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AN A P P L I C A T I O N OF N O N P A R A M E T R I C COX 
REGRESSION MODEL IN RELIABILITY ANALYSIS: 
A CASE STUDY 1 

P E T R VOLF 

The contribution deals with an application of the nonparametric version of Cox re­
gression model to the analysis and modeling of the failure rate of technical devices. The 
objective is to recall the method of statistical analysis of such a model, to adapt it to the 
real-case study, and in such a way to demonstrate the flexibility of the Cox model. The 
goodness-of-fit of the model is tested, too, with the aid of the graphical test procedure 
based on generalized residuals. 

Keywords: hazard rate, counting process, Cox model, nonparametric regression, local like­
lihood, time-to-failure 
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1. INTRODUCTION 

In the present paper a generalized, nonparametric version of the Cox regression 
model of hazard rate is used for the modeling of the failure times distribution. There 
exists a well developed methodology of nonparametric estimation in generalized re­
gression (i.e. in the exponential family of models, including the Cox one), described 
e.g. in Hastie and Tibshirani [6], further for instance in Gentleman and Crowley [5], 
O'Sullivan [10], Fan and Gijbels [4]. We use here a variant of the local likelihood 
maximization proposed in Volf [13]. Alternative way to formulation of a general 
regression model via regression splines has been proposed by C. Stone in a series of 
papers on "dimensionality reduction principle" (e.g. Stone, [11]). Kooperberg et al 
[8] have then adapted this idea for the case of nonparametric Cox model and proved 
consistency of such a spline approximation. 

The organization of the paper is following: In Part 2 the scheme of counting 
process and Cox model are recalled briefly. Then, the rest of the study is devoted to 
the analysis of a real data known as the Reynolds Metals Company data (Part 3), 
namely to estimation of lifetimes of damaged electrolytic cells. The case has formerly 
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been statistically examined by several analysts, cf. contributions of Kalbfleisch and 
Struthers and of Thomas, both published in C. J.S. [7]. Nevertheless, it is so inter­
esting from the point of statistical data analysis that it can be used as a bench-mark 
example for comparison of analytic techniques. Today interest in these data is due 
to recent development of the methodology of nonparametric identification of gen­
eralized regression models. Thus, in the paper of Arjas and Liu [3] the Bayesian 
approach and the Gibb's sampling procedure are used for the estimation of non-
parametrized hazard rate. The novelty of our solution presented here consists in 
that we consider a more detailed and more flexible (also nonparametric) model. 
Part 4 presents two different methods of evaluation of losses caused by the shut­
down. Finally, in Part 5 we check the fit of the model by a graphical test based on 
the properties of generalized residuals originally proposed by Arjas [2]. 

2. COUNTING PROCESS AND COX REGRESSION MODEL 

Let us recall briefly the notion of counting process and Cox regression model (see 
e.g. Andersen et al, [1]). A multivariate counting process N(t) = N\(t),... ,Nn(t) 
is a set of right-continuous random step functions with 1V;(0) = 0 and with steps 
+1 at the moment of (observed) event, in our case the failure of the zth device. 
The probability (the hazard) of the failure is modeled via the hazard function. The 
Cox regression model assumes that the hazard function is h(t,x) = ho(t) exp(/(x)), 
where x is a (if-dimensional) covariate and ho(t) is the baseline hazard function. 
The most frequently used semiparametric version has f(x) = /3'x. We shall consider 
a case when / (x) is a nonparametrized additive function f(x) = Ylj=i fj(xj)> the 
goal is to identify suitable functions / i , • . . , / K and function ho(t), or its cumulative 
version Ho(t) = f0 ho(s) ds. Evident ambiguity (with respect to additional constants 
in fj-s) can be overcome by a proper normalization of these functions. 

Simultaneously, the model admits time-dependent covariate processes Xi(t), i = 
1, . . . ,n. Then, the behaviour of each component Ni(t) is governed directly by the 
intensity process 

\i(t) = h(t,Xi(t)) • h(t) = ho(t)-exp{f(Xi(t))}-Ii(t), 

i = 1 , . . . ,n, t € [0,7], where U(t) is an indicator process, U(t) = 1 if the ith object 
is in the risk set at moment t, U(t) = 0 otherwise. The inference is based on the 
Cox partial likelihood (cf. again Andersen et al, [1]). Its logarithm is: 

rГ 

^ J o E j = i exp/(X i (t))/ j(0 

Notice that dNi(t) = 1 at points of events, dNi(t) = 0 otherwise, so that the 
integral transforms to a sum. When an estimate of function / is available, we can 
use the following generalized maximum likelihood (Breslow-Crowley) estimator of 
the cumulative baseline hazard function 

tfo(í) = / 
Jo 

dN(S) ( 1 ) 

ZjexpHXjis^Ijisy 
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where N(t) = X ^ i ^ ( 0 - Ho(t) is then a nondecreasing stepwise function, with 
steps at points of observed events (i.e. at points of counts of N(t)). From the 
increments of Ho(t) an estimation of function ho(t) can be obtained, with the aid 
of a smoothing procedure. In the following part the model will be applied to a real 
data case. We shall also recall briefly some previous analyses. 

