Saralees Nadarajah; Samuel Kotz
Exact and approximate distributions for the product of Dirichlet components

Kybernetika, Vol. 40 (2004), No. 6, [735]--744

Persistent URL: http://dml.cz/dmlcz/135630

Terms of use:

© Institute of Information Theory and Automation AS CR, 2004

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://project.dml.cz
It is well known that \(X/(X + Y) \) has the beta distribution when \(X \) and \(Y \) follow the Dirichlet distribution. Linear combinations of the form \(\alpha X + \beta Y \) have also been studied in Provost and Cheong [24]. In this paper, we derive the exact distribution of the product \(P = XY \) (involving the Gauss hypergeometric function) and the corresponding moment properties. We also propose an approximation and show evidence to prove its robustness. This approximation will be useful especially to the practitioners of the Dirichlet distribution.

Keywords: approximation, Dirichlet distribution, Gauss hypergeometric function

AMS Subject Classification: 33C90, 62E17, 62E99

1. INTRODUCTION

Since the 1930s, the statistics literature has seen many developments in the theory and applications of linear combinations and ratios of random variables. Some of these include:

— Ratios of normal random variables appear as sampling distributions in single equation models, in simultaneous equations models, as posterior distributions for parameters of regression models and as modeling distributions, especially in economics when demand models involve the indirect utility function (details in [32]).

— Weighted sums of uniform random variables – in addition to the well known application to the generation of random variables – have applications in stochastic processes which in many cases can be modeled by these weighted sums. In computer vision algorithms these weighted sums play a pivotal role ([10]). An earlier application of the linear combinations of uniform random variables is given in connection with the distribution of errors in \(\pi \)th tabular differences \(\Delta^n \) ([15]).

— Ratio of linear combinations of chi-squared random variables are part of von Neumann’s [31] test statistics (mean square successive difference divided by the variance). These ratios appear in various two-stage tests ([30]). They are
also used in tests on structural coefficients of a multivariate linear functional relationship model (details in [2, 25]).

- Sums of independent gamma random variables have applications in queuing theory problems such as determination of the total waiting time and in civil engineering problems such as determination of the total excess water flow into a dam. They also appear in test statistics used to determine the confidence limits for the coefficient of variation of fiber diameters ([8, 14]) and in connection with the inference about the mean of the two-parameter gamma distribution ([6]).

- Linear combinations of inverted gamma random variables are used for testing hypotheses and interval estimation based on generalized p-values, specifically for the Behrens–Fisher problem and variance components in balanced mixed linear models ([32]).

- As to the Beta distributions their linear combinations occur in calculations of the power of a number of tests in ANOVA ([18]) among other applications. More generally, the linear combinations are used for detecting changes in the location of the distribution of a sequence of observations in quality control problems ([13]). [20 – [23] and [19] provided applications of sums and ratios to availability, Bayesian quality control and reliability.

- Linear combinations of the form \(T = a_1 t_{f_1} + a_2 t_{f_2}, \) where \(t_f \) denotes the Student t random variable based on \(f \) degrees of freedom, represents the Behrens–Fisher statistic and – as early as the middle of the twentieth century – Stein [29] and Chapman [1] developed a two-stage sampling procedure involving the \(T \) to test whether the ratio of two normal random variables is equal to a specified constant.

- Weighted sums of the Poisson parameters are used in medical applications for directly standardized mortality rates ([3]).

In this paper, we consider the distribution of \(P = XY \) when \(X \) and \(Y \) are distributed according to the joint pdf

\[
f(x, y) = \frac{\Gamma(a + b + c)x^{a-1}y^{b-1}(1 - x - y)^{c-1}}{\Gamma(a)\Gamma(b)\Gamma(c)}
\]

for \(x > 0, y > 0, x + y < 1, a > 0, b > 0 \) and \(c > 0 \). This is known as the Dirichlet distribution (see, for example, [12]). It has received applications in many areas, including Bayesian statistics, contingency tables, correspondence analysis, environmental sciences, forensic science, geochemistry, image analysis, life testing, misclassification, molecular biology, neural networks, non-parametric statistics, PERT, and statistical decision theory (see, for example, [7]) for illustrations of some of these application areas.

The paper is organized as follows. In Sections 2 and 3, we derive exact expressions for the pdf and moments of \(P = XY \), involving the Gauss hypergeometric function defined by

\[
{2}F{1}(\alpha, \beta; \gamma; x) = \sum_{k=0}^{\infty} \frac{(\alpha)_k (\beta)_k}{(\gamma)_k} \frac{x^k}{k!}
\]
(where \((c)_k = c(c + 1) \cdots (c + k - 1)\) denotes the ascending factorial), the properties of which can be found in [26] and [5]. In Section 4, we propose an approximation for the distribution of \(P\) and show evidence to prove that the it is quite robust. This approximation will be useful especially to the practitioners of the Dirichlet distribution.

