February 26, 2004.) 
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