3. A CASE STUDY 

In 1967, a strike at a Quebec aluminium smelter resulted in the uncontrolled shut­
down of electrolytic cells. The company claimed that the shutdown caused the 
shorter operating lives of cells operating at the time. The case led to a legal action 
and initialized a need of a deep statistical analysis of the data, in order to confirm 
expected higher failure rate after the intervention (shutdown) and to estimate sta­
tistically the losses caused by this (eventual) higher rate. The more details about 
the case as well as the complete data were published in "Case Studies in Data Anal­
ysis", a section of the Canadian Journal of Statistics, V. 10 [7]. The data are now 
available also on the web page siprint.utia.cas.cz/public/income/volf/datasurvival. 
They could be divided to three parts. In the first one, there are data on 395 cells 
of standard types, of which 297 experienced the shutdown. There are 20 types of 
standard cells (denoted A1-A20). The second data part refers to 104 cells of ex­
perimental design, their types are labeled as B, C , . . . , K. The survival of cells was 
measured in days, the highest observed time to failure was 2 541 days. The instal­
lation times differed from 2 287 to only 3 days before the shutdown. The survival 
times are known, noncensored. From all these 499 cells, 349 were in circuit at the 
moment of intervention. The third group, 73 experimental cells of types labeled 
from L do O, were installed and had failed before the intervention. There arises the 
question whether this group (no experiencing the intervention) is worth to be taken 
into account, not bringing any information about the influence of the shutdown. 
However, as soon as the model with a common baseline hazard is considered, even 
these data contribute to the estimation of the baseline characteristic. 

3.1. Choice of the model 

In the first part of their study, Kalbfleisch and Struthers [7] estimated and compared 
the age-specific hazard rates before and after intervention. The fact of experience 
of intervention was treated as a {0,1} covariate in Cox model, two-sample test 
showed substantial increase of aggregated hazard rate after the intervention. Other 
covariates have also been considered, namely the age of the cell at the moment of 
intervention and the time from intervention (provided the cell experienced it at all). 
Thus, the changes of the hazard rate in the course of individual time have been 
examined attentively, while the types of cells have not been considered. 

Thomas [12] used the standard Cox model, considering the following covariates: 
date of installation, experience of intervention (0 or 1), sub-type of cell (the types 
of cells were aggregated to 6 subclasses). The pairwise interactions of these three 
covariates were considered, too. Thomas remarked that the statistical tests revealed 
a lack of fit of the model. It could be caused by a nonoptimal choice of covariates 
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or by a nonoptimal structure of the chosen model. It seems to be more appropriate 
to consider two hazard rates, one for non-damaged cells, and the second as a func­
tion of the time after intervention. These two hazard rates can be connected in a 
multiplicative way, so that one is regarded as the baseline hazard, the second as a 
function describing the covariate effect of the time after intervention. Following this 
idea, we shall work with the following model of the hazard rate of failure of ith cell, 
using the age of the cell as a reference time t: 

Xi(t) = h0(t)-exp{b(t-Ui)'l[t>Ui] + c(xi)}, tG[0,7i], Xi(t) = 0 otherwise, (2) 

where Ti is the survival time of zth cell. Ui is now the age of zth cell at the moment of 
intervention and Xi is the type of cell i - we suppose that each type may have its spe­
cific survival. The values from 1 to 34 are assigned to types Al,... ,A20, B, C,... ,N,O. 
While the covariate x is categorized, the time is a continuous variable, functions /i0, b 
are assumed to be continuous and bounded. 