2. PDFs

Theorem 1 derives the pdf of \(P = XY\) when \(X\) and \(Y\) are distributed according to (1).

Theorem 1. If \(X\) and \(Y\) are jointly distributed according to (1) then

\[
f_P(p) = \frac{\Gamma(a + b + c)\Gamma(c)}{2^{a-b-c}\Gamma(a)\Gamma(b)\Gamma(2c)} p^{b-1}(1-4p)^{c-1/2} \left(1 - \sqrt{1-4p}\right)^{a-b-c} \\
\times _2F_1 \left(c, b + c - a; 2c; 2 - \frac{1 + \sqrt{1-4p}}{2p} \right)
\]

for \(0 < p < 1/4\).

Proof. From (1), the joint pdf of \((X, P) = (X, XY)\) becomes

\[
f(x, p) = \frac{\Gamma(a + b + c)}{\Gamma(a)\Gamma(b)\Gamma(c)} x^{a-2} \left(\frac{p}{x}\right)^{b-1} \left(1 - x - \frac{p}{x}\right)^{c-1} \\
= \frac{\Gamma(a + b + c)}{\Gamma(a)\Gamma(b)\Gamma(c)} p^{b-1} x^{a-b-c} (x - p_1)^{c-1} (p_2 - x)^{c-1},
\]

where \(p_1 = (1 - \sqrt{1-4p})/2\) and \(p_2 = (1 + \sqrt{1-4p})/2\). Thus, the pdf of \(P\) can be written as

\[
f_P(p) = \frac{\Gamma(a + b + c)}{\Gamma(a)\Gamma(b)\Gamma(c)} p^{b-1} \int_{p_1}^{p_2} x^{a-b-c} (x - p_1)^{c-1} (p_2 - x)^{c-1} \, dx.
\]

By equation (2.2.6.1) in Prudnikov [26, Vol. 1], the integral in (3) can be calculated as

\[
\int_{p_1}^{p_2} x^{a-b-c} (x - p_1)^{c-1} (p_2 - x)^{c-1} \, dx \\
= B(c, c) p_1^{a-b-c} (p_2 - p_1)^{2c-1} \, _2F_1 \left(c, b + c - a; 2c; 1 - \frac{p_2}{p_1} \right).
\]

The result in (2) follows by combining (3) and (4). □

The following corollary notes two special cases where (2) reduces to elementary forms.
Corollary 1. If $c = 1$ then (2) reduces to

$$f_P(p) = \frac{2^{b-a+1} \Gamma(a+b+1)}{\Gamma(a)\Gamma(b)} p^{b-1} \sqrt{1 - 4p} \left(1 - \sqrt{1 - 4p}\right)^{a-b-1}$$

for $0 < p < 1/4$. If $b = a + c$ then (2) reduces to

$$f_P(p) = \frac{4^{a+c} \Gamma(a+c+1/2)}{\Gamma(a)\Gamma(c+1/2)} p^{a+c-1/2} \left(1 - \sqrt{1 - 4p}\right)^{2c}$$

for $0 < p < 1/4$.

Proof. The proof follows by standard properties of the Gauss hypergeometric function, see [26] and [5]. \qed

3. MOMENTS

Here, we derive the moments of $P = XY$ when X and Y are distributed according to (1).

Theorem 2. If X and Y are jointly distributed according to (1) then

$$E(P^n) = \frac{\Gamma(a+b+c)\Gamma(a+n)\Gamma(b+n)}{\Gamma(a+b+c+2n)\Gamma(a)\Gamma(b)}$$

(5)

for $n \geq 1$. Using properties of the gamma function, (5) can be rewritten as

$$E(P^n) = \frac{a(a+1) \cdots (a+n-1)b(b+1) \cdots (b+n-1)}{(a+b+c)(a+b+c+1) \cdots (a+b+c+2n-1)}$$

for $n \geq 1$. In particular, the first two moments of P are

$$E(P) = \frac{ab}{(a+b+c)(a+b+c+1)}$$

(6)

and

$$E(P^2) = \frac{a(a+1)b(b+1)}{(a+b+c)(a+b+c+1)(a+b+c+2)(a+b+c+3)}$$

(7)

Proof. Note that $E(P^n) = E(X^nY^n)$ and this is the product moment of the Dirichlet distribution, which is well known (see, for example, [12]). \qed
4. APPROXIMATION