3.2. T h e p r o c e d u r e of e s t i m a t i o n 

The procedure follows the version of local maximum likelihood method proposed 
in Volf [13]. Denote f(t,u,x) = b(t — u)l[t > u] + c(x). As each cell encountered 
exactly one failure, at moment T ,̂ Cox's partial likelihood is now 

* = 5> exp(/(Tť,f7ť,xť)) 
5 « 

where S(i) = X^?=i exP(f(Ti,Uj,Xj))Ij(Ti). The computations start from b, c = 0. 
Let us imagine that we wish to estimate the value of function 6 at a fixed point 
s (> 0). Therefore we regard (for the moment) function b(-) as a constant bs in a 
chosen window 0(s) around s. From the equation dt / dbs = 0 we obtain 

J2\m>Ui 
i=l { 

} • l[(Ti - Ui) 6 O(s)} - ^ ^ • e x p 6 s | = 0, (3) 

where R(s,i) = £ ? = 1 l [ ( r . - Uj) G O(s)] • 1[T. > Uj] -expc(xj) -Ij(Ti). An iteration 
step is then: 

Є + 1 ) = " ln E - ^ - / £ ЦTІ > Щ l[(Tť - ) € <D(s)} , 

where the right side uses the estimates of functions 6, c obtained from the preceding 
steps. The task of local estimation of function c is solved in the same way. As 
the variable x is categorized to M = 34 classes, the task is equivalent to the solu­
tion in the framework of Cox model with M parameters c i , . . . , CM and 0,1-valued 
covariates. We have 

^ = £ { 1 [ x i = rn}-S-^exPcm}, (4) 

n 

where S(m, i) = £ \[XJ = m] • exp {6(T - Uj) • l[Tf > Uj]} • Ij(Ti), 
i= i 
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and the iteration step is 

Лr+l) - l n E1^ m 

Results: The progress of iteration was controlled and its convergence observed 
from the changes of estimated parameters c m . Originally, function b(s) was es­
timated at equidistant points, at each 10 (days), with the use of mowing window 
(neighborhood) changing its width in order to contain a prescribed number of points 
(so called k-nearest neighbors variant of kernel smoothing). The full domain of 5 was 
from 0 to 1 837, so that we obtained 183 values. Then the estimate was secondary 
smoothed, i. e. the values were averaged (in a weighted way) by a triangular kernel. 
The graphs of estimated functions b and c are displayed in Figures la, lb. After we 
decided to stop the iterations (when changes of values of c m were less than 0.1 %), we 
computed the estimate of cumulative baseline hazard function Ho(t) in accordance 
with (1). From it, by a kernel smoothing of its increments, we obtained a graph of 
estimate of h0(t) in Figure l c 

-•O O 1 OOO 2 0 0 0 3 0 0 0 

Fig. 1. Estimates of functions 6(s), c(m) and baseline hazard rate ho(t). 

4. EVALUATION OF THE COST OF INTERVENTION 

We shall present here two different methods of such an evaluation. 

M e t h o d 1. Let T(m,U) be a random variable - the remaining time to failure 
of the cell type m, which has survived up to age U and which is supposed not 
to be involved in the intervention. The hazard rate of distribution of T(m, U) is 
ho(s + U) • expc m , s > 0, its estimate is available. The data contains nm cells 
of type m which passed the intervention at ages [/*, their remaining survival times 
S(m,i) =Ti-Ui, i = 1,. . . , n m , have been observed. Then the total loss (in days) 
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of cells of type m is given by random variable Dm = $Z£r\ (T(m, Ui) - S(m, i)). The 
mean number of lost days is directly EDm = J2{(ET(m,Ui) — S(m,i)). 

The mean remaining lifetime is ET(m, U) = — J0°° 5 dP(/)m(s), where 

dPu,m(s) = dPm(s + U)/Pm(U) and Pm(t) = P 0 ( 0 e x p c ( m ) , 

Pm(t) is the survival function (for nondamaged cells of type m), Po(t) = exp(—IIo(O) 
is the baseline survival function. The estimate of the mean is given by the sum 

n 

ET(m, U) = - £ ( T ( i ) - U) l[T{j) > U) • AP m (T ( j ) ) /Pm(U), 
3 = 1 

where T(j) are ordered all survival times, T(1) < T(2) < . . . < T (n), 

A P m ( T 0 ) ) = Pm(T(j)) - Pm ( - r ( i - i ) ) , Pm(t) = exp (-H0(t) -expc(m)) 

and Pm(T(0)) = 1. The method 1 has certain disadvantages: It yields for each cell 
just the estimate of the mean value of its "would-be" remaining survival. It is true 
that, once the (estimate of) model is available, we can generate randomly the data 
corresponding to this model. They provide a sample representation of the underly­
ing distribution. Hence, we can also for each cell obtain an estimate of probability 
distribution of remaining survival and of corresponding loss, Nevertheless, we actu­
ally take each cell of the same type as possessing the same distribution of remaining 
lifetime (depending on its age at moment of intervention), though our data contain 
also an information on different "frailty" of individual cells (i. e. their proneness 
to earlier or later failure). This information is utilized in the second method of 
evaluation the difference between actual and hypothetical remaining survival time: 

Me thod 2. Let us first recall the connection of general survival times and stan­
dard exponential distribution, Let T{ be a set of independent identically distributed 
random variables - waiting times - possessing a common cumulative hazard rate 
L(t), then J2i=i -k(^i) ls the waiting time to the kth event of standard Poisson pro­
cess, or, equivalently, it is a random variable distributed according to the gamma 
(l,fc) law (each L(Ti) has standard exponential distribution and they are mutually 
independent). This connection between the actual process and the standard Poisson 
process is used for the testing the fit of the model, because the accuracy of this 
transformation depends strongly on the accuracy of the model of hazard rate (cf. 
Arjas [2]). 

It has also another important consequence. Assume that a cell of type m had 
experienced the intervention at age U and then it survived another S = T — U days. 
The cumulative hazard of this remaining lifetime was L1>m(5) = Jv ho(s) exp(b(s -
U) + c(m))ds. Provided the model is correct, L1>m(5) is a standard exponential 
random variable. The realization of S shows how quickly the 'hazard clock' of the 
cell has been running after U. 
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Table 1. Estimates of number of lost days. 

Method 1: Method 2: 

Cell Type Remain.Lifetimes Differences Remain.Lifetimes Differences 

1 703.021 323.021 502.1910 122.1910 

2 6186.977 1176.977 7214.6456 2204.6456 

3 8018.959 2720.959 8403.7884 3105.7884 

4 8691.149 2169.149 9625.9951 3103.9951 

5 9457.718 3022.718 10077.0737 3642.0737 

6 11735.956 3895.956 11530.0891 3690.0891 

7 20500.358 4856.358 20920.3909 5276.3909 

8 12074.879 4390.879 11402.1867 3718.1867 

9 3501.335 876.335 3795.4695 1170.4695 

10 3244.579 1368.579 2862.9982 986.9982 

11 10865.187 2232.187 11583.7112 2950.7112 

12 13970.679 2770.679 14346.7773 3146.7773 

13 12199.764 3366.764 11973.1333 3140.1333 

14 7221.806 1820.806 7461.6275 2060.6275 

15 12802.812 3357.812 12653.0895 3208.0895 

16 15184.571 4319.571 14294.2969 3429.2969 

17 29215.036 7062.036 29166.3350 7013.3350 

18 16568.215 3726.215 16690.5910 3948.5910 

19 3193.496 528.496 3621.4483 966.4483 

20 15309.948 3232.948 15793.7712 3716.7712 
21 198.770 -835.230 1034.0000 0.0000 
22 3649.869 2142.869 2233.7557 726.7557 

23 1507.566 391.566 1613.0126 497.0126 

24 250.948 250.948 0.0000 0.0000 

25 890.102 264.102 909.0553 283.0553 

26 5237.939 2283.939 4338.3263 1384.3263 

27 2712.441 690.441 2914.5540 892.5540 

28 1869.895 413.895 2100.9605 644.9605 

29 1534.350 176.350 1949.4194 591.4194 

30 3442.019 1273.019 2294.1161 125.1161 

T 0 T A L: 241840.344 64270.344 243316.8094 65746.8094 

If the intervention did not occurred, the cumulative hazard on the interval (U, t) 
would be L2im(t -U) = Jv h0(s)expc(m) ds = (H0(t) - H0(U)) -expc(m). So that 
R = L^"Jn(L1>m(5)) is now the remaining survival time after U of the same cell but 
in "another world" in which the cell did not pass the intervention. Again, provided 
the model is correct. Natural estimates are: 

L1>m(5) = ] T \{U < Ti < U + S]exp(b(Ti -U) + c(m))A#0(T i ) , 
i= l 

L2,m{s) = expc(m) • ^ \[U < T{ < U + s]AH0(Ti) and 

--2,m(*) = inf [ s : L2,m{s) > 2} , 
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eventually the inverse function can be computed with the help of interpolation. So 
that the estimate of H—S yields another estimate of losses caused by the intervention. 
Notice that the evaluation of R from equation L2m(R) = Lim(5) does not require 
the knowledge (estimate) of function c (while the former method of evaluation of 
expected remaining lifetimes did not use the function b). 