In view of the fact that $4P$ has support in the interval $[0, 1]$, we are motivated to approximate its distribution by a suitable member of the two-parameter beta family of distributions:

$$f(x) = \frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha, \beta)}$$

for $0 < x < 1$, $\alpha > 0$ and $\beta > 0$. The choice of the beta parameters (α and β) is made using the method of moments. Equating the first two moments of $4P$ with those of the beta distribution, we have

$$4E(P) = \frac{\alpha}{\alpha + \beta}$$

and

$$16E(P^2) = \frac{\alpha(\alpha + 1)}{(\alpha + \beta)(\alpha + \beta + 1)}$$

which we must solve simultaneously to find the beta parameters α and β. After some algebraic manipulation, we find the solutions as

$$\alpha = E(P) \frac{E(P) - 4E(P^2)}{E(P^2) - E^2(P)}$$

(9)

and

$$\beta = \left\{ \frac{1}{4} - E(P) \right\} \frac{E(P) - 4E(P^2)}{E(P^2) - E^2(P)}.$$ (10)

The two moments $E(P)$ and $E(P^2)$ can be computed using (6) and (7), respectively, for given values of the parameters a, b and c.

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>α</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.375</td>
<td>1.031</td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>3</td>
<td>0.239</td>
<td>4.543</td>
</tr>
<tr>
<td>0.5</td>
<td>3</td>
<td>0.5</td>
<td>0.474</td>
<td>1.105</td>
</tr>
<tr>
<td>0.5</td>
<td>3</td>
<td>3</td>
<td>0.497</td>
<td>3.539</td>
</tr>
<tr>
<td>3</td>
<td>0.5</td>
<td>0.5</td>
<td>0.474</td>
<td>1.105</td>
</tr>
<tr>
<td>3</td>
<td>0.5</td>
<td>3</td>
<td>0.450</td>
<td>3.539</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0.5</td>
<td>2.831</td>
<td>1.003</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2.429</td>
<td>3.643</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>0.978</td>
<td>3.584</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0.5</td>
<td>0.854</td>
<td>1.014</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1.5</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.778</td>
<td>1.556</td>
</tr>
</tbody>
</table>
Approximations of the above kind have been proposed before; see, for example, [4, 28] and [8]. But this is the first time it has been proposed for correlated beta random variables. In order to show robustness of the approximation, we selected twelve values for the parameters \((a, b, c)\) and computed the corresponding estimates for \((\alpha, \beta)\) using (9) and (10). The selected parameters \((a, b, c)\) and the estimates are shown in the table above. We checked robustness by comparing the exact and approximated pdfs of \(4P\) as given by (2) and (8), respectively. These comparisons are illustrated in Figures 1, 2 and 3. It is evident that the approximation is quite robust. We hope that this approximation will be useful – especially to the practitioners of the Dirichlet distribution – since it avoids the use of the Gauss hypergeometric function and since the beta distribution is widely accessible in standard statistical packages.

Fig. 1. The exact pdf (solid curve) and the approximated pdf (broken curve) of \(P = XY\) for (a): \((a, b, c) = (0.5, 0.5, 0.5)\); (b): \((a, b, c) = (0.5, 0.5, 3)\); (c): \((a, b, c) = (0.5, 3, 0.5)\); and, (d): \((a, b, c) = (0.5, 3, 3)\).
Exact and Approximate Distributions for the Product of Dirichlet Components

Fig. 2. The exact pdf (solid curve) and the approximated pdf (broken curve) of $P = XY$ for (a): $(a, b, c) = (3, 0.5, 0.5)$; (b): $(a, b, c) = (3, 0.5, 3)$; (c): $(a, b, c) = (3, 3, 0.5)$; and, (d): $(a, b, c) = (3, 3, 3)$.
Fig. 3. The exact pdf (solid curve) and the approximated pdf (broken curve)
of $P = XY$ for (a): $(a, b, c) = (1, 3, 3)$; (b): $(a, b, c) = (1, 1, 0.5)$;
(c): $(a, b, c) = (1, 3, 1)$; and, (d): $(a, b, c) = (1, 1, 1)$.

(Received April 30, 2004.)

REFERENCES

positive quadratic forms in normal variables. Comm. Statist. – Theory Methods 12
Exact and Approximate Distributions for the Product of Dirichlet Components

743

Saralees Nadarajah, Department of Mathematics, University of South Florida, Tampa, Florida 33620. U. S. A.
e-mail: snadaraj@math.iupui.edu

e-mail: kotz@gwu.edu