The estimation of numbers of lost days is summarized in Table 1. Both methods 
yield similar results, though we have seen that they differ in their substance (subjec­
tively, we tend to prefer the approach 2). The computations used the estimates of 
cumulative baseline hazard function Ho? of function c and secondary smoothed es­
timate of function b. The first two columns contain the results of method 1, namely 
the expected remaining lifetimes summarized for type ra, ]TV ET(ra; £/), and the dif­
ferences from really achieved remaining survival times. The last two columns display 
the values of estimated remaining lifetimes, Hi, again summarized for types of cells, 
and summarized differences Ri — S{. Both Ri and Si are computed following the 
second method. Our results differ from the estimate (in much rougher, semipara-
metric model) of Kalbfleisch and Struthers [7]). Their estimate of the mean number 
of lost days was 82 653.5. 

5. TESTING THE GOODNESS-OF-FTT 

In all variants of tests based on generalized residuals the sample of examined objects 
is divided into two or more strata and in each stratum S the counting process of 
ordered observed failure times is examined. It concerns also to graphical method 
(Arjas [2]) used here, as well as to numerical methods proposed later in Marzec and 
Marzec [9] or Volf ([14], for the case of additive Aalen model). 

Fig. 2. Graphical goodness-of-fit tests. Plots of tks for: a) thick - cell types 21 — 30, 
thin - types 1—4; b) thin - types 11 — 20, thick - types 31 — 34; 

c) thick - cells without intervention, thin - cells which passed intervention. 

Let failure times be 0 < Ti,s < T2,s < • • •• Their transformation to the times 
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Tk,s of events of a standard Poisson process is given (provided the model holds) by 

rTfc„ 

Tk,s = V í 'SЛ.(í)dí. 
. c ç - ! 0 ies 

Their estimates are obtained from the estimates of components of the model (2), 
i.e. 

tk,s = J2Y, M7* ^ min(T*tS> TO] • exp [b(Tj - U{) l[Tj > U{] + c f o ) } • A tf0(7j). 
ies j 

These Tk,s are plotted graphically, the "ideal" value of Tk,s should be k. If the plot of 
Tk,s differs from k significantly, it is an indication that the model does not correspond 
to the data. As the test uses estimated response functions, and, in general, there does 
not exist a relevant theory of large sample properties of local likelihood estimates, it is 
better to use the graphical version of the test. In order to check the fit of (estimated) 
model (2), we stratified the data along to the types of cells and we performed the 
same kind of test for different selections of such subsamples. Even the worst results 
of tests did not contradict to the model. For instance, Figure 2a shows the plots for 
cell types 1-4 (121 cells, high survival, mostly without intervention) and cell types 
21-30 (104 cells, lower survival, mostly with intervention). Then, in Figure 2b there 
are the plots for cells of types 11-20 (121 cells with rather high survival, in spite of 
the intervention) and cells 31-34 (73 experimental cells with low survival, without 
intervention). The graphs suggest that the model fits well for all types of cells. 

On the contrary, Figure 2c demonstrates that the stratification cannot be arbi­
trary, that it should be independent of measured survival time. Figure displays the 
plots for cells which have passed the intervention and for cells which have not. The 
picture shows that for our data the actual hazard of damaged cells was lower than 
it was assumed by the model (and was higher for nondamaged cells). The reason 
was rather simple and natural. There was a high positive correlation between the 
survival of a cell and the event that this cell passed the intervention. In other words, 
the cells which had higher survival (caused only by their individual frailty, in the 
framework of the probabilistic model regarded as random fluctuations) were more 
likely to survive until the moment of intervention. 

6. CONCLUSION 

The nonparametric estimation has its clear advantages (consisting mainly in its 
universality), but its weak sides are well known, too. One of them consists in 
a rather slow global consistency of nonparametric estimates, while an estimate of 
parametrized model is able to reflect the main features of model very quickly. The 
nonparametric estimate depends more strongly on the data and their local nonregu-
larities. Nevertheless, the experience with the method presented here is encouraging, 
it has been tested successfully by a number of simulated as well as of real-data ex­
amples. 
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In the framework of Cox regression model, the procedure of est imation yields 
also the asymptotic confidence regions for regression parameters and for cumulative 
baseline hazard function. It follows from the asymptotic normality of est imates (cf. 
Andersen et al, [1]). In our case, the application of these asymptotic results is rather 
limited, because we use a nonparametr ized function b(s). This could be overcome 
with the help of a boots t rapped construction. However, even if we have confidence 
bounds for characteristics of the model, it is not clear how to derive confidence 
intervals for the mean number of lost days. T h a t is why the confidence intervals 
were not constructed. 

(Received October 1, 2003.) 